1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144 |
- // Tests "math.odin" in "core:math".
- // Must be run with `-collection:tests=` flag, e.g.
- // ./odin run tests/core/math/test_core_math.odin -collection:tests=./tests
- package test_core_math
- import "core:fmt"
- import "core:math"
- import "core:testing"
- import tc "tests:common"
- main :: proc() {
- t := testing.T{}
- test_classify_f16(&t)
- test_classify_f32(&t)
- test_classify_f64(&t)
- test_trunc_f16(&t)
- test_trunc_f32(&t)
- test_trunc_f64(&t)
- test_nan(&t)
- test_acos(&t)
- test_acosh(&t)
- test_asin(&t)
- test_asinh(&t)
- test_atan(&t)
- test_atanh(&t)
- test_atan2(&t)
- test_cos(&t)
- test_cosh(&t)
- test_sin(&t)
- test_sinh(&t)
- test_sqrt(&t)
- test_tan(&t)
- test_tanh(&t)
- test_large_cos(&t)
- test_large_sin(&t)
- test_large_tan(&t)
- tc.report(&t)
- }
- @test
- test_classify_f16 :: proc(t: ^testing.T) {
- using math
- using Float_Class
- r: Float_Class
- Datum :: struct {
- i: int,
- v: f16,
- e: math.Float_Class,
- }
- @static data := []Datum{
- { 0, 1.2, Normal },
- { 1, 0h0001, Subnormal },
- { 2, 0.0, Zero },
- { 3, -0.0, Neg_Zero },
- { 4, SNAN_F16, NaN },
- { 5, QNAN_F16, NaN },
- { 6, INF_F16, Inf },
- { 7, NEG_INF_F16, Neg_Inf },
- }
- for d, i in data {
- assert(i == d.i)
- r = classify_f16(d.v)
- tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %v != %v", i, #procedure, d.v, r, d.e))
- }
- /* Check all subnormals (exponent 0, 10-bit significand non-zero) */
- for i :u16 = 1; i < 0x400; i += 1 {
- v :f16 = transmute(f16)i
- r = classify_f16(v)
- e :Float_Class: Subnormal
- tc.expect(t, r == e, fmt.tprintf("i:%d %s(%h) -> %v != %v", i, #procedure, v, r, e))
- }
- }
- @test
- test_classify_f32 :: proc(t: ^testing.T) {
- using math
- using Float_Class
- r: Float_Class
- Datum :: struct {
- i: int,
- v: f32,
- e: math.Float_Class,
- }
- @static data := []Datum{
- { 0, 1.2, Normal },
- { 1, 0h0000_0001, Subnormal },
- { 2, 0.0, Zero },
- { 3, -0.0, Neg_Zero },
- { 4, SNAN_F32, NaN },
- { 5, QNAN_F32, NaN },
- { 6, INF_F32, Inf },
- { 7, NEG_INF_F32, Neg_Inf },
- }
- for d, i in data {
- assert(i == d.i)
- r = classify_f32(d.v)
- tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %v != %v", i, #procedure, d.v, r, d.e))
- }
- }
- @test
- test_classify_f64 :: proc(t: ^testing.T) {
- using math
- using Float_Class
- r: Float_Class
- Datum :: struct {
- i: int,
- v: f64,
- e: math.Float_Class,
- }
- @static data := []Datum{
- { 0, 1.2, Normal },
- { 1, 0h0000_0000_0000_0001, Subnormal },
- { 2, 0.0, Zero },
- { 3, -0.0, Neg_Zero },
- { 4, SNAN_F64, NaN },
- { 5, QNAN_F64, NaN },
- { 6, INF_F64, Inf },
- { 7, NEG_INF_F64, Neg_Inf },
- }
- for d, i in data {
- assert(i == d.i)
- r = classify_f64(d.v)
- tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %v != %v", i, #procedure, d.v, r, d.e))
- }
- }
- @test
- test_trunc_f16 :: proc(t: ^testing.T) {
- using math
- r, v: f16
- Datum :: struct {
- i: int,
- v: f16,
- e: f16,
- }
- @static data := []Datum{
- { 0, 10.5, 10 }, // Issue #1574 fract in linalg/glm is broken
- { 1, -10.5, -10 },
- { 2, F16_MAX, F16_MAX },
- { 3, -F16_MAX, -F16_MAX },
- { 4, F16_MIN, 0.0 },
- { 5, -F16_MIN, -0.0 },
- { 6, 0.0, 0.0 },
- { 7, -0.0, -0.0 },
- { 8, 1, 1 },
- { 9, -1, -1 },
- { 10, INF_F16, INF_F16 },
- { 11, NEG_INF_F16, NEG_INF_F16 },
- /* From https://en.wikipedia.org/wiki/Half-precision_floating-point_format */
- { 12, 0h3C01, 1 }, // 0x1.004p+0 (smallest > 1)
- { 13, -0h3C01, -1 },
- { 14, 0h3BFF, 0.0 }, // 0x1.ffcp-1 (largest < 1)
- { 15, -0h3BFF, -0.0 },
- { 16, 0h0001, 0.0 }, // 0x0.004p-14 (smallest subnormal)
- { 17, -0h0001, -0.0 },
- { 18, 0h03FF, 0.0 }, // 0x0.ffcp-14 (largest subnormal)
- { 19, -0h03FF, -0.0 },
- { 20, 0hC809, -8 }, // -0x1.024p+3
- { 21, 0h4458, 4 }, // 0x1.16p+2
- }
- for d, i in data {
- assert(i == d.i)
- r = trunc_f16(d.v)
- tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %h != %h", i, #procedure, d.v, r, d.e))
- }
- v = SNAN_F16
- r = trunc_f16(v)
- tc.expect(t, is_nan_f16(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r))
- v = QNAN_F16
- r = trunc_f16(v)
- tc.expect(t, is_nan_f16(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r))
- }
- @test
- test_trunc_f32 :: proc(t: ^testing.T) {
- using math
- r, v: f32
- Datum :: struct {
- i: int,
- v: f32,
- e: f32,
- }
- @static data := []Datum{
- { 0, 10.5, 10 }, // Issue #1574 fract in linalg/glm is broken
- { 1, -10.5, -10 },
- { 2, F32_MAX, F32_MAX },
- { 3, -F32_MAX, -F32_MAX },
- { 4, F32_MIN, 0.0 },
- { 5, -F32_MIN, -0.0 },
- { 6, 0.0, 0.0 },
- { 7, -0.0, -0.0 },
- { 8, 1, 1 },
- { 9, -1, -1 },
- { 10, INF_F32, INF_F32 },
- { 11, NEG_INF_F32, NEG_INF_F32 },
- /* From https://en.wikipedia.org/wiki/Single-precision_floating-point_format */
- { 12, 0h3F80_0001, 1 }, // 0x1.000002p+0 (smallest > 1)
- { 13, -0h3F80_0001, -1 },
- { 14, 0h3F7F_FFFF, 0.0 }, // 0x1.fffffep-1 (largest < 1)
- { 15, -0h3F7F_FFFF, -0.0 },
- { 16, 0h0000_0001, 0.0 }, // 0x0.000002p-126 (smallest subnormal)
- { 17, -0h0000_0001, -0.0 },
- { 18, 0h007F_FFFF, 0.0 }, // 0x0.fffffep-126 (largest subnormal)
- { 19, -0h007F_FFFF, -0.0 },
- /* From libc-test src/math/sanity/truncf.h */
- { 20, 0hC101_11D0, -8 }, // -0x1.0223ap+3
- { 21, 0h408B_0C34, 4 }, // 0x1.161868p+2
- { 22, 0hC106_1A5A, -8 }, // -0x1.0c34b4p+3
- { 23, 0hC0D1_0378, -6 }, // -0x1.a206fp+2
- { 24, 0h4114_45DE, 9 }, // 0x1.288bbcp+3
- { 25, 0h3F29_77E8, 0.0 }, // 0x1.52efdp-1
- { 26, 0hBED0_2E64, -0.0 }, // -0x1.a05cc8p-2
- { 27, 0h3F0F_CF7D, 0.0 }, // 0x1.1f9efap-1
- { 28, 0h3F46_2ED8, 0.0 }, // 0x1.8c5dbp-1
- { 29, 0hBF2D_C375, -0.0 }, // -0x1.5b86eap-1
- }
- for d, i in data {
- assert(i == d.i)
- r = trunc_f32(d.v)
- tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %h != %h", i, #procedure, d.v, r, d.e))
- }
- v = SNAN_F32
- r = trunc_f32(v)
- tc.expect(t, is_nan_f32(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r))
- v = QNAN_F32
- r = trunc_f32(v)
- tc.expect(t, is_nan_f32(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r))
- }
- @test
- test_trunc_f64 :: proc(t: ^testing.T) {
- using math
- r, v: f64
- Datum :: struct {
- i: int,
- v: f64,
- e: f64,
- }
- data := []Datum{
- { 0, 10.5, 10 }, // Issue #1574 fract in linalg/glm is broken
- { 1, -10.5, -10 },
- { 2, F64_MAX, F64_MAX },
- { 3, -F64_MAX, -F64_MAX },
- { 4, F64_MIN, 0.0 },
- { 5, -F64_MIN, -0.0 },
- { 6, 0.0, 0.0 },
- { 7, -0.0, -0.0 },
- { 8, 1, 1 },
- { 9, -1, -1 },
- { 10, INF_F64, INF_F64 },
- { 11, NEG_INF_F64, NEG_INF_F64 },
- /* From https://en.wikipedia.org/wiki/Double-precision_floating-point_format */
- { 12, 0h3FF0_0000_0000_0001, 1 }, // 0x1.0000000000001p+0 (smallest > 1)
- { 13, -0h3FF0_0000_0000_0001, -1 },
- { 14, 0h3FEF_FFFF_FFFF_FFFF, 0.0 }, // 0x1.fffffffffffffp-1 (largest < 1)
- { 15, -0h3FEF_FFFF_FFFF_FFFF, -0.0 },
- { 16, 0h0000_0000_0000_0001, 0.0 }, // 0x0.0000000000001p-1022 (smallest subnormal)
- { 17, -0h0000_0000_0000_0001, -0.0 },
- { 18, 0h000F_FFFF_FFFF_FFFF, 0.0 }, // 0x0.fffffffffffffp-1022 (largest subnormal)
- { 19, -0h000F_FFFF_FFFF_FFFF, -0.0 },
- /* From libc-test src/math/sanity/trunc.h */
- { 20, 0hC020_2239_F3C6_A8F1, -8 }, // -0x1.02239f3c6a8f1p+3
- { 21, 0h4011_6186_8E18_BC67, 4 }, // 0x1.161868e18bc67p+2
- { 22, 0hC020_C34B_3E01_E6E7, -8 }, // -0x1.0c34b3e01e6e7p+3
- { 23, 0hC01A_206F_0A19_DCC4, -6 }, // -0x1.a206f0a19dcc4p+2
- { 24, 0h4022_88BB_B0D6_A1E6, 9 }, // 0x1.288bbb0d6a1e6p+3
- { 25, 0h3FE5_2EFD_0CD8_0497, 0.0 }, // 0x1.52efd0cd80497p-1
- { 26, 0hBFDA_05CC_7544_81D1, -0.0 }, // -0x1.a05cc754481d1p-2
- { 27, 0h3FE1_F9EF_9347_45CB, 0.0 }, // 0x1.1f9ef934745cbp-1
- { 28, 0h3FE8_C5DB_097F_7442, 0.0 }, // 0x1.8c5db097f7442p-1
- { 29, 0hBFE5_B86E_A811_8A0E, -0.0 }, // -0x1.5b86ea8118a0ep-1
- }
- for d, i in data {
- assert(i == d.i)
- r = trunc_f64(d.v)
- tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %h != %h", i, #procedure, d.v, r, d.e))
- }
- v = SNAN_F64
- r = trunc_f64(v)
- tc.expect(t, is_nan_f64(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r))
- v = QNAN_F64
- r = trunc_f64(v)
- tc.expect(t, is_nan_f64(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r))
- }
- vf := []f64{
- 4.9790119248836735e+00,
- 7.7388724745781045e+00,
- -2.7688005719200159e-01,
- -5.0106036182710749e+00,
- 9.6362937071984173e+00,
- 2.9263772392439646e+00,
- 5.2290834314593066e+00,
- 2.7279399104360102e+00,
- 1.8253080916808550e+00,
- -8.6859247685756013e+00,
- }
- // The expected results below were computed by the high precision calculators at https://keisan.casio.com/.
- acos := []f64{
- 1.0496193546107222142571536e+00,
- 6.8584012813664425171660692e-01,
- 1.5984878714577160325521819e+00,
- 2.0956199361475859327461799e+00,
- 2.7053008467824138592616927e-01,
- 1.2738121680361776018155625e+00,
- 1.0205369421140629186287407e+00,
- 1.2945003481781246062157835e+00,
- 1.3872364345374451433846657e+00,
- 2.6231510803970463967294145e+00,
- }
- acosh := []f64{
- 2.4743347004159012494457618e+00,
- 2.8576385344292769649802701e+00,
- 7.2796961502981066190593175e-01,
- 2.4796794418831451156471977e+00,
- 3.0552020742306061857212962e+00,
- 2.044238592688586588942468e+00,
- 2.5158701513104513595766636e+00,
- 1.99050839282411638174299e+00,
- 1.6988625798424034227205445e+00,
- 2.9611454842470387925531875e+00,
- }
- asin := []f64{
- 5.2117697218417440497416805e-01,
- 8.8495619865825236751471477e-01,
- -02.769154466281941332086016e-02,
- -5.2482360935268931351485822e-01,
- 1.3002662421166552333051524e+00,
- 2.9698415875871901741575922e-01,
- 5.5025938468083370060258102e-01,
- 2.7629597861677201301553823e-01,
- 1.83559892257451475846656e-01,
- -1.0523547536021497774980928e+00,
- }
- asinh := []f64{
- 2.3083139124923523427628243e+00,
- 2.743551594301593620039021e+00,
- -2.7345908534880091229413487e-01,
- -2.3145157644718338650499085e+00,
- 2.9613652154015058521951083e+00,
- 1.7949041616585821933067568e+00,
- 2.3564032905983506405561554e+00,
- 1.7287118790768438878045346e+00,
- 1.3626658083714826013073193e+00,
- -2.8581483626513914445234004e+00,
- }
- atan := []f64{
- 1.372590262129621651920085e+00,
- 1.442290609645298083020664e+00,
- -2.7011324359471758245192595e-01,
- -1.3738077684543379452781531e+00,
- 1.4673921193587666049154681e+00,
- 1.2415173565870168649117764e+00,
- 1.3818396865615168979966498e+00,
- 1.2194305844639670701091426e+00,
- 1.0696031952318783760193244e+00,
- -1.4561721938838084990898679e+00,
- }
- atanh := []f64{
- 5.4651163712251938116878204e-01,
- 1.0299474112843111224914709e+00,
- -2.7695084420740135145234906e-02,
- -5.5072096119207195480202529e-01,
- 1.9943940993171843235906642e+00,
- 3.01448604578089708203017e-01,
- 5.8033427206942188834370595e-01,
- 2.7987997499441511013958297e-01,
- 1.8459947964298794318714228e-01,
- -1.3273186910532645867272502e+00,
- }
- atan2 := []f64{
- 1.1088291730037004444527075e+00,
- 9.1218183188715804018797795e-01,
- 1.5984772603216203736068915e+00,
- 2.0352918654092086637227327e+00,
- 8.0391819139044720267356014e-01,
- 1.2861075249894661588866752e+00,
- 1.0889904479131695712182587e+00,
- 1.3044821793397925293797357e+00,
- 1.3902530903455392306872261e+00,
- 2.2859857424479142655411058e+00,
- }
- cos := []f64{
- 2.634752140995199110787593e-01,
- 1.148551260848219865642039e-01,
- 9.6191297325640768154550453e-01,
- 2.938141150061714816890637e-01,
- -9.777138189897924126294461e-01,
- -9.7693041344303219127199518e-01,
- 4.940088096948647263961162e-01,
- -9.1565869021018925545016502e-01,
- -2.517729313893103197176091e-01,
- -7.39241351595676573201918e-01,
- }
- // Results for 1e5 * Pi + vf[i]
- cosLarge := []f64{
- 2.634752141185559426744e-01,
- 1.14855126055543100712e-01,
- 9.61912973266488928113e-01,
- 2.9381411499556122552e-01,
- -9.777138189880161924641e-01,
- -9.76930413445147608049e-01,
- 4.940088097314976789841e-01,
- -9.15658690217517835002e-01,
- -2.51772931436786954751e-01,
- -7.3924135157173099849e-01,
- }
- cosh := []f64{
- 7.2668796942212842775517446e+01,
- 1.1479413465659254502011135e+03,
- 1.0385767908766418550935495e+00,
- 7.5000957789658051428857788e+01,
- 7.655246669605357888468613e+03,
- 9.3567491758321272072888257e+00,
- 9.331351599270605471131735e+01,
- 7.6833430994624643209296404e+00,
- 3.1829371625150718153881164e+00,
- 2.9595059261916188501640911e+03,
- }
- sin := []f64{
- -9.6466616586009283766724726e-01,
- 9.9338225271646545763467022e-01,
- -2.7335587039794393342449301e-01,
- 9.5586257685042792878173752e-01,
- -2.099421066779969164496634e-01,
- 2.135578780799860532750616e-01,
- -8.694568971167362743327708e-01,
- 4.019566681155577786649878e-01,
- 9.6778633541687993721617774e-01,
- -6.734405869050344734943028e-01,
- }
- // Results for 1e5 * Pi + vf[i]
- sinLarge := []f64{
- -9.646661658548936063912e-01,
- 9.933822527198506903752e-01,
- -2.7335587036246899796e-01,
- 9.55862576853689321268e-01,
- -2.099421066862688873691e-01,
- 2.13557878070308981163e-01,
- -8.694568970959221300497e-01,
- 4.01956668098863248917e-01,
- 9.67786335404528727927e-01,
- -6.7344058693131973066e-01,
- }
- sinh := []f64{
- 7.2661916084208532301448439e+01,
- 1.1479409110035194500526446e+03,
- -2.8043136512812518927312641e-01,
- -7.499429091181587232835164e+01,
- 7.6552466042906758523925934e+03,
- 9.3031583421672014313789064e+00,
- 9.330815755828109072810322e+01,
- 7.6179893137269146407361477e+00,
- 3.021769180549615819524392e+00,
- -2.95950575724449499189888e+03,
- }
- sqrt := []f64{
- 2.2313699659365484748756904e+00,
- 2.7818829009464263511285458e+00,
- 5.2619393496314796848143251e-01,
- 2.2384377628763938724244104e+00,
- 3.1042380236055381099288487e+00,
- 1.7106657298385224403917771e+00,
- 2.286718922705479046148059e+00,
- 1.6516476350711159636222979e+00,
- 1.3510396336454586262419247e+00,
- 2.9471892997524949215723329e+00,
- }
- tan := []f64{
- -3.661316565040227801781974e+00,
- 8.64900232648597589369854e+00,
- -2.8417941955033612725238097e-01,
- 3.253290185974728640827156e+00,
- 2.147275640380293804770778e-01,
- -2.18600910711067004921551e-01,
- -1.760002817872367935518928e+00,
- -4.389808914752818126249079e-01,
- -3.843885560201130679995041e+00,
- 9.10988793377685105753416e-01,
- }
- // Results for 1e5 * Pi + vf[i]
- tanLarge := []f64{
- -3.66131656475596512705e+00,
- 8.6490023287202547927e+00,
- -2.841794195104782406e-01,
- 3.2532901861033120983e+00,
- 2.14727564046880001365e-01,
- -2.18600910700688062874e-01,
- -1.760002817699722747043e+00,
- -4.38980891453536115952e-01,
- -3.84388555942723509071e+00,
- 9.1098879344275101051e-01,
- }
- tanh := []f64{
- 9.9990531206936338549262119e-01,
- 9.9999962057085294197613294e-01,
- -2.7001505097318677233756845e-01,
- -9.9991110943061718603541401e-01,
- 9.9999999146798465745022007e-01,
- 9.9427249436125236705001048e-01,
- 9.9994257600983138572705076e-01,
- 9.9149409509772875982054701e-01,
- 9.4936501296239685514466577e-01,
- -9.9999994291374030946055701e-01,
- }
- NaN :: 0h7fff_ffff_ffff_ffff
- Pi :: 0h4009_21fb_5444_2d18
- // arguments and expected results for special cases
- vfacos_sc := []f64{
- -Pi,
- 1,
- Pi,
- NaN,
- }
- acos_sc := []f64{
- NaN,
- 0,
- NaN,
- NaN,
- }
- vfacosh_sc := []f64{
- math.inf_f64(-1),
- 0.5,
- 1,
- math.inf_f64(1),
- NaN,
- }
- acosh_sc := []f64{
- NaN,
- NaN,
- 0,
- math.inf_f64(1),
- NaN,
- }
- vfasin_sc := []f64{
- -Pi,
- math.copy_sign_f64(0, -1),
- 0,
- Pi,
- NaN,
- }
- asin_sc := []f64{
- NaN,
- math.copy_sign_f64(0, -1),
- 0,
- NaN,
- NaN,
- }
- vfasinh_sc := []f64{
- math.inf_f64(-1),
- math.copy_sign_f64(0, -1),
- 0,
- math.inf_f64(1),
- NaN,
- }
- asinh_sc := []f64{
- math.inf_f64(-1),
- math.copy_sign_f64(0, -1),
- 0,
- math.inf_f64(1),
- NaN,
- }
- vfatan_sc := []f64{
- math.inf_f64(-1),
- math.copy_sign_f64(0, -1),
- 0,
- math.inf_f64(1),
- NaN,
- }
- atan_sc := []f64{
- -Pi / 2,
- math.copy_sign_f64(0, -1),
- 0,
- Pi / 2,
- NaN,
- }
- vfatanh_sc := []f64{
- math.inf_f64(-1),
- -Pi,
- -1,
- math.copy_sign_f64(0, -1),
- 0,
- 1,
- Pi,
- math.inf_f64(1),
- NaN,
- }
- atanh_sc := []f64{
- NaN,
- NaN,
- math.inf_f64(-1),
- math.copy_sign_f64(0, -1),
- 0,
- math.inf_f64(1),
- NaN,
- NaN,
- NaN,
- }
- vfatan2_sc := [][2]f64{
- {math.inf_f64(-1), math.inf_f64(-1)},
- {math.inf_f64(-1), -Pi},
- {math.inf_f64(-1), 0},
- {math.inf_f64(-1), +Pi},
- {math.inf_f64(-1), math.inf_f64(1)},
- {math.inf_f64(-1), NaN},
- {-Pi, math.inf_f64(-1)},
- {-Pi, 0},
- {-Pi, math.inf_f64(1)},
- {-Pi, NaN},
- {math.copy_sign_f64(0, -1), math.inf_f64(-1)},
- {math.copy_sign_f64(0, -1), -Pi},
- {math.copy_sign_f64(0, -1), math.copy_sign_f64(0, -1)},
- {math.copy_sign_f64(0, -1), 0},
- {math.copy_sign_f64(0, -1), +Pi},
- {math.copy_sign_f64(0, -1), math.inf_f64(1)},
- {math.copy_sign_f64(0, -1), NaN},
- {0, math.inf_f64(-1)},
- {0, -Pi},
- {0, math.copy_sign_f64(0, -1)},
- {0, 0},
- {0, +Pi},
- {0, math.inf_f64(1)},
- {0, NaN},
- {+Pi, math.inf_f64(-1)},
- {+Pi, 0},
- {+Pi, math.inf_f64(1)},
- {1.0, math.inf_f64(1)},
- {-1.0, math.inf_f64(1)},
- {+Pi, NaN},
- {math.inf_f64(1), math.inf_f64(-1)},
- {math.inf_f64(1), -Pi},
- {math.inf_f64(1), 0},
- {math.inf_f64(1), +Pi},
- {math.inf_f64(1), math.inf_f64(1)},
- {math.inf_f64(1), NaN},
- {NaN, NaN},
- }
- atan2_sc := []f64{
- -3 * Pi / 4, // atan2(-Inf, -Inf)
- -Pi / 2, // atan2(-Inf, -Pi)
- -Pi / 2, // atan2(-Inf, +0)
- -Pi / 2, // atan2(-Inf, +Pi)
- -Pi / 4, // atan2(-Inf, +Inf)
- NaN, // atan2(-Inf, NaN)
- -Pi, // atan2(-Pi, -Inf)
- -Pi / 2, // atan2(-Pi, +0)
- math.copy_sign_f64(0, -1), // atan2(-Pi, Inf)
- NaN, // atan2(-Pi, NaN)
- -Pi, // atan2(-0, -Inf)
- -Pi, // atan2(-0, -Pi)
- -Pi, // atan2(-0, -0)
- math.copy_sign_f64(0, -1), // atan2(-0, +0)
- math.copy_sign_f64(0, -1), // atan2(-0, +Pi)
- math.copy_sign_f64(0, -1), // atan2(-0, +Inf)
- NaN, // atan2(-0, NaN)
- Pi, // atan2(+0, -Inf)
- Pi, // atan2(+0, -Pi)
- Pi, // atan2(+0, -0)
- 0, // atan2(+0, +0)
- 0, // atan2(+0, +Pi)
- 0, // atan2(+0, +Inf)
- NaN, // atan2(+0, NaN)
- Pi, // atan2(+Pi, -Inf)
- Pi / 2, // atan2(+Pi, +0)
- 0, // atan2(+Pi, +Inf)
- 0, // atan2(+1, +Inf)
- math.copy_sign_f64(0, -1), // atan2(-1, +Inf)
- NaN, // atan2(+Pi, NaN)
- 3 * Pi / 4, // atan2(+Inf, -Inf)
- Pi / 2, // atan2(+Inf, -Pi)
- Pi / 2, // atan2(+Inf, +0)
- Pi / 2, // atan2(+Inf, +Pi)
- Pi / 4, // atan2(+Inf, +Inf)
- NaN, // atan2(+Inf, NaN)
- NaN, // atan2(NaN, NaN)
- }
- vfcbrt_sc := []f64{
- math.inf_f64(-1),
- math.copy_sign_f64(0, -1),
- 0,
- math.inf_f64(1),
- NaN,
- }
- cbrt_sc := []f64{
- math.inf_f64(-1),
- math.copy_sign_f64(0, -1),
- 0,
- math.inf_f64(1),
- NaN,
- }
- vfceil_sc := []f64{
- math.inf_f64(-1),
- math.copy_sign_f64(0, -1),
- 0,
- math.inf_f64(1),
- NaN,
- }
- ceil_sc := []f64{
- math.inf_f64(-1),
- math.copy_sign_f64(0, -1),
- 0,
- math.inf_f64(1),
- NaN,
- }
- vfcopysign_sc := []f64{
- math.inf_f64(-1),
- math.inf_f64(1),
- NaN,
- }
- copysign_sc := []f64{
- math.inf_f64(-1),
- math.inf_f64(-1),
- NaN,
- }
- vfcos_sc := []f64{
- math.inf_f64(-1),
- math.inf_f64(1),
- NaN,
- }
- cos_sc := []f64{
- NaN,
- NaN,
- NaN,
- }
- vfcosh_sc := []f64{
- math.inf_f64(-1),
- math.copy_sign_f64(0, -1),
- 0,
- math.inf_f64(1),
- NaN,
- }
- cosh_sc := []f64{
- math.inf_f64(1),
- 1,
- 1,
- math.inf_f64(1),
- NaN,
- }
- vfsin_sc := []f64{
- math.inf_f64(-1),
- math.copy_sign_f64(0, -1),
- 0,
- math.inf_f64(1),
- NaN,
- }
- sin_sc := []f64{
- NaN,
- math.copy_sign_f64(0, -1),
- 0,
- NaN,
- NaN,
- }
- vfsinh_sc := []f64{
- math.inf_f64(-1),
- math.copy_sign_f64(0, -1),
- 0,
- math.inf_f64(1),
- NaN,
- }
- sinh_sc := []f64{
- math.inf_f64(-1),
- math.copy_sign_f64(0, -1),
- 0,
- math.inf_f64(1),
- NaN,
- }
- vftanh_sc := []f64{
- math.inf_f64(-1),
- math.copy_sign_f64(0, -1),
- 0,
- math.inf_f64(1),
- NaN,
- }
- tanh_sc := []f64{
- -1,
- math.copy_sign_f64(0, -1),
- 0,
- 1,
- NaN,
- }
- tolerance :: proc(a, b, e: f64) -> bool {
- // Multiplying by e here can underflow denormal values to zero.
- // Check a==b so that at least if a and b are small and identical
- // we say they match.
- if a == b {
- return true
- }
- e := e
- d := a - b
- if d < 0 {
- d = -d
- }
- // note: b is correct (expected) value, a is actual value.
- // make error tolerance a fraction of b, not a.
- if b != 0 {
- e = e * b
- if e < 0 {
- e = -e
- }
- }
- return d < e
- }
- close :: proc(t: ^testing.T, a, b: f64, loc := #caller_location) -> bool {
- ok := tolerance(a, b, 1e-9)
- // tc.expect(t, ok, fmt.tprintf("%.15g is not close to %.15g", a, b), loc)
- return ok
- }
- veryclose :: proc(t: ^testing.T, a, b: f64, loc := #caller_location) -> bool {
- ok := tolerance(a, b, 4e-14)
- // tc.expect(t, ok, fmt.tprintf("%.15g is not veryclose to %.15g", a, b), loc)
- return ok
- }
- soclose :: proc(t: ^testing.T, a, b, e: f64, loc := #caller_location) -> bool {
- ok := tolerance(a, b, e)
- // tc.expect(t, ok, fmt.tprintf("%.15g is not soclose to %.15g", a, b), loc)
- return ok
- }
- alike :: proc(t: ^testing.T, a, b: f64, loc := #caller_location) -> bool {
- ok := false
- switch {
- case math.is_nan(a) && math.is_nan(b):
- ok = true
- case a == b:
- ok = math.signbit(a) == math.signbit(b)
- }
- // tc.expect(t, ok, fmt.tprintf("%.15g is not alike to %.15g", a, b), loc)
- return ok
- }
- @test
- test_nan :: proc(t: ^testing.T) {
- float64 := NaN
- if float64 == float64 {
- tc.errorf(t, "NaN returns %.15g, expected NaN", float64)
- }
- float32 := f32(float64)
- if float32 == float32 {
- tc.errorf(t, "float32(NaN) is %.15g, expected NaN", float32)
- }
- }
- @test
- test_acos :: proc(t: ^testing.T) {
- for _, i in vf {
- a := vf[i] / 10
- if f := math.acos(a); !close(t, acos[i], f) {
- tc.errorf(t, "math.acos(%.15g) = %.15g, want %.15g", a, f, acos[i])
- }
- }
- for _, i in vfacos_sc {
- if f := math.acos(vfacos_sc[i]); !alike(t, acos_sc[i], f) {
- tc.errorf(t, "math.acos(%.15g) = %.15g, want %.15g", vfacos_sc[i], f, acos_sc[i])
- }
- }
- }
- @test
- test_acosh :: proc(t: ^testing.T) {
- for _, i in vf {
- a := 1 + abs(vf[i])
- if f := math.acosh(a); !veryclose(t, acosh[i], f) {
- tc.errorf(t, "math.acosh(%.15g) = %.15g, want %.15g", a, f, acosh[i])
- }
- }
- for _, i in vfacosh_sc {
- if f := math.acosh(vfacosh_sc[i]); !alike(t, acosh_sc[i], f) {
- tc.errorf(t, "math.acosh(%.15g) = %.15g, want %.15g", vfacosh_sc[i], f, acosh_sc[i])
- }
- }
- }
- @test
- test_asin :: proc(t: ^testing.T) {
- for _, i in vf {
- a := vf[i] / 10
- if f := math.asin(a); !veryclose(t, asin[i], f) {
- tc.errorf(t, "math.asin(%.15g) = %.15g, want %.15g", a, f, asin[i])
- }
- }
- for _, i in vfasin_sc {
- if f := math.asin(vfasin_sc[i]); !alike(t, asin_sc[i], f) {
- tc.errorf(t, "math.asin(%.15g) = %.15g, want %.15g", vfasin_sc[i], f, asin_sc[i])
- }
- }
- }
- @test
- test_asinh :: proc(t: ^testing.T) {
- for _, i in vf {
- if f := math.asinh(vf[i]); !veryclose(t, asinh[i], f) {
- tc.errorf(t, "math.asinh(%.15g) = %.15g, want %.15g", vf[i], f, asinh[i])
- }
- }
- for _, i in vfasinh_sc {
- if f := math.asinh(vfasinh_sc[i]); !alike(t, asinh_sc[i], f) {
- tc.errorf(t, "math.asinh(%.15g) = %.15g, want %.15g", vfasinh_sc[i], f, asinh_sc[i])
- }
- }
- }
- @test
- test_atan :: proc(t: ^testing.T) {
- for _, i in vf {
- if f := math.atan(vf[i]); !veryclose(t, atan[i], f) {
- tc.errorf(t, "math.atan(%.15g) = %.15g, want %.15g", vf[i], f, atan[i])
- }
- }
- for _, i in vfatan_sc {
- if f := math.atan(vfatan_sc[i]); !alike(t, atan_sc[i], f) {
- tc.errorf(t, "math.atan(%.15g) = %.15g, want %.15g", vfatan_sc[i], f, atan_sc[i])
- }
- }
- }
- @test
- test_atanh :: proc(t: ^testing.T) {
- for _, i in vf {
- a := vf[i] / 10
- if f := math.atanh(a); !veryclose(t, atanh[i], f) {
- tc.errorf(t, "math.atanh(%.15g) = %.15g, want %.15g", a, f, atanh[i])
- }
- }
- for _, i in vfatanh_sc {
- if f := math.atanh(vfatanh_sc[i]); !alike(t, atanh_sc[i], f) {
- tc.errorf(t, "math.atanh(%.15g) = %.15g, want %.15g", vfatanh_sc[i], f, atanh_sc[i])
- }
- }
- }
- @test
- test_atan2 :: proc(t: ^testing.T) {
- for _, i in vf {
- if f := math.atan2(10, vf[i]); !veryclose(t, atan2[i], f) {
- tc.errorf(t, "math.atan2(10, %.15g) = %.15g, want %.15g", vf[i], f, atan2[i])
- }
- }
- for _, i in vfatan2_sc {
- if f := math.atan2(vfatan2_sc[i][0], vfatan2_sc[i][1]); !alike(t, atan2_sc[i], f) {
- tc.errorf(t, "math.atan2(%.15g, %.15g) = %.15g, want %.15g", vfatan2_sc[i][0], vfatan2_sc[i][1], f, atan2_sc[i])
- }
- }
- }
- @test
- test_cos :: proc(t: ^testing.T) {
- for _, i in vf {
- if f := math.cos(vf[i]); !veryclose(t, cos[i], f) {
- tc.errorf(t, "math.cos(%.15g) = %.15g, want %.15g", vf[i], f, cos[i])
- }
- }
- for _, i in vfcos_sc {
- if f := math.cos(vfcos_sc[i]); !alike(t, cos_sc[i], f) {
- tc.errorf(t, "math.cos(%.15g) = %.15g, want %.15g", vfcos_sc[i], f, cos_sc[i])
- }
- }
- }
- @test
- test_cosh :: proc(t: ^testing.T) {
- for _, i in vf {
- if f := math.cosh(vf[i]); !close(t, cosh[i], f) {
- tc.errorf(t, "math.cosh(%.15g) = %.15g, want %.15g", vf[i], f, cosh[i])
- }
- }
- for _, i in vfcosh_sc {
- if f := math.cosh(vfcosh_sc[i]); !alike(t, cosh_sc[i], f) {
- tc.errorf(t, "math.cosh(%.15g) = %.15g, want %.15g", vfcosh_sc[i], f, cosh_sc[i])
- }
- }
- }
- @test
- test_sin :: proc(t: ^testing.T) {
- for _, i in vf {
- if f := math.sin(vf[i]); !veryclose(t, sin[i], f) {
- tc.errorf(t, "math.sin(%.15g) = %.15g, want %.15g", vf[i], f, sin[i])
- }
- }
- for _, i in vfsin_sc {
- if f := math.sin(vfsin_sc[i]); !alike(t, sin_sc[i], f) {
- tc.errorf(t, "math.sin(%.15g) = %.15g, want %.15g", vfsin_sc[i], f, sin_sc[i])
- }
- }
- }
- @test
- test_sinh :: proc(t: ^testing.T) {
- for _, i in vf {
- if f := math.sinh(vf[i]); !close(t, sinh[i], f) {
- tc.errorf(t, "math.sinh(%.15g) = %.15g, want %.15g", vf[i], f, sinh[i])
- }
- }
- for _, i in vfsinh_sc {
- if f := math.sinh(vfsinh_sc[i]); !alike(t, sinh_sc[i], f) {
- tc.errorf(t, "math.sinh(%.15g) = %.15g, want %.15g", vfsinh_sc[i], f, sinh_sc[i])
- }
- }
- }
- @test
- test_sqrt :: proc(t: ^testing.T) {
- for _, i in vf {
- a := abs(vf[i])
- if f := math.sqrt(a); !veryclose(t, sqrt[i], f) {
- tc.errorf(t, "math.sqrt(%.15g) = %.15g, want %.15g", a, f, sqrt[i])
- }
- }
- }
- @test
- test_tan :: proc(t: ^testing.T) {
- for _, i in vf {
- if f := math.tan(vf[i]); !veryclose(t, tan[i], f) {
- tc.errorf(t, "math.tan(%.15g) = %.15g, want %.15g", vf[i], f, tan[i])
- }
- }
- // same special cases as Sin
- for _, i in vfsin_sc {
- if f := math.tan(vfsin_sc[i]); !alike(t, sin_sc[i], f) {
- tc.errorf(t, "math.tan(%.15g) = %.15g, want %.15g", vfsin_sc[i], f, sin_sc[i])
- }
- }
- }
- @test
- test_tanh :: proc(t: ^testing.T) {
- for _, i in vf {
- if f := math.tanh(vf[i]); !veryclose(t, tanh[i], f) {
- tc.errorf(t, "math.tanh(%.15g) = %.15g, want %.15g", vf[i], f, tanh[i])
- }
- }
- for _, i in vftanh_sc {
- if f := math.tanh(vftanh_sc[i]); !alike(t, tanh_sc[i], f) {
- tc.errorf(t, "math.tanh(%.15g) = %.15g, want %.15g", vftanh_sc[i], f, tanh_sc[i])
- }
- }
- }
- @test
- test_large_cos :: proc(t: ^testing.T) {
- large := f64(1e5 * Pi)
- for _, i in vf {
- f1 := cosLarge[i]
- f2 := math.cos(vf[i] + large)
- if !close(t, f1, f2) {
- tc.errorf(t, "math.cos(%.15g) = %.15g, want %.15g", vf[i]+large, f2, f1)
- }
- }
- }
- @test
- test_large_sin :: proc(t: ^testing.T) {
- large := f64(1e5 * Pi)
- for _, i in vf {
- f1 := sinLarge[i]
- f2 := math.sin(vf[i] + large)
- if !close(t, f1, f2) {
- tc.errorf(t, "math.sin(%.15g) = %.15g, want %.15g", vf[i]+large, f2, f1)
- }
- }
- }
- @test
- test_large_tan :: proc(t: ^testing.T) {
- large := f64(1e5 * Pi)
- for _, i in vf {
- f1 := tanLarge[i]
- f2 := math.tan(vf[i] + large)
- if !close(t, f1, f2) {
- tc.errorf(t, "math.tan(%.15g) = %.15g, want %.15g", vf[i]+large, f2, f1)
- }
- }
- }
|