test_core_math.odin 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144
  1. // Tests "math.odin" in "core:math".
  2. // Must be run with `-collection:tests=` flag, e.g.
  3. // ./odin run tests/core/math/test_core_math.odin -collection:tests=./tests
  4. package test_core_math
  5. import "core:fmt"
  6. import "core:math"
  7. import "core:testing"
  8. import tc "tests:common"
  9. main :: proc() {
  10. t := testing.T{}
  11. test_classify_f16(&t)
  12. test_classify_f32(&t)
  13. test_classify_f64(&t)
  14. test_trunc_f16(&t)
  15. test_trunc_f32(&t)
  16. test_trunc_f64(&t)
  17. test_nan(&t)
  18. test_acos(&t)
  19. test_acosh(&t)
  20. test_asin(&t)
  21. test_asinh(&t)
  22. test_atan(&t)
  23. test_atanh(&t)
  24. test_atan2(&t)
  25. test_cos(&t)
  26. test_cosh(&t)
  27. test_sin(&t)
  28. test_sinh(&t)
  29. test_sqrt(&t)
  30. test_tan(&t)
  31. test_tanh(&t)
  32. test_large_cos(&t)
  33. test_large_sin(&t)
  34. test_large_tan(&t)
  35. tc.report(&t)
  36. }
  37. @test
  38. test_classify_f16 :: proc(t: ^testing.T) {
  39. using math
  40. using Float_Class
  41. r: Float_Class
  42. Datum :: struct {
  43. i: int,
  44. v: f16,
  45. e: math.Float_Class,
  46. }
  47. @static data := []Datum{
  48. { 0, 1.2, Normal },
  49. { 1, 0h0001, Subnormal },
  50. { 2, 0.0, Zero },
  51. { 3, -0.0, Neg_Zero },
  52. { 4, SNAN_F16, NaN },
  53. { 5, QNAN_F16, NaN },
  54. { 6, INF_F16, Inf },
  55. { 7, NEG_INF_F16, Neg_Inf },
  56. }
  57. for d, i in data {
  58. assert(i == d.i)
  59. r = classify_f16(d.v)
  60. tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %v != %v", i, #procedure, d.v, r, d.e))
  61. }
  62. /* Check all subnormals (exponent 0, 10-bit significand non-zero) */
  63. for i :u16 = 1; i < 0x400; i += 1 {
  64. v :f16 = transmute(f16)i
  65. r = classify_f16(v)
  66. e :Float_Class: Subnormal
  67. tc.expect(t, r == e, fmt.tprintf("i:%d %s(%h) -> %v != %v", i, #procedure, v, r, e))
  68. }
  69. }
  70. @test
  71. test_classify_f32 :: proc(t: ^testing.T) {
  72. using math
  73. using Float_Class
  74. r: Float_Class
  75. Datum :: struct {
  76. i: int,
  77. v: f32,
  78. e: math.Float_Class,
  79. }
  80. @static data := []Datum{
  81. { 0, 1.2, Normal },
  82. { 1, 0h0000_0001, Subnormal },
  83. { 2, 0.0, Zero },
  84. { 3, -0.0, Neg_Zero },
  85. { 4, SNAN_F32, NaN },
  86. { 5, QNAN_F32, NaN },
  87. { 6, INF_F32, Inf },
  88. { 7, NEG_INF_F32, Neg_Inf },
  89. }
  90. for d, i in data {
  91. assert(i == d.i)
  92. r = classify_f32(d.v)
  93. tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %v != %v", i, #procedure, d.v, r, d.e))
  94. }
  95. }
  96. @test
  97. test_classify_f64 :: proc(t: ^testing.T) {
  98. using math
  99. using Float_Class
  100. r: Float_Class
  101. Datum :: struct {
  102. i: int,
  103. v: f64,
  104. e: math.Float_Class,
  105. }
  106. @static data := []Datum{
  107. { 0, 1.2, Normal },
  108. { 1, 0h0000_0000_0000_0001, Subnormal },
  109. { 2, 0.0, Zero },
  110. { 3, -0.0, Neg_Zero },
  111. { 4, SNAN_F64, NaN },
  112. { 5, QNAN_F64, NaN },
  113. { 6, INF_F64, Inf },
  114. { 7, NEG_INF_F64, Neg_Inf },
  115. }
  116. for d, i in data {
  117. assert(i == d.i)
  118. r = classify_f64(d.v)
  119. tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %v != %v", i, #procedure, d.v, r, d.e))
  120. }
  121. }
  122. @test
  123. test_trunc_f16 :: proc(t: ^testing.T) {
  124. using math
  125. r, v: f16
  126. Datum :: struct {
  127. i: int,
  128. v: f16,
  129. e: f16,
  130. }
  131. @static data := []Datum{
  132. { 0, 10.5, 10 }, // Issue #1574 fract in linalg/glm is broken
  133. { 1, -10.5, -10 },
  134. { 2, F16_MAX, F16_MAX },
  135. { 3, -F16_MAX, -F16_MAX },
  136. { 4, F16_MIN, 0.0 },
  137. { 5, -F16_MIN, -0.0 },
  138. { 6, 0.0, 0.0 },
  139. { 7, -0.0, -0.0 },
  140. { 8, 1, 1 },
  141. { 9, -1, -1 },
  142. { 10, INF_F16, INF_F16 },
  143. { 11, NEG_INF_F16, NEG_INF_F16 },
  144. /* From https://en.wikipedia.org/wiki/Half-precision_floating-point_format */
  145. { 12, 0h3C01, 1 }, // 0x1.004p+0 (smallest > 1)
  146. { 13, -0h3C01, -1 },
  147. { 14, 0h3BFF, 0.0 }, // 0x1.ffcp-1 (largest < 1)
  148. { 15, -0h3BFF, -0.0 },
  149. { 16, 0h0001, 0.0 }, // 0x0.004p-14 (smallest subnormal)
  150. { 17, -0h0001, -0.0 },
  151. { 18, 0h03FF, 0.0 }, // 0x0.ffcp-14 (largest subnormal)
  152. { 19, -0h03FF, -0.0 },
  153. { 20, 0hC809, -8 }, // -0x1.024p+3
  154. { 21, 0h4458, 4 }, // 0x1.16p+2
  155. }
  156. for d, i in data {
  157. assert(i == d.i)
  158. r = trunc_f16(d.v)
  159. tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %h != %h", i, #procedure, d.v, r, d.e))
  160. }
  161. v = SNAN_F16
  162. r = trunc_f16(v)
  163. tc.expect(t, is_nan_f16(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r))
  164. v = QNAN_F16
  165. r = trunc_f16(v)
  166. tc.expect(t, is_nan_f16(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r))
  167. }
  168. @test
  169. test_trunc_f32 :: proc(t: ^testing.T) {
  170. using math
  171. r, v: f32
  172. Datum :: struct {
  173. i: int,
  174. v: f32,
  175. e: f32,
  176. }
  177. @static data := []Datum{
  178. { 0, 10.5, 10 }, // Issue #1574 fract in linalg/glm is broken
  179. { 1, -10.5, -10 },
  180. { 2, F32_MAX, F32_MAX },
  181. { 3, -F32_MAX, -F32_MAX },
  182. { 4, F32_MIN, 0.0 },
  183. { 5, -F32_MIN, -0.0 },
  184. { 6, 0.0, 0.0 },
  185. { 7, -0.0, -0.0 },
  186. { 8, 1, 1 },
  187. { 9, -1, -1 },
  188. { 10, INF_F32, INF_F32 },
  189. { 11, NEG_INF_F32, NEG_INF_F32 },
  190. /* From https://en.wikipedia.org/wiki/Single-precision_floating-point_format */
  191. { 12, 0h3F80_0001, 1 }, // 0x1.000002p+0 (smallest > 1)
  192. { 13, -0h3F80_0001, -1 },
  193. { 14, 0h3F7F_FFFF, 0.0 }, // 0x1.fffffep-1 (largest < 1)
  194. { 15, -0h3F7F_FFFF, -0.0 },
  195. { 16, 0h0000_0001, 0.0 }, // 0x0.000002p-126 (smallest subnormal)
  196. { 17, -0h0000_0001, -0.0 },
  197. { 18, 0h007F_FFFF, 0.0 }, // 0x0.fffffep-126 (largest subnormal)
  198. { 19, -0h007F_FFFF, -0.0 },
  199. /* From libc-test src/math/sanity/truncf.h */
  200. { 20, 0hC101_11D0, -8 }, // -0x1.0223ap+3
  201. { 21, 0h408B_0C34, 4 }, // 0x1.161868p+2
  202. { 22, 0hC106_1A5A, -8 }, // -0x1.0c34b4p+3
  203. { 23, 0hC0D1_0378, -6 }, // -0x1.a206fp+2
  204. { 24, 0h4114_45DE, 9 }, // 0x1.288bbcp+3
  205. { 25, 0h3F29_77E8, 0.0 }, // 0x1.52efdp-1
  206. { 26, 0hBED0_2E64, -0.0 }, // -0x1.a05cc8p-2
  207. { 27, 0h3F0F_CF7D, 0.0 }, // 0x1.1f9efap-1
  208. { 28, 0h3F46_2ED8, 0.0 }, // 0x1.8c5dbp-1
  209. { 29, 0hBF2D_C375, -0.0 }, // -0x1.5b86eap-1
  210. }
  211. for d, i in data {
  212. assert(i == d.i)
  213. r = trunc_f32(d.v)
  214. tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %h != %h", i, #procedure, d.v, r, d.e))
  215. }
  216. v = SNAN_F32
  217. r = trunc_f32(v)
  218. tc.expect(t, is_nan_f32(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r))
  219. v = QNAN_F32
  220. r = trunc_f32(v)
  221. tc.expect(t, is_nan_f32(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r))
  222. }
  223. @test
  224. test_trunc_f64 :: proc(t: ^testing.T) {
  225. using math
  226. r, v: f64
  227. Datum :: struct {
  228. i: int,
  229. v: f64,
  230. e: f64,
  231. }
  232. data := []Datum{
  233. { 0, 10.5, 10 }, // Issue #1574 fract in linalg/glm is broken
  234. { 1, -10.5, -10 },
  235. { 2, F64_MAX, F64_MAX },
  236. { 3, -F64_MAX, -F64_MAX },
  237. { 4, F64_MIN, 0.0 },
  238. { 5, -F64_MIN, -0.0 },
  239. { 6, 0.0, 0.0 },
  240. { 7, -0.0, -0.0 },
  241. { 8, 1, 1 },
  242. { 9, -1, -1 },
  243. { 10, INF_F64, INF_F64 },
  244. { 11, NEG_INF_F64, NEG_INF_F64 },
  245. /* From https://en.wikipedia.org/wiki/Double-precision_floating-point_format */
  246. { 12, 0h3FF0_0000_0000_0001, 1 }, // 0x1.0000000000001p+0 (smallest > 1)
  247. { 13, -0h3FF0_0000_0000_0001, -1 },
  248. { 14, 0h3FEF_FFFF_FFFF_FFFF, 0.0 }, // 0x1.fffffffffffffp-1 (largest < 1)
  249. { 15, -0h3FEF_FFFF_FFFF_FFFF, -0.0 },
  250. { 16, 0h0000_0000_0000_0001, 0.0 }, // 0x0.0000000000001p-1022 (smallest subnormal)
  251. { 17, -0h0000_0000_0000_0001, -0.0 },
  252. { 18, 0h000F_FFFF_FFFF_FFFF, 0.0 }, // 0x0.fffffffffffffp-1022 (largest subnormal)
  253. { 19, -0h000F_FFFF_FFFF_FFFF, -0.0 },
  254. /* From libc-test src/math/sanity/trunc.h */
  255. { 20, 0hC020_2239_F3C6_A8F1, -8 }, // -0x1.02239f3c6a8f1p+3
  256. { 21, 0h4011_6186_8E18_BC67, 4 }, // 0x1.161868e18bc67p+2
  257. { 22, 0hC020_C34B_3E01_E6E7, -8 }, // -0x1.0c34b3e01e6e7p+3
  258. { 23, 0hC01A_206F_0A19_DCC4, -6 }, // -0x1.a206f0a19dcc4p+2
  259. { 24, 0h4022_88BB_B0D6_A1E6, 9 }, // 0x1.288bbb0d6a1e6p+3
  260. { 25, 0h3FE5_2EFD_0CD8_0497, 0.0 }, // 0x1.52efd0cd80497p-1
  261. { 26, 0hBFDA_05CC_7544_81D1, -0.0 }, // -0x1.a05cc754481d1p-2
  262. { 27, 0h3FE1_F9EF_9347_45CB, 0.0 }, // 0x1.1f9ef934745cbp-1
  263. { 28, 0h3FE8_C5DB_097F_7442, 0.0 }, // 0x1.8c5db097f7442p-1
  264. { 29, 0hBFE5_B86E_A811_8A0E, -0.0 }, // -0x1.5b86ea8118a0ep-1
  265. }
  266. for d, i in data {
  267. assert(i == d.i)
  268. r = trunc_f64(d.v)
  269. tc.expect(t, r == d.e, fmt.tprintf("i:%d %s(%h) -> %h != %h", i, #procedure, d.v, r, d.e))
  270. }
  271. v = SNAN_F64
  272. r = trunc_f64(v)
  273. tc.expect(t, is_nan_f64(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r))
  274. v = QNAN_F64
  275. r = trunc_f64(v)
  276. tc.expect(t, is_nan_f64(r), fmt.tprintf("%s(%f) -> %f != NaN", #procedure, v, r))
  277. }
  278. vf := []f64{
  279. 4.9790119248836735e+00,
  280. 7.7388724745781045e+00,
  281. -2.7688005719200159e-01,
  282. -5.0106036182710749e+00,
  283. 9.6362937071984173e+00,
  284. 2.9263772392439646e+00,
  285. 5.2290834314593066e+00,
  286. 2.7279399104360102e+00,
  287. 1.8253080916808550e+00,
  288. -8.6859247685756013e+00,
  289. }
  290. // The expected results below were computed by the high precision calculators at https://keisan.casio.com/.
  291. acos := []f64{
  292. 1.0496193546107222142571536e+00,
  293. 6.8584012813664425171660692e-01,
  294. 1.5984878714577160325521819e+00,
  295. 2.0956199361475859327461799e+00,
  296. 2.7053008467824138592616927e-01,
  297. 1.2738121680361776018155625e+00,
  298. 1.0205369421140629186287407e+00,
  299. 1.2945003481781246062157835e+00,
  300. 1.3872364345374451433846657e+00,
  301. 2.6231510803970463967294145e+00,
  302. }
  303. acosh := []f64{
  304. 2.4743347004159012494457618e+00,
  305. 2.8576385344292769649802701e+00,
  306. 7.2796961502981066190593175e-01,
  307. 2.4796794418831451156471977e+00,
  308. 3.0552020742306061857212962e+00,
  309. 2.044238592688586588942468e+00,
  310. 2.5158701513104513595766636e+00,
  311. 1.99050839282411638174299e+00,
  312. 1.6988625798424034227205445e+00,
  313. 2.9611454842470387925531875e+00,
  314. }
  315. asin := []f64{
  316. 5.2117697218417440497416805e-01,
  317. 8.8495619865825236751471477e-01,
  318. -02.769154466281941332086016e-02,
  319. -5.2482360935268931351485822e-01,
  320. 1.3002662421166552333051524e+00,
  321. 2.9698415875871901741575922e-01,
  322. 5.5025938468083370060258102e-01,
  323. 2.7629597861677201301553823e-01,
  324. 1.83559892257451475846656e-01,
  325. -1.0523547536021497774980928e+00,
  326. }
  327. asinh := []f64{
  328. 2.3083139124923523427628243e+00,
  329. 2.743551594301593620039021e+00,
  330. -2.7345908534880091229413487e-01,
  331. -2.3145157644718338650499085e+00,
  332. 2.9613652154015058521951083e+00,
  333. 1.7949041616585821933067568e+00,
  334. 2.3564032905983506405561554e+00,
  335. 1.7287118790768438878045346e+00,
  336. 1.3626658083714826013073193e+00,
  337. -2.8581483626513914445234004e+00,
  338. }
  339. atan := []f64{
  340. 1.372590262129621651920085e+00,
  341. 1.442290609645298083020664e+00,
  342. -2.7011324359471758245192595e-01,
  343. -1.3738077684543379452781531e+00,
  344. 1.4673921193587666049154681e+00,
  345. 1.2415173565870168649117764e+00,
  346. 1.3818396865615168979966498e+00,
  347. 1.2194305844639670701091426e+00,
  348. 1.0696031952318783760193244e+00,
  349. -1.4561721938838084990898679e+00,
  350. }
  351. atanh := []f64{
  352. 5.4651163712251938116878204e-01,
  353. 1.0299474112843111224914709e+00,
  354. -2.7695084420740135145234906e-02,
  355. -5.5072096119207195480202529e-01,
  356. 1.9943940993171843235906642e+00,
  357. 3.01448604578089708203017e-01,
  358. 5.8033427206942188834370595e-01,
  359. 2.7987997499441511013958297e-01,
  360. 1.8459947964298794318714228e-01,
  361. -1.3273186910532645867272502e+00,
  362. }
  363. atan2 := []f64{
  364. 1.1088291730037004444527075e+00,
  365. 9.1218183188715804018797795e-01,
  366. 1.5984772603216203736068915e+00,
  367. 2.0352918654092086637227327e+00,
  368. 8.0391819139044720267356014e-01,
  369. 1.2861075249894661588866752e+00,
  370. 1.0889904479131695712182587e+00,
  371. 1.3044821793397925293797357e+00,
  372. 1.3902530903455392306872261e+00,
  373. 2.2859857424479142655411058e+00,
  374. }
  375. cos := []f64{
  376. 2.634752140995199110787593e-01,
  377. 1.148551260848219865642039e-01,
  378. 9.6191297325640768154550453e-01,
  379. 2.938141150061714816890637e-01,
  380. -9.777138189897924126294461e-01,
  381. -9.7693041344303219127199518e-01,
  382. 4.940088096948647263961162e-01,
  383. -9.1565869021018925545016502e-01,
  384. -2.517729313893103197176091e-01,
  385. -7.39241351595676573201918e-01,
  386. }
  387. // Results for 1e5 * Pi + vf[i]
  388. cosLarge := []f64{
  389. 2.634752141185559426744e-01,
  390. 1.14855126055543100712e-01,
  391. 9.61912973266488928113e-01,
  392. 2.9381411499556122552e-01,
  393. -9.777138189880161924641e-01,
  394. -9.76930413445147608049e-01,
  395. 4.940088097314976789841e-01,
  396. -9.15658690217517835002e-01,
  397. -2.51772931436786954751e-01,
  398. -7.3924135157173099849e-01,
  399. }
  400. cosh := []f64{
  401. 7.2668796942212842775517446e+01,
  402. 1.1479413465659254502011135e+03,
  403. 1.0385767908766418550935495e+00,
  404. 7.5000957789658051428857788e+01,
  405. 7.655246669605357888468613e+03,
  406. 9.3567491758321272072888257e+00,
  407. 9.331351599270605471131735e+01,
  408. 7.6833430994624643209296404e+00,
  409. 3.1829371625150718153881164e+00,
  410. 2.9595059261916188501640911e+03,
  411. }
  412. sin := []f64{
  413. -9.6466616586009283766724726e-01,
  414. 9.9338225271646545763467022e-01,
  415. -2.7335587039794393342449301e-01,
  416. 9.5586257685042792878173752e-01,
  417. -2.099421066779969164496634e-01,
  418. 2.135578780799860532750616e-01,
  419. -8.694568971167362743327708e-01,
  420. 4.019566681155577786649878e-01,
  421. 9.6778633541687993721617774e-01,
  422. -6.734405869050344734943028e-01,
  423. }
  424. // Results for 1e5 * Pi + vf[i]
  425. sinLarge := []f64{
  426. -9.646661658548936063912e-01,
  427. 9.933822527198506903752e-01,
  428. -2.7335587036246899796e-01,
  429. 9.55862576853689321268e-01,
  430. -2.099421066862688873691e-01,
  431. 2.13557878070308981163e-01,
  432. -8.694568970959221300497e-01,
  433. 4.01956668098863248917e-01,
  434. 9.67786335404528727927e-01,
  435. -6.7344058693131973066e-01,
  436. }
  437. sinh := []f64{
  438. 7.2661916084208532301448439e+01,
  439. 1.1479409110035194500526446e+03,
  440. -2.8043136512812518927312641e-01,
  441. -7.499429091181587232835164e+01,
  442. 7.6552466042906758523925934e+03,
  443. 9.3031583421672014313789064e+00,
  444. 9.330815755828109072810322e+01,
  445. 7.6179893137269146407361477e+00,
  446. 3.021769180549615819524392e+00,
  447. -2.95950575724449499189888e+03,
  448. }
  449. sqrt := []f64{
  450. 2.2313699659365484748756904e+00,
  451. 2.7818829009464263511285458e+00,
  452. 5.2619393496314796848143251e-01,
  453. 2.2384377628763938724244104e+00,
  454. 3.1042380236055381099288487e+00,
  455. 1.7106657298385224403917771e+00,
  456. 2.286718922705479046148059e+00,
  457. 1.6516476350711159636222979e+00,
  458. 1.3510396336454586262419247e+00,
  459. 2.9471892997524949215723329e+00,
  460. }
  461. tan := []f64{
  462. -3.661316565040227801781974e+00,
  463. 8.64900232648597589369854e+00,
  464. -2.8417941955033612725238097e-01,
  465. 3.253290185974728640827156e+00,
  466. 2.147275640380293804770778e-01,
  467. -2.18600910711067004921551e-01,
  468. -1.760002817872367935518928e+00,
  469. -4.389808914752818126249079e-01,
  470. -3.843885560201130679995041e+00,
  471. 9.10988793377685105753416e-01,
  472. }
  473. // Results for 1e5 * Pi + vf[i]
  474. tanLarge := []f64{
  475. -3.66131656475596512705e+00,
  476. 8.6490023287202547927e+00,
  477. -2.841794195104782406e-01,
  478. 3.2532901861033120983e+00,
  479. 2.14727564046880001365e-01,
  480. -2.18600910700688062874e-01,
  481. -1.760002817699722747043e+00,
  482. -4.38980891453536115952e-01,
  483. -3.84388555942723509071e+00,
  484. 9.1098879344275101051e-01,
  485. }
  486. tanh := []f64{
  487. 9.9990531206936338549262119e-01,
  488. 9.9999962057085294197613294e-01,
  489. -2.7001505097318677233756845e-01,
  490. -9.9991110943061718603541401e-01,
  491. 9.9999999146798465745022007e-01,
  492. 9.9427249436125236705001048e-01,
  493. 9.9994257600983138572705076e-01,
  494. 9.9149409509772875982054701e-01,
  495. 9.4936501296239685514466577e-01,
  496. -9.9999994291374030946055701e-01,
  497. }
  498. NaN :: 0h7fff_ffff_ffff_ffff
  499. Pi :: 0h4009_21fb_5444_2d18
  500. // arguments and expected results for special cases
  501. vfacos_sc := []f64{
  502. -Pi,
  503. 1,
  504. Pi,
  505. NaN,
  506. }
  507. acos_sc := []f64{
  508. NaN,
  509. 0,
  510. NaN,
  511. NaN,
  512. }
  513. vfacosh_sc := []f64{
  514. math.inf_f64(-1),
  515. 0.5,
  516. 1,
  517. math.inf_f64(1),
  518. NaN,
  519. }
  520. acosh_sc := []f64{
  521. NaN,
  522. NaN,
  523. 0,
  524. math.inf_f64(1),
  525. NaN,
  526. }
  527. vfasin_sc := []f64{
  528. -Pi,
  529. math.copy_sign_f64(0, -1),
  530. 0,
  531. Pi,
  532. NaN,
  533. }
  534. asin_sc := []f64{
  535. NaN,
  536. math.copy_sign_f64(0, -1),
  537. 0,
  538. NaN,
  539. NaN,
  540. }
  541. vfasinh_sc := []f64{
  542. math.inf_f64(-1),
  543. math.copy_sign_f64(0, -1),
  544. 0,
  545. math.inf_f64(1),
  546. NaN,
  547. }
  548. asinh_sc := []f64{
  549. math.inf_f64(-1),
  550. math.copy_sign_f64(0, -1),
  551. 0,
  552. math.inf_f64(1),
  553. NaN,
  554. }
  555. vfatan_sc := []f64{
  556. math.inf_f64(-1),
  557. math.copy_sign_f64(0, -1),
  558. 0,
  559. math.inf_f64(1),
  560. NaN,
  561. }
  562. atan_sc := []f64{
  563. -Pi / 2,
  564. math.copy_sign_f64(0, -1),
  565. 0,
  566. Pi / 2,
  567. NaN,
  568. }
  569. vfatanh_sc := []f64{
  570. math.inf_f64(-1),
  571. -Pi,
  572. -1,
  573. math.copy_sign_f64(0, -1),
  574. 0,
  575. 1,
  576. Pi,
  577. math.inf_f64(1),
  578. NaN,
  579. }
  580. atanh_sc := []f64{
  581. NaN,
  582. NaN,
  583. math.inf_f64(-1),
  584. math.copy_sign_f64(0, -1),
  585. 0,
  586. math.inf_f64(1),
  587. NaN,
  588. NaN,
  589. NaN,
  590. }
  591. vfatan2_sc := [][2]f64{
  592. {math.inf_f64(-1), math.inf_f64(-1)},
  593. {math.inf_f64(-1), -Pi},
  594. {math.inf_f64(-1), 0},
  595. {math.inf_f64(-1), +Pi},
  596. {math.inf_f64(-1), math.inf_f64(1)},
  597. {math.inf_f64(-1), NaN},
  598. {-Pi, math.inf_f64(-1)},
  599. {-Pi, 0},
  600. {-Pi, math.inf_f64(1)},
  601. {-Pi, NaN},
  602. {math.copy_sign_f64(0, -1), math.inf_f64(-1)},
  603. {math.copy_sign_f64(0, -1), -Pi},
  604. {math.copy_sign_f64(0, -1), math.copy_sign_f64(0, -1)},
  605. {math.copy_sign_f64(0, -1), 0},
  606. {math.copy_sign_f64(0, -1), +Pi},
  607. {math.copy_sign_f64(0, -1), math.inf_f64(1)},
  608. {math.copy_sign_f64(0, -1), NaN},
  609. {0, math.inf_f64(-1)},
  610. {0, -Pi},
  611. {0, math.copy_sign_f64(0, -1)},
  612. {0, 0},
  613. {0, +Pi},
  614. {0, math.inf_f64(1)},
  615. {0, NaN},
  616. {+Pi, math.inf_f64(-1)},
  617. {+Pi, 0},
  618. {+Pi, math.inf_f64(1)},
  619. {1.0, math.inf_f64(1)},
  620. {-1.0, math.inf_f64(1)},
  621. {+Pi, NaN},
  622. {math.inf_f64(1), math.inf_f64(-1)},
  623. {math.inf_f64(1), -Pi},
  624. {math.inf_f64(1), 0},
  625. {math.inf_f64(1), +Pi},
  626. {math.inf_f64(1), math.inf_f64(1)},
  627. {math.inf_f64(1), NaN},
  628. {NaN, NaN},
  629. }
  630. atan2_sc := []f64{
  631. -3 * Pi / 4, // atan2(-Inf, -Inf)
  632. -Pi / 2, // atan2(-Inf, -Pi)
  633. -Pi / 2, // atan2(-Inf, +0)
  634. -Pi / 2, // atan2(-Inf, +Pi)
  635. -Pi / 4, // atan2(-Inf, +Inf)
  636. NaN, // atan2(-Inf, NaN)
  637. -Pi, // atan2(-Pi, -Inf)
  638. -Pi / 2, // atan2(-Pi, +0)
  639. math.copy_sign_f64(0, -1), // atan2(-Pi, Inf)
  640. NaN, // atan2(-Pi, NaN)
  641. -Pi, // atan2(-0, -Inf)
  642. -Pi, // atan2(-0, -Pi)
  643. -Pi, // atan2(-0, -0)
  644. math.copy_sign_f64(0, -1), // atan2(-0, +0)
  645. math.copy_sign_f64(0, -1), // atan2(-0, +Pi)
  646. math.copy_sign_f64(0, -1), // atan2(-0, +Inf)
  647. NaN, // atan2(-0, NaN)
  648. Pi, // atan2(+0, -Inf)
  649. Pi, // atan2(+0, -Pi)
  650. Pi, // atan2(+0, -0)
  651. 0, // atan2(+0, +0)
  652. 0, // atan2(+0, +Pi)
  653. 0, // atan2(+0, +Inf)
  654. NaN, // atan2(+0, NaN)
  655. Pi, // atan2(+Pi, -Inf)
  656. Pi / 2, // atan2(+Pi, +0)
  657. 0, // atan2(+Pi, +Inf)
  658. 0, // atan2(+1, +Inf)
  659. math.copy_sign_f64(0, -1), // atan2(-1, +Inf)
  660. NaN, // atan2(+Pi, NaN)
  661. 3 * Pi / 4, // atan2(+Inf, -Inf)
  662. Pi / 2, // atan2(+Inf, -Pi)
  663. Pi / 2, // atan2(+Inf, +0)
  664. Pi / 2, // atan2(+Inf, +Pi)
  665. Pi / 4, // atan2(+Inf, +Inf)
  666. NaN, // atan2(+Inf, NaN)
  667. NaN, // atan2(NaN, NaN)
  668. }
  669. vfcbrt_sc := []f64{
  670. math.inf_f64(-1),
  671. math.copy_sign_f64(0, -1),
  672. 0,
  673. math.inf_f64(1),
  674. NaN,
  675. }
  676. cbrt_sc := []f64{
  677. math.inf_f64(-1),
  678. math.copy_sign_f64(0, -1),
  679. 0,
  680. math.inf_f64(1),
  681. NaN,
  682. }
  683. vfceil_sc := []f64{
  684. math.inf_f64(-1),
  685. math.copy_sign_f64(0, -1),
  686. 0,
  687. math.inf_f64(1),
  688. NaN,
  689. }
  690. ceil_sc := []f64{
  691. math.inf_f64(-1),
  692. math.copy_sign_f64(0, -1),
  693. 0,
  694. math.inf_f64(1),
  695. NaN,
  696. }
  697. vfcopysign_sc := []f64{
  698. math.inf_f64(-1),
  699. math.inf_f64(1),
  700. NaN,
  701. }
  702. copysign_sc := []f64{
  703. math.inf_f64(-1),
  704. math.inf_f64(-1),
  705. NaN,
  706. }
  707. vfcos_sc := []f64{
  708. math.inf_f64(-1),
  709. math.inf_f64(1),
  710. NaN,
  711. }
  712. cos_sc := []f64{
  713. NaN,
  714. NaN,
  715. NaN,
  716. }
  717. vfcosh_sc := []f64{
  718. math.inf_f64(-1),
  719. math.copy_sign_f64(0, -1),
  720. 0,
  721. math.inf_f64(1),
  722. NaN,
  723. }
  724. cosh_sc := []f64{
  725. math.inf_f64(1),
  726. 1,
  727. 1,
  728. math.inf_f64(1),
  729. NaN,
  730. }
  731. vfsin_sc := []f64{
  732. math.inf_f64(-1),
  733. math.copy_sign_f64(0, -1),
  734. 0,
  735. math.inf_f64(1),
  736. NaN,
  737. }
  738. sin_sc := []f64{
  739. NaN,
  740. math.copy_sign_f64(0, -1),
  741. 0,
  742. NaN,
  743. NaN,
  744. }
  745. vfsinh_sc := []f64{
  746. math.inf_f64(-1),
  747. math.copy_sign_f64(0, -1),
  748. 0,
  749. math.inf_f64(1),
  750. NaN,
  751. }
  752. sinh_sc := []f64{
  753. math.inf_f64(-1),
  754. math.copy_sign_f64(0, -1),
  755. 0,
  756. math.inf_f64(1),
  757. NaN,
  758. }
  759. vftanh_sc := []f64{
  760. math.inf_f64(-1),
  761. math.copy_sign_f64(0, -1),
  762. 0,
  763. math.inf_f64(1),
  764. NaN,
  765. }
  766. tanh_sc := []f64{
  767. -1,
  768. math.copy_sign_f64(0, -1),
  769. 0,
  770. 1,
  771. NaN,
  772. }
  773. tolerance :: proc(a, b, e: f64) -> bool {
  774. // Multiplying by e here can underflow denormal values to zero.
  775. // Check a==b so that at least if a and b are small and identical
  776. // we say they match.
  777. if a == b {
  778. return true
  779. }
  780. e := e
  781. d := a - b
  782. if d < 0 {
  783. d = -d
  784. }
  785. // note: b is correct (expected) value, a is actual value.
  786. // make error tolerance a fraction of b, not a.
  787. if b != 0 {
  788. e = e * b
  789. if e < 0 {
  790. e = -e
  791. }
  792. }
  793. return d < e
  794. }
  795. close :: proc(t: ^testing.T, a, b: f64, loc := #caller_location) -> bool {
  796. ok := tolerance(a, b, 1e-9)
  797. // tc.expect(t, ok, fmt.tprintf("%.15g is not close to %.15g", a, b), loc)
  798. return ok
  799. }
  800. veryclose :: proc(t: ^testing.T, a, b: f64, loc := #caller_location) -> bool {
  801. ok := tolerance(a, b, 4e-14)
  802. // tc.expect(t, ok, fmt.tprintf("%.15g is not veryclose to %.15g", a, b), loc)
  803. return ok
  804. }
  805. soclose :: proc(t: ^testing.T, a, b, e: f64, loc := #caller_location) -> bool {
  806. ok := tolerance(a, b, e)
  807. // tc.expect(t, ok, fmt.tprintf("%.15g is not soclose to %.15g", a, b), loc)
  808. return ok
  809. }
  810. alike :: proc(t: ^testing.T, a, b: f64, loc := #caller_location) -> bool {
  811. ok := false
  812. switch {
  813. case math.is_nan(a) && math.is_nan(b):
  814. ok = true
  815. case a == b:
  816. ok = math.signbit(a) == math.signbit(b)
  817. }
  818. // tc.expect(t, ok, fmt.tprintf("%.15g is not alike to %.15g", a, b), loc)
  819. return ok
  820. }
  821. @test
  822. test_nan :: proc(t: ^testing.T) {
  823. float64 := NaN
  824. if float64 == float64 {
  825. tc.errorf(t, "NaN returns %.15g, expected NaN", float64)
  826. }
  827. float32 := f32(float64)
  828. if float32 == float32 {
  829. tc.errorf(t, "float32(NaN) is %.15g, expected NaN", float32)
  830. }
  831. }
  832. @test
  833. test_acos :: proc(t: ^testing.T) {
  834. for _, i in vf {
  835. a := vf[i] / 10
  836. if f := math.acos(a); !close(t, acos[i], f) {
  837. tc.errorf(t, "math.acos(%.15g) = %.15g, want %.15g", a, f, acos[i])
  838. }
  839. }
  840. for _, i in vfacos_sc {
  841. if f := math.acos(vfacos_sc[i]); !alike(t, acos_sc[i], f) {
  842. tc.errorf(t, "math.acos(%.15g) = %.15g, want %.15g", vfacos_sc[i], f, acos_sc[i])
  843. }
  844. }
  845. }
  846. @test
  847. test_acosh :: proc(t: ^testing.T) {
  848. for _, i in vf {
  849. a := 1 + abs(vf[i])
  850. if f := math.acosh(a); !veryclose(t, acosh[i], f) {
  851. tc.errorf(t, "math.acosh(%.15g) = %.15g, want %.15g", a, f, acosh[i])
  852. }
  853. }
  854. for _, i in vfacosh_sc {
  855. if f := math.acosh(vfacosh_sc[i]); !alike(t, acosh_sc[i], f) {
  856. tc.errorf(t, "math.acosh(%.15g) = %.15g, want %.15g", vfacosh_sc[i], f, acosh_sc[i])
  857. }
  858. }
  859. }
  860. @test
  861. test_asin :: proc(t: ^testing.T) {
  862. for _, i in vf {
  863. a := vf[i] / 10
  864. if f := math.asin(a); !veryclose(t, asin[i], f) {
  865. tc.errorf(t, "math.asin(%.15g) = %.15g, want %.15g", a, f, asin[i])
  866. }
  867. }
  868. for _, i in vfasin_sc {
  869. if f := math.asin(vfasin_sc[i]); !alike(t, asin_sc[i], f) {
  870. tc.errorf(t, "math.asin(%.15g) = %.15g, want %.15g", vfasin_sc[i], f, asin_sc[i])
  871. }
  872. }
  873. }
  874. @test
  875. test_asinh :: proc(t: ^testing.T) {
  876. for _, i in vf {
  877. if f := math.asinh(vf[i]); !veryclose(t, asinh[i], f) {
  878. tc.errorf(t, "math.asinh(%.15g) = %.15g, want %.15g", vf[i], f, asinh[i])
  879. }
  880. }
  881. for _, i in vfasinh_sc {
  882. if f := math.asinh(vfasinh_sc[i]); !alike(t, asinh_sc[i], f) {
  883. tc.errorf(t, "math.asinh(%.15g) = %.15g, want %.15g", vfasinh_sc[i], f, asinh_sc[i])
  884. }
  885. }
  886. }
  887. @test
  888. test_atan :: proc(t: ^testing.T) {
  889. for _, i in vf {
  890. if f := math.atan(vf[i]); !veryclose(t, atan[i], f) {
  891. tc.errorf(t, "math.atan(%.15g) = %.15g, want %.15g", vf[i], f, atan[i])
  892. }
  893. }
  894. for _, i in vfatan_sc {
  895. if f := math.atan(vfatan_sc[i]); !alike(t, atan_sc[i], f) {
  896. tc.errorf(t, "math.atan(%.15g) = %.15g, want %.15g", vfatan_sc[i], f, atan_sc[i])
  897. }
  898. }
  899. }
  900. @test
  901. test_atanh :: proc(t: ^testing.T) {
  902. for _, i in vf {
  903. a := vf[i] / 10
  904. if f := math.atanh(a); !veryclose(t, atanh[i], f) {
  905. tc.errorf(t, "math.atanh(%.15g) = %.15g, want %.15g", a, f, atanh[i])
  906. }
  907. }
  908. for _, i in vfatanh_sc {
  909. if f := math.atanh(vfatanh_sc[i]); !alike(t, atanh_sc[i], f) {
  910. tc.errorf(t, "math.atanh(%.15g) = %.15g, want %.15g", vfatanh_sc[i], f, atanh_sc[i])
  911. }
  912. }
  913. }
  914. @test
  915. test_atan2 :: proc(t: ^testing.T) {
  916. for _, i in vf {
  917. if f := math.atan2(10, vf[i]); !veryclose(t, atan2[i], f) {
  918. tc.errorf(t, "math.atan2(10, %.15g) = %.15g, want %.15g", vf[i], f, atan2[i])
  919. }
  920. }
  921. for _, i in vfatan2_sc {
  922. if f := math.atan2(vfatan2_sc[i][0], vfatan2_sc[i][1]); !alike(t, atan2_sc[i], f) {
  923. tc.errorf(t, "math.atan2(%.15g, %.15g) = %.15g, want %.15g", vfatan2_sc[i][0], vfatan2_sc[i][1], f, atan2_sc[i])
  924. }
  925. }
  926. }
  927. @test
  928. test_cos :: proc(t: ^testing.T) {
  929. for _, i in vf {
  930. if f := math.cos(vf[i]); !veryclose(t, cos[i], f) {
  931. tc.errorf(t, "math.cos(%.15g) = %.15g, want %.15g", vf[i], f, cos[i])
  932. }
  933. }
  934. for _, i in vfcos_sc {
  935. if f := math.cos(vfcos_sc[i]); !alike(t, cos_sc[i], f) {
  936. tc.errorf(t, "math.cos(%.15g) = %.15g, want %.15g", vfcos_sc[i], f, cos_sc[i])
  937. }
  938. }
  939. }
  940. @test
  941. test_cosh :: proc(t: ^testing.T) {
  942. for _, i in vf {
  943. if f := math.cosh(vf[i]); !close(t, cosh[i], f) {
  944. tc.errorf(t, "math.cosh(%.15g) = %.15g, want %.15g", vf[i], f, cosh[i])
  945. }
  946. }
  947. for _, i in vfcosh_sc {
  948. if f := math.cosh(vfcosh_sc[i]); !alike(t, cosh_sc[i], f) {
  949. tc.errorf(t, "math.cosh(%.15g) = %.15g, want %.15g", vfcosh_sc[i], f, cosh_sc[i])
  950. }
  951. }
  952. }
  953. @test
  954. test_sin :: proc(t: ^testing.T) {
  955. for _, i in vf {
  956. if f := math.sin(vf[i]); !veryclose(t, sin[i], f) {
  957. tc.errorf(t, "math.sin(%.15g) = %.15g, want %.15g", vf[i], f, sin[i])
  958. }
  959. }
  960. for _, i in vfsin_sc {
  961. if f := math.sin(vfsin_sc[i]); !alike(t, sin_sc[i], f) {
  962. tc.errorf(t, "math.sin(%.15g) = %.15g, want %.15g", vfsin_sc[i], f, sin_sc[i])
  963. }
  964. }
  965. }
  966. @test
  967. test_sinh :: proc(t: ^testing.T) {
  968. for _, i in vf {
  969. if f := math.sinh(vf[i]); !close(t, sinh[i], f) {
  970. tc.errorf(t, "math.sinh(%.15g) = %.15g, want %.15g", vf[i], f, sinh[i])
  971. }
  972. }
  973. for _, i in vfsinh_sc {
  974. if f := math.sinh(vfsinh_sc[i]); !alike(t, sinh_sc[i], f) {
  975. tc.errorf(t, "math.sinh(%.15g) = %.15g, want %.15g", vfsinh_sc[i], f, sinh_sc[i])
  976. }
  977. }
  978. }
  979. @test
  980. test_sqrt :: proc(t: ^testing.T) {
  981. for _, i in vf {
  982. a := abs(vf[i])
  983. if f := math.sqrt(a); !veryclose(t, sqrt[i], f) {
  984. tc.errorf(t, "math.sqrt(%.15g) = %.15g, want %.15g", a, f, sqrt[i])
  985. }
  986. }
  987. }
  988. @test
  989. test_tan :: proc(t: ^testing.T) {
  990. for _, i in vf {
  991. if f := math.tan(vf[i]); !veryclose(t, tan[i], f) {
  992. tc.errorf(t, "math.tan(%.15g) = %.15g, want %.15g", vf[i], f, tan[i])
  993. }
  994. }
  995. // same special cases as Sin
  996. for _, i in vfsin_sc {
  997. if f := math.tan(vfsin_sc[i]); !alike(t, sin_sc[i], f) {
  998. tc.errorf(t, "math.tan(%.15g) = %.15g, want %.15g", vfsin_sc[i], f, sin_sc[i])
  999. }
  1000. }
  1001. }
  1002. @test
  1003. test_tanh :: proc(t: ^testing.T) {
  1004. for _, i in vf {
  1005. if f := math.tanh(vf[i]); !veryclose(t, tanh[i], f) {
  1006. tc.errorf(t, "math.tanh(%.15g) = %.15g, want %.15g", vf[i], f, tanh[i])
  1007. }
  1008. }
  1009. for _, i in vftanh_sc {
  1010. if f := math.tanh(vftanh_sc[i]); !alike(t, tanh_sc[i], f) {
  1011. tc.errorf(t, "math.tanh(%.15g) = %.15g, want %.15g", vftanh_sc[i], f, tanh_sc[i])
  1012. }
  1013. }
  1014. }
  1015. @test
  1016. test_large_cos :: proc(t: ^testing.T) {
  1017. large := f64(1e5 * Pi)
  1018. for _, i in vf {
  1019. f1 := cosLarge[i]
  1020. f2 := math.cos(vf[i] + large)
  1021. if !close(t, f1, f2) {
  1022. tc.errorf(t, "math.cos(%.15g) = %.15g, want %.15g", vf[i]+large, f2, f1)
  1023. }
  1024. }
  1025. }
  1026. @test
  1027. test_large_sin :: proc(t: ^testing.T) {
  1028. large := f64(1e5 * Pi)
  1029. for _, i in vf {
  1030. f1 := sinLarge[i]
  1031. f2 := math.sin(vf[i] + large)
  1032. if !close(t, f1, f2) {
  1033. tc.errorf(t, "math.sin(%.15g) = %.15g, want %.15g", vf[i]+large, f2, f1)
  1034. }
  1035. }
  1036. }
  1037. @test
  1038. test_large_tan :: proc(t: ^testing.T) {
  1039. large := f64(1e5 * Pi)
  1040. for _, i in vf {
  1041. f1 := tanLarge[i]
  1042. f2 := math.tan(vf[i] + large)
  1043. if !close(t, f1, f2) {
  1044. tc.errorf(t, "math.tan(%.15g) = %.15g, want %.15g", vf[i]+large, f2, f1)
  1045. }
  1046. }
  1047. }