123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402 |
- /*
- Copyright 2021 Jeroen van Rijn <[email protected]>.
- Made available under Odin's BSD-3 license.
- An arbitrary precision mathematics implementation in Odin.
- For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
- The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
- ============================= Private procedures =============================
- Private procedures used by the above low-level routines follow.
- Don't call these yourself unless you really know what you're doing.
- They include implementations that are optimimal for certain ranges of input only.
- These aren't exported for the same reasons.
- */
- package math_big
- import "core:intrinsics"
- import "core:mem"
- /*
- Multiplies |a| * |b| and only computes upto digs digits of result.
- HAC pp. 595, Algorithm 14.12 Modified so you can control how
- many digits of output are created.
- */
- _private_int_mul :: proc(dest, a, b: ^Int, digits: int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- /*
- Can we use the fast multiplier?
- */
- if digits < _WARRAY && min(a.used, b.used) < _MAX_COMBA {
- return #force_inline _private_int_mul_comba(dest, a, b, digits)
- }
- /*
- Set up temporary output `Int`, which we'll swap for `dest` when done.
- */
- t := &Int{}
- internal_grow(t, max(digits, _DEFAULT_DIGIT_COUNT)) or_return
- t.used = digits
- /*
- Compute the digits of the product directly.
- */
- pa := a.used
- for ix := 0; ix < pa; ix += 1 {
- /*
- Limit ourselves to `digits` DIGITs of output.
- */
- pb := min(b.used, digits - ix)
- carry := _WORD(0)
- iy := 0
- /*
- Compute the column of the output and propagate the carry.
- */
- #no_bounds_check for iy = 0; iy < pb; iy += 1 {
- /*
- Compute the column as a _WORD.
- */
- column := _WORD(t.digit[ix + iy]) + _WORD(a.digit[ix]) * _WORD(b.digit[iy]) + carry
- /*
- The new column is the lower part of the result.
- */
- t.digit[ix + iy] = DIGIT(column & _WORD(_MASK))
- /*
- Get the carry word from the result.
- */
- carry = column >> _DIGIT_BITS
- }
- /*
- Set carry if it is placed below digits
- */
- if ix + iy < digits {
- t.digit[ix + pb] = DIGIT(carry)
- }
- }
- internal_swap(dest, t)
- internal_destroy(t)
- return internal_clamp(dest)
- }
- /*
- Multiplication using the Toom-Cook 3-way algorithm.
- Much more complicated than Karatsuba but has a lower asymptotic running time of O(N**1.464).
- This algorithm is only particularly useful on VERY large inputs.
- (We're talking 1000s of digits here...).
- This file contains code from J. Arndt's book "Matters Computational"
- and the accompanying FXT-library with permission of the author.
- Setup from:
- Chung, Jaewook, and M. Anwar Hasan. "Asymmetric squaring formulae."
- 18th IEEE Symposium on Computer Arithmetic (ARITH'07). IEEE, 2007.
- The interpolation from above needed one temporary variable more than the interpolation here:
- Bodrato, Marco, and Alberto Zanoni. "What about Toom-Cook matrices optimality."
- Centro Vito Volterra Universita di Roma Tor Vergata (2006)
- */
- _private_int_mul_toom :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- S1, S2, T1, a0, a1, a2, b0, b1, b2 := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}
- defer internal_destroy(S1, S2, T1, a0, a1, a2, b0, b1, b2)
- /*
- Init temps.
- */
- internal_init_multi(S1, S2, T1) or_return
- /*
- B
- */
- B := min(a.used, b.used) / 3
- /*
- a = a2 * x^2 + a1 * x + a0;
- */
- internal_grow(a0, B) or_return
- internal_grow(a1, B) or_return
- internal_grow(a2, a.used - 2 * B) or_return
- a0.used, a1.used = B, B
- a2.used = a.used - 2 * B
- internal_copy_digits(a0, a, a0.used) or_return
- internal_copy_digits(a1, a, a1.used, B) or_return
- internal_copy_digits(a2, a, a2.used, 2 * B) or_return
- internal_clamp(a0)
- internal_clamp(a1)
- internal_clamp(a2)
- /*
- b = b2 * x^2 + b1 * x + b0;
- */
- internal_grow(b0, B) or_return
- internal_grow(b1, B) or_return
- internal_grow(b2, b.used - 2 * B) or_return
- b0.used, b1.used = B, B
- b2.used = b.used - 2 * B
- internal_copy_digits(b0, b, b0.used) or_return
- internal_copy_digits(b1, b, b1.used, B) or_return
- internal_copy_digits(b2, b, b2.used, 2 * B) or_return
- internal_clamp(b0)
- internal_clamp(b1)
- internal_clamp(b2)
- /*
- \\ S1 = (a2+a1+a0) * (b2+b1+b0);
- */
- internal_add(T1, a2, a1) or_return /* T1 = a2 + a1; */
- internal_add(S2, T1, a0) or_return /* S2 = T1 + a0; */
- internal_add(dest, b2, b1) or_return /* dest = b2 + b1; */
- internal_add(S1, dest, b0) or_return /* S1 = c + b0; */
- internal_mul(S1, S1, S2) or_return /* S1 = S1 * S2; */
- /*
- \\S2 = (4*a2+2*a1+a0) * (4*b2+2*b1+b0);
- */
- internal_add(T1, T1, a2) or_return /* T1 = T1 + a2; */
- internal_int_shl1(T1, T1) or_return /* T1 = T1 << 1; */
- internal_add(T1, T1, a0) or_return /* T1 = T1 + a0; */
- internal_add(dest, dest, b2) or_return /* c = c + b2; */
- internal_int_shl1(dest, dest) or_return /* c = c << 1; */
- internal_add(dest, dest, b0) or_return /* c = c + b0; */
- internal_mul(S2, T1, dest) or_return /* S2 = T1 * c; */
- /*
- \\S3 = (a2-a1+a0) * (b2-b1+b0);
- */
- internal_sub(a1, a2, a1) or_return /* a1 = a2 - a1; */
- internal_add(a1, a1, a0) or_return /* a1 = a1 + a0; */
- internal_sub(b1, b2, b1) or_return /* b1 = b2 - b1; */
- internal_add(b1, b1, b0) or_return /* b1 = b1 + b0; */
- internal_mul(a1, a1, b1) or_return /* a1 = a1 * b1; */
- internal_mul(b1, a2, b2) or_return /* b1 = a2 * b2; */
- /*
- \\S2 = (S2 - S3) / 3;
- */
- internal_sub(S2, S2, a1) or_return /* S2 = S2 - a1; */
- _private_int_div_3(S2, S2) or_return /* S2 = S2 / 3; \\ this is an exact division */
- internal_sub(a1, S1, a1) or_return /* a1 = S1 - a1; */
- internal_int_shr1(a1, a1) or_return /* a1 = a1 >> 1; */
- internal_mul(a0, a0, b0) or_return /* a0 = a0 * b0; */
- internal_sub(S1, S1, a0) or_return /* S1 = S1 - a0; */
- internal_sub(S2, S2, S1) or_return /* S2 = S2 - S1; */
- internal_int_shr1(S2, S2) or_return /* S2 = S2 >> 1; */
- internal_sub(S1, S1, a1) or_return /* S1 = S1 - a1; */
- internal_sub(S1, S1, b1) or_return /* S1 = S1 - b1; */
- internal_int_shl1(T1, b1) or_return /* T1 = b1 << 1; */
- internal_sub(S2, S2, T1) or_return /* S2 = S2 - T1; */
- internal_sub(a1, a1, S2) or_return /* a1 = a1 - S2; */
- /*
- P = b1*x^4+ S2*x^3+ S1*x^2+ a1*x + a0;
- */
- _private_int_shl_leg(b1, 4 * B) or_return
- _private_int_shl_leg(S2, 3 * B) or_return
- internal_add(b1, b1, S2) or_return
- _private_int_shl_leg(S1, 2 * B) or_return
- internal_add(b1, b1, S1) or_return
- _private_int_shl_leg(a1, 1 * B) or_return
- internal_add(b1, b1, a1) or_return
- internal_add(dest, b1, a0) or_return
- /*
- a * b - P
- */
- return nil
- }
- /*
- product = |a| * |b| using Karatsuba Multiplication using three half size multiplications.
- Let `B` represent the radix [e.g. 2**_DIGIT_BITS] and let `n` represent
- half of the number of digits in the min(a,b)
- `a` = `a1` * `B`**`n` + `a0`
- `b` = `b`1 * `B`**`n` + `b0`
- Then, a * b => 1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0
- Note that a1b1 and a0b0 are used twice and only need to be computed once.
- So in total three half size (half # of digit) multiplications are performed,
- a0b0, a1b1 and (a1+b1)(a0+b0)
- Note that a multiplication of half the digits requires 1/4th the number of
- single precision multiplications, so in total after one call 25% of the
- single precision multiplications are saved.
- Note also that the call to `internal_mul` can end up back in this function
- if the a0, a1, b0, or b1 are above the threshold.
- This is known as divide-and-conquer and leads to the famous O(N**lg(3)) or O(N**1.584)
- work which is asymptopically lower than the standard O(N**2) that the
- baseline/comba methods use. Generally though, the overhead of this method doesn't pay off
- until a certain size is reached, of around 80 used DIGITs.
- */
- _private_int_mul_karatsuba :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- x0, x1, y0, y1, t1, x0y0, x1y1 := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}
- defer internal_destroy(x0, x1, y0, y1, t1, x0y0, x1y1)
- /*
- min # of digits, divided by two.
- */
- B := min(a.used, b.used) >> 1
- /*
- Init all the temps.
- */
- internal_grow(x0, B) or_return
- internal_grow(x1, a.used - B) or_return
- internal_grow(y0, B) or_return
- internal_grow(y1, b.used - B) or_return
- internal_grow(t1, B * 2) or_return
- internal_grow(x0y0, B * 2) or_return
- internal_grow(x1y1, B * 2) or_return
- /*
- Now shift the digits.
- */
- x0.used, y0.used = B, B
- x1.used = a.used - B
- y1.used = b.used - B
- /*
- We copy the digits directly instead of using higher level functions
- since we also need to shift the digits.
- */
- internal_copy_digits(x0, a, x0.used)
- internal_copy_digits(y0, b, y0.used)
- internal_copy_digits(x1, a, x1.used, B)
- internal_copy_digits(y1, b, y1.used, B)
- /*
- Only need to clamp the lower words since by definition the
- upper words x1/y1 must have a known number of digits.
- */
- clamp(x0)
- clamp(y0)
- /*
- Now calc the products x0y0 and x1y1,
- after this x0 is no longer required, free temp [x0==t2]!
- */
- internal_mul(x0y0, x0, y0) or_return /* x0y0 = x0*y0 */
- internal_mul(x1y1, x1, y1) or_return /* x1y1 = x1*y1 */
- internal_add(t1, x1, x0) or_return /* now calc x1+x0 and */
- internal_add(x0, y1, y0) or_return /* t2 = y1 + y0 */
- internal_mul(t1, t1, x0) or_return /* t1 = (x1 + x0) * (y1 + y0) */
- /*
- Add x0y0.
- */
- internal_add(x0, x0y0, x1y1) or_return /* t2 = x0y0 + x1y1 */
- internal_sub(t1, t1, x0) or_return /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */
- /*
- shift by B.
- */
- _private_int_shl_leg(t1, B) or_return /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
- _private_int_shl_leg(x1y1, B * 2) or_return /* x1y1 = x1y1 << 2*B */
- internal_add(t1, x0y0, t1) or_return /* t1 = x0y0 + t1 */
- internal_add(dest, t1, x1y1) or_return /* t1 = x0y0 + t1 + x1y1 */
- return nil
- }
- /*
- Fast (comba) multiplier
- This is the fast column-array [comba] multiplier. It is
- designed to compute the columns of the product first
- then handle the carries afterwards. This has the effect
- of making the nested loops that compute the columns very
- simple and schedulable on super-scalar processors.
- This has been modified to produce a variable number of
- digits of output so if say only a half-product is required
- you don't have to compute the upper half (a feature
- required for fast Barrett reduction).
- Based on Algorithm 14.12 on pp.595 of HAC.
- */
- _private_int_mul_comba :: proc(dest, a, b: ^Int, digits: int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- /*
- Set up array.
- */
- W: [_WARRAY]DIGIT = ---
- /*
- Grow the destination as required.
- */
- internal_grow(dest, digits) or_return
- /*
- Number of output digits to produce.
- */
- pa := min(digits, a.used + b.used)
- /*
- Clear the carry
- */
- _W := _WORD(0)
- ix: int
- for ix = 0; ix < pa; ix += 1 {
- tx, ty, iy, iz: int
- /*
- Get offsets into the two bignums.
- */
- ty = min(b.used - 1, ix)
- tx = ix - ty
- /*
- This is the number of times the loop will iterate, essentially.
- while (tx++ < a->used && ty-- >= 0) { ... }
- */
-
- iy = min(a.used - tx, ty + 1)
- /*
- Execute loop.
- */
- #no_bounds_check for iz = 0; iz < iy; iz += 1 {
- _W += _WORD(a.digit[tx + iz]) * _WORD(b.digit[ty - iz])
- }
- /*
- Store term.
- */
- W[ix] = DIGIT(_W) & _MASK
- /*
- Make next carry.
- */
- _W = _W >> _WORD(_DIGIT_BITS)
- }
- /*
- Setup dest.
- */
- old_used := dest.used
- dest.used = pa
- /*
- Now extract the previous digit [below the carry].
- */
- copy_slice(dest.digit[0:], W[:pa])
- /*
- Clear unused digits [that existed in the old copy of dest].
- */
- internal_zero_unused(dest, old_used)
- /*
- Adjust dest.used based on leading zeroes.
- */
- return internal_clamp(dest)
- }
- /*
- Multiplies |a| * |b| and does not compute the lower digs digits
- [meant to get the higher part of the product]
- */
- _private_int_mul_high :: proc(dest, a, b: ^Int, digits: int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- /*
- Can we use the fast multiplier?
- */
- if a.used + b.used + 1 < _WARRAY && min(a.used, b.used) < _MAX_COMBA {
- return _private_int_mul_high_comba(dest, a, b, digits)
- }
- internal_grow(dest, a.used + b.used + 1) or_return
- dest.used = a.used + b.used + 1
- pa := a.used
- pb := b.used
- for ix := 0; ix < pa; ix += 1 {
- carry := DIGIT(0)
- for iy := digits - ix; iy < pb; iy += 1 {
- /*
- Calculate the double precision result.
- */
- r := _WORD(dest.digit[ix + iy]) + _WORD(a.digit[ix]) * _WORD(b.digit[iy]) + _WORD(carry)
- /*
- Get the lower part.
- */
- dest.digit[ix + iy] = DIGIT(r & _WORD(_MASK))
- /*
- Carry the carry.
- */
- carry = DIGIT(r >> _WORD(_DIGIT_BITS))
- }
- dest.digit[ix + pb] = carry
- }
- return internal_clamp(dest)
- }
- /*
- This is a modified version of `_private_int_mul_comba` that only produces output digits *above* `digits`.
- See the comments for `_private_int_mul_comba` to see how it works.
- This is used in the Barrett reduction since for one of the multiplications
- only the higher digits were needed. This essentially halves the work.
- Based on Algorithm 14.12 on pp.595 of HAC.
- */
- _private_int_mul_high_comba :: proc(dest, a, b: ^Int, digits: int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- W: [_WARRAY]DIGIT = ---
- _W: _WORD = 0
- /*
- Number of output digits to produce. Grow the destination as required.
- */
- pa := a.used + b.used
- internal_grow(dest, pa) or_return
- ix: int
- for ix = digits; ix < pa; ix += 1 {
- /*
- Get offsets into the two bignums.
- */
- ty := min(b.used - 1, ix)
- tx := ix - ty
- /*
- This is the number of times the loop will iterrate, essentially it's
- while (tx++ < a->used && ty-- >= 0) { ... }
- */
- iy := min(a.used - tx, ty + 1)
- /*
- Execute loop.
- */
- for iz := 0; iz < iy; iz += 1 {
- _W += _WORD(a.digit[tx + iz]) * _WORD(b.digit[ty - iz])
- }
- /*
- Store term.
- */
- W[ix] = DIGIT(_W) & DIGIT(_MASK)
- /*
- Make next carry.
- */
- _W = _W >> _WORD(_DIGIT_BITS)
- }
- /*
- Setup dest
- */
- old_used := dest.used
- dest.used = pa
- for ix = digits; ix < pa; ix += 1 {
- /*
- Now extract the previous digit [below the carry].
- */
- dest.digit[ix] = W[ix]
- }
- /*
- Zero remainder.
- */
- internal_zero_unused(dest, old_used)
- /*
- Adjust dest.used based on leading zeroes.
- */
- return internal_clamp(dest)
- }
- /*
- Single-digit multiplication with the smaller number as the single-digit.
- */
- _private_int_mul_balance :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- a, b := a, b
- a0, tmp, r := &Int{}, &Int{}, &Int{}
- defer internal_destroy(a0, tmp, r)
- b_size := min(a.used, b.used)
- n_blocks := max(a.used, b.used) / b_size
- internal_grow(a0, b_size + 2) or_return
- internal_init_multi(tmp, r) or_return
- /*
- Make sure that `a` is the larger one.
- */
- if a.used < b.used {
- a, b = b, a
- }
- assert(a.used >= b.used)
- i, j := 0, 0
- for ; i < n_blocks; i += 1 {
- /*
- Cut a slice off of `a`.
- */
- a0.used = b_size
- internal_copy_digits(a0, a, a0.used, j)
- j += a0.used
- internal_clamp(a0)
- /*
- Multiply with `b`.
- */
- internal_mul(tmp, a0, b) or_return
- /*
- Shift `tmp` to the correct position.
- */
- _private_int_shl_leg(tmp, b_size * i) or_return
- /*
- Add to output. No carry needed.
- */
- internal_add(r, r, tmp) or_return
- }
- /*
- The left-overs; there are always left-overs.
- */
- if j < a.used {
- a0.used = a.used - j
- internal_copy_digits(a0, a, a0.used, j)
- j += a0.used
- internal_clamp(a0)
- internal_mul(tmp, a0, b) or_return
- _private_int_shl_leg(tmp, b_size * i) or_return
- internal_add(r, r, tmp) or_return
- }
- internal_swap(dest, r)
- return
- }
- /*
- Low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16
- Assumes `dest` and `src` to not be `nil`, and `src` to have been initialized.
- */
- _private_int_sqr :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- pa := src.used
- t := &Int{}; ix, iy: int
- /*
- Grow `t` to maximum needed size, or `_DEFAULT_DIGIT_COUNT`, whichever is bigger.
- */
- internal_grow(t, max((2 * pa) + 1, _DEFAULT_DIGIT_COUNT)) or_return
- t.used = (2 * pa) + 1
- #no_bounds_check for ix = 0; ix < pa; ix += 1 {
- carry := DIGIT(0)
- /*
- First calculate the digit at 2*ix; calculate double precision result.
- */
- r := _WORD(t.digit[ix+ix]) + (_WORD(src.digit[ix]) * _WORD(src.digit[ix]))
- /*
- Store lower part in result.
- */
- t.digit[ix+ix] = DIGIT(r & _WORD(_MASK))
- /*
- Get the carry.
- */
- carry = DIGIT(r >> _DIGIT_BITS)
- #no_bounds_check for iy = ix + 1; iy < pa; iy += 1 {
- /*
- First calculate the product.
- */
- r = _WORD(src.digit[ix]) * _WORD(src.digit[iy])
- /* Now calculate the double precision result. Nóte we use
- * addition instead of *2 since it's easier to optimize
- */
- r = _WORD(t.digit[ix+iy]) + r + r + _WORD(carry)
- /*
- Store lower part.
- */
- t.digit[ix+iy] = DIGIT(r & _WORD(_MASK))
- /*
- Get carry.
- */
- carry = DIGIT(r >> _DIGIT_BITS)
- }
- /*
- Propagate upwards.
- */
- #no_bounds_check for carry != 0 {
- r = _WORD(t.digit[ix+iy]) + _WORD(carry)
- t.digit[ix+iy] = DIGIT(r & _WORD(_MASK))
- carry = DIGIT(r >> _WORD(_DIGIT_BITS))
- iy += 1
- }
- }
- err = internal_clamp(t)
- internal_swap(dest, t)
- internal_destroy(t)
- return err
- }
- /*
- The jist of squaring...
- You do like mult except the offset of the tmpx [one that starts closer to zero] can't equal the offset of tmpy.
- So basically you set up iy like before then you min it with (ty-tx) so that it never happens.
- You double all those you add in the inner loop. After that loop you do the squares and add them in.
- Assumes `dest` and `src` not to be `nil` and `src` to have been initialized.
- */
- _private_int_sqr_comba :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- W: [_WARRAY]DIGIT = ---
- /*
- Grow the destination as required.
- */
- pa := uint(src.used) + uint(src.used)
- internal_grow(dest, int(pa)) or_return
- /*
- Number of output digits to produce.
- */
- W1 := _WORD(0)
- _W : _WORD = ---
- ix := uint(0)
- #no_bounds_check for ; ix < pa; ix += 1 {
- /*
- Clear counter.
- */
- _W = {}
- /*
- Get offsets into the two bignums.
- */
- ty := min(uint(src.used) - 1, ix)
- tx := ix - ty
- /*
- This is the number of times the loop will iterate,
- essentially while (tx++ < a->used && ty-- >= 0) { ... }
- */
- iy := min(uint(src.used) - tx, ty + 1)
- /*
- Now for squaring, tx can never equal ty.
- We halve the distance since they approach at a rate of 2x,
- and we have to round because odd cases need to be executed.
- */
- iy = min(iy, ((ty - tx) + 1) >> 1 )
- /*
- Execute loop.
- */
- #no_bounds_check for iz := uint(0); iz < iy; iz += 1 {
- _W += _WORD(src.digit[tx + iz]) * _WORD(src.digit[ty - iz])
- }
- /*
- Double the inner product and add carry.
- */
- _W = _W + _W + W1
- /*
- Even columns have the square term in them.
- */
- if ix & 1 == 0 {
- _W += _WORD(src.digit[ix >> 1]) * _WORD(src.digit[ix >> 1])
- }
- /*
- Store it.
- */
- W[ix] = DIGIT(_W & _WORD(_MASK))
- /*
- Make next carry.
- */
- W1 = _W >> _DIGIT_BITS
- }
- /*
- Setup dest.
- */
- old_used := dest.used
- dest.used = src.used + src.used
- #no_bounds_check for ix = 0; ix < pa; ix += 1 {
- dest.digit[ix] = W[ix] & _MASK
- }
- /*
- Clear unused digits [that existed in the old copy of dest].
- */
- internal_zero_unused(dest, old_used)
- return internal_clamp(dest)
- }
- /*
- Karatsuba squaring, computes `dest` = `src` * `src` using three half-size squarings.
-
- See comments of `_private_int_mul_karatsuba` for details.
- It is essentially the same algorithm but merely tuned to perform recursive squarings.
- */
- _private_int_sqr_karatsuba :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- x0, x1, t1, t2, x0x0, x1x1 := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}
- defer internal_destroy(x0, x1, t1, t2, x0x0, x1x1)
- /*
- Min # of digits, divided by two.
- */
- B := src.used >> 1
- /*
- Init temps.
- */
- internal_grow(x0, B) or_return
- internal_grow(x1, src.used - B) or_return
- internal_grow(t1, src.used * 2) or_return
- internal_grow(t2, src.used * 2) or_return
- internal_grow(x0x0, B * 2 ) or_return
- internal_grow(x1x1, (src.used - B) * 2) or_return
- /*
- Now shift the digits.
- */
- x0.used = B
- x1.used = src.used - B
- #force_inline internal_copy_digits(x0, src, x0.used)
- #force_inline mem.copy_non_overlapping(&x1.digit[0], &src.digit[B], size_of(DIGIT) * x1.used)
- #force_inline internal_clamp(x0)
- /*
- Now calc the products x0*x0 and x1*x1.
- */
- internal_sqr(x0x0, x0) or_return
- internal_sqr(x1x1, x1) or_return
- /*
- Now calc (x1+x0)^2
- */
- internal_add(t1, x0, x1) or_return
- internal_sqr(t1, t1) or_return
- /*
- Add x0y0
- */
- internal_add(t2, x0x0, x1x1) or_return
- internal_sub(t1, t1, t2) or_return
- /*
- Shift by B.
- */
- _private_int_shl_leg(t1, B) or_return
- _private_int_shl_leg(x1x1, B * 2) or_return
- internal_add(t1, t1, x0x0) or_return
- internal_add(dest, t1, x1x1) or_return
- return #force_inline internal_clamp(dest)
- }
- /*
- Squaring using Toom-Cook 3-way algorithm.
- Setup and interpolation from algorithm SQR_3 in Chung, Jaewook, and M. Anwar Hasan. "Asymmetric squaring formulae."
- 18th IEEE Symposium on Computer Arithmetic (ARITH'07). IEEE, 2007.
- */
- _private_int_sqr_toom :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- S0, a0, a1, a2 := &Int{}, &Int{}, &Int{}, &Int{}
- defer internal_destroy(S0, a0, a1, a2)
- /*
- Init temps.
- */
- internal_zero(S0) or_return
- /*
- B
- */
- B := src.used / 3
- /*
- a = a2 * x^2 + a1 * x + a0;
- */
- internal_grow(a0, B) or_return
- internal_grow(a1, B) or_return
- internal_grow(a2, src.used - (2 * B)) or_return
- a0.used = B
- a1.used = B
- a2.used = src.used - 2 * B
- #force_inline mem.copy_non_overlapping(&a0.digit[0], &src.digit[ 0], size_of(DIGIT) * a0.used)
- #force_inline mem.copy_non_overlapping(&a1.digit[0], &src.digit[ B], size_of(DIGIT) * a1.used)
- #force_inline mem.copy_non_overlapping(&a2.digit[0], &src.digit[2 * B], size_of(DIGIT) * a2.used)
- internal_clamp(a0)
- internal_clamp(a1)
- internal_clamp(a2)
- /** S0 = a0^2; */
- internal_sqr(S0, a0) or_return
- /** \\S1 = (a2 + a1 + a0)^2 */
- /** \\S2 = (a2 - a1 + a0)^2 */
- /** \\S1 = a0 + a2; */
- /** a0 = a0 + a2; */
- internal_add(a0, a0, a2) or_return
- /** \\S2 = S1 - a1; */
- /** b = a0 - a1; */
- internal_sub(dest, a0, a1) or_return
- /** \\S1 = S1 + a1; */
- /** a0 = a0 + a1; */
- internal_add(a0, a0, a1) or_return
- /** \\S1 = S1^2; */
- /** a0 = a0^2; */
- internal_sqr(a0, a0) or_return
- /** \\S2 = S2^2; */
- /** b = b^2; */
- internal_sqr(dest, dest) or_return
- /** \\ S3 = 2 * a1 * a2 */
- /** \\S3 = a1 * a2; */
- /** a1 = a1 * a2; */
- internal_mul(a1, a1, a2) or_return
- /** \\S3 = S3 << 1; */
- /** a1 = a1 << 1; */
- internal_shl(a1, a1, 1) or_return
- /** \\S4 = a2^2; */
- /** a2 = a2^2; */
- internal_sqr(a2, a2) or_return
- /** \\ tmp = (S1 + S2)/2 */
- /** \\tmp = S1 + S2; */
- /** b = a0 + b; */
- internal_add(dest, a0, dest) or_return
- /** \\tmp = tmp >> 1; */
- /** b = b >> 1; */
- internal_shr(dest, dest, 1) or_return
- /** \\ S1 = S1 - tmp - S3 */
- /** \\S1 = S1 - tmp; */
- /** a0 = a0 - b; */
- internal_sub(a0, a0, dest) or_return
- /** \\S1 = S1 - S3; */
- /** a0 = a0 - a1; */
- internal_sub(a0, a0, a1) or_return
- /** \\S2 = tmp - S4 -S0 */
- /** \\S2 = tmp - S4; */
- /** b = b - a2; */
- internal_sub(dest, dest, a2) or_return
- /** \\S2 = S2 - S0; */
- /** b = b - S0; */
- internal_sub(dest, dest, S0) or_return
- /** \\P = S4*x^4 + S3*x^3 + S2*x^2 + S1*x + S0; */
- /** P = a2*x^4 + a1*x^3 + b*x^2 + a0*x + S0; */
- _private_int_shl_leg( a2, 4 * B) or_return
- _private_int_shl_leg( a1, 3 * B) or_return
- _private_int_shl_leg(dest, 2 * B) or_return
- _private_int_shl_leg( a0, 1 * B) or_return
- internal_add(a2, a2, a1) or_return
- internal_add(dest, dest, a2) or_return
- internal_add(dest, dest, a0) or_return
- internal_add(dest, dest, S0) or_return
- /** a^2 - P */
- return #force_inline internal_clamp(dest)
- }
- /*
- Divide by three (based on routine from MPI and the GMP manual).
- */
- _private_int_div_3 :: proc(quotient, numerator: ^Int, allocator := context.allocator) -> (remainder: DIGIT, err: Error) {
- context.allocator = allocator
- /*
- b = 2^_DIGIT_BITS / 3
- */
- b := _WORD(1) << _WORD(_DIGIT_BITS) / _WORD(3)
- q := &Int{}
- internal_grow(q, numerator.used) or_return
- q.used = numerator.used
- q.sign = numerator.sign
- w, t: _WORD
- #no_bounds_check for ix := numerator.used; ix >= 0; ix -= 1 {
- w = (w << _WORD(_DIGIT_BITS)) | _WORD(numerator.digit[ix])
- if w >= 3 {
- /*
- Multiply w by [1/3].
- */
- t = (w * b) >> _WORD(_DIGIT_BITS)
- /*
- Now subtract 3 * [w/3] from w, to get the remainder.
- */
- w -= t+t+t
- /*
- Fixup the remainder as required since the optimization is not exact.
- */
- for w >= 3 {
- t += 1
- w -= 3
- }
- } else {
- t = 0
- }
- q.digit[ix] = DIGIT(t)
- }
- remainder = DIGIT(w)
- /*
- [optional] store the quotient.
- */
- if quotient != nil {
- err = clamp(q)
- internal_swap(q, quotient)
- }
- internal_destroy(q)
- return remainder, nil
- }
- /*
- Signed Integer Division
- c*b + d == a [i.e. a/b, c=quotient, d=remainder], HAC pp.598 Algorithm 14.20
- Note that the description in HAC is horribly incomplete.
- For example, it doesn't consider the case where digits are removed from 'x' in
- the inner loop.
- It also doesn't consider the case that y has fewer than three digits, etc.
- The overall algorithm is as described as 14.20 from HAC but fixed to treat these cases.
- */
- _private_int_div_school :: proc(quotient, remainder, numerator, denominator: ^Int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- error_if_immutable(quotient, remainder) or_return
- q, x, y, t1, t2 := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}
- defer internal_destroy(q, x, y, t1, t2)
- internal_grow(q, numerator.used + 2) or_return
- q.used = numerator.used + 2
- internal_init_multi(t1, t2) or_return
- internal_copy(x, numerator) or_return
- internal_copy(y, denominator) or_return
- /*
- Fix the sign.
- */
- neg := numerator.sign != denominator.sign
- x.sign = .Zero_or_Positive
- y.sign = .Zero_or_Positive
- /*
- Normalize both x and y, ensure that y >= b/2, [b == 2**MP_DIGIT_BIT]
- */
- norm := internal_count_bits(y) % _DIGIT_BITS
- if norm < _DIGIT_BITS - 1 {
- norm = (_DIGIT_BITS - 1) - norm
- internal_shl(x, x, norm) or_return
- internal_shl(y, y, norm) or_return
- } else {
- norm = 0
- }
- /*
- Note: HAC does 0 based, so if used==5 then it's 0,1,2,3,4, i.e. use 4
- */
- n := x.used - 1
- t := y.used - 1
- /*
- while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} }
- y = y*b**{n-t}
- */
- _private_int_shl_leg(y, n - t) or_return
- gte := internal_gte(x, y)
- for gte {
- q.digit[n - t] += 1
- internal_sub(x, x, y) or_return
- gte = internal_gte(x, y)
- }
- /*
- Reset y by shifting it back down.
- */
- _private_int_shr_leg(y, n - t)
- /*
- Step 3. for i from n down to (t + 1).
- */
- #no_bounds_check for i := n; i >= (t + 1); i -= 1 {
- if (i > x.used) { continue }
- /*
- step 3.1 if xi == yt then set q{i-t-1} to b-1, otherwise set q{i-t-1} to (xi*b + x{i-1})/yt
- */
- if x.digit[i] == y.digit[t] {
- q.digit[(i - t) - 1] = 1 << (_DIGIT_BITS - 1)
- } else {
- tmp := _WORD(x.digit[i]) << _DIGIT_BITS
- tmp |= _WORD(x.digit[i - 1])
- tmp /= _WORD(y.digit[t])
- if tmp > _WORD(_MASK) {
- tmp = _WORD(_MASK)
- }
- q.digit[(i - t) - 1] = DIGIT(tmp & _WORD(_MASK))
- }
- /* while (q{i-t-1} * (yt * b + y{t-1})) >
- xi * b**2 + xi-1 * b + xi-2
- do q{i-t-1} -= 1;
- */
- iter := 0
- q.digit[(i - t) - 1] = (q.digit[(i - t) - 1] + 1) & _MASK
- #no_bounds_check for {
- q.digit[(i - t) - 1] = (q.digit[(i - t) - 1] - 1) & _MASK
- /*
- Find left hand.
- */
- internal_zero(t1)
- t1.digit[0] = ((t - 1) < 0) ? 0 : y.digit[t - 1]
- t1.digit[1] = y.digit[t]
- t1.used = 2
- internal_mul(t1, t1, q.digit[(i - t) - 1]) or_return
- /*
- Find right hand.
- */
- t2.digit[0] = ((i - 2) < 0) ? 0 : x.digit[i - 2]
- t2.digit[1] = x.digit[i - 1] /* i >= 1 always holds */
- t2.digit[2] = x.digit[i]
- t2.used = 3
- if internal_lte(t1, t2) {
- break
- }
- iter += 1; if iter > 100 {
- return .Max_Iterations_Reached
- }
- }
- /*
- Step 3.3 x = x - q{i-t-1} * y * b**{i-t-1}
- */
- int_mul_digit(t1, y, q.digit[(i - t) - 1]) or_return
- _private_int_shl_leg(t1, (i - t) - 1) or_return
- internal_sub(x, x, t1) or_return
- /*
- if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; }
- */
- if x.sign == .Negative {
- internal_copy(t1, y) or_return
- _private_int_shl_leg(t1, (i - t) - 1) or_return
- internal_add(x, x, t1) or_return
- q.digit[(i - t) - 1] = (q.digit[(i - t) - 1] - 1) & _MASK
- }
- }
- /*
- Now q is the quotient and x is the remainder, [which we have to normalize]
- Get sign before writing to c.
- */
- z, _ := is_zero(x)
- x.sign = .Zero_or_Positive if z else numerator.sign
- if quotient != nil {
- internal_clamp(q)
- internal_swap(q, quotient)
- quotient.sign = .Negative if neg else .Zero_or_Positive
- }
- if remainder != nil {
- internal_shr(x, x, norm) or_return
- internal_swap(x, remainder)
- }
- return nil
- }
- /*
- Direct implementation of algorithms 1.8 "RecursiveDivRem" and 1.9 "UnbalancedDivision" from:
- Brent, Richard P., and Paul Zimmermann. "Modern computer arithmetic"
- Vol. 18. Cambridge University Press, 2010
- Available online at https://arxiv.org/pdf/1004.4710
- pages 19ff. in the above online document.
- */
- _private_div_recursion :: proc(quotient, remainder, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- A1, A2, B1, B0, Q1, Q0, R1, R0, t := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}
- defer internal_destroy(A1, A2, B1, B0, Q1, Q0, R1, R0, t)
- m := a.used - b.used
- k := m / 2
- if m < MUL_KARATSUBA_CUTOFF {
- return _private_int_div_school(quotient, remainder, a, b)
- }
- internal_init_multi(A1, A2, B1, B0, Q1, Q0, R1, R0, t) or_return
- /*
- `B1` = `b` / `beta`^`k`, `B0` = `b` % `beta`^`k`
- */
- internal_shrmod(B1, B0, b, k * _DIGIT_BITS) or_return
- /*
- (Q1, R1) = RecursiveDivRem(A / beta^(2k), B1)
- */
- internal_shrmod(A1, t, a, 2 * k * _DIGIT_BITS) or_return
- _private_div_recursion(Q1, R1, A1, B1) or_return
- /*
- A1 = (R1 * beta^(2k)) + (A % beta^(2k)) - (Q1 * B0 * beta^k)
- */
- _private_int_shl_leg(R1, 2 * k) or_return
- internal_add(A1, R1, t) or_return
- internal_mul(t, Q1, B0) or_return
- /*
- While A1 < 0 do Q1 = Q1 - 1, A1 = A1 + (beta^k * B)
- */
- if internal_lt(A1, 0) {
- internal_shl(t, b, k * _DIGIT_BITS) or_return
- for {
- internal_decr(Q1) or_return
- internal_add(A1, A1, t) or_return
- if internal_gte(A1, 0) { break }
- }
- }
- /*
- (Q0, R0) = RecursiveDivRem(A1 / beta^(k), B1)
- */
- internal_shrmod(A1, t, A1, k * _DIGIT_BITS) or_return
- _private_div_recursion(Q0, R0, A1, B1) or_return
- /*
- A2 = (R0*beta^k) + (A1 % beta^k) - (Q0*B0)
- */
- _private_int_shl_leg(R0, k) or_return
- internal_add(A2, R0, t) or_return
- internal_mul(t, Q0, B0) or_return
- internal_sub(A2, A2, t) or_return
- /*
- While A2 < 0 do Q0 = Q0 - 1, A2 = A2 + B.
- */
- for internal_is_negative(A2) { // internal_lt(A2, 0) {
- internal_decr(Q0) or_return
- internal_add(A2, A2, b) or_return
- }
- /*
- Return q = (Q1*beta^k) + Q0, r = A2.
- */
- _private_int_shl_leg(Q1, k) or_return
- internal_add(quotient, Q1, Q0) or_return
- return internal_copy(remainder, A2)
- }
- _private_int_div_recursive :: proc(quotient, remainder, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- A, B, Q, Q1, R, A_div, A_mod := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}
- defer internal_destroy(A, B, Q, Q1, R, A_div, A_mod)
- internal_init_multi(A, B, Q, Q1, R, A_div, A_mod) or_return
- /*
- Most significant bit of a limb.
- Assumes _DIGIT_MAX < (sizeof(DIGIT) * sizeof(u8)).
- */
- msb := (_DIGIT_MAX + DIGIT(1)) >> 1
- sigma := 0
- msb_b := b.digit[b.used - 1]
- for msb_b < msb {
- sigma += 1
- msb_b <<= 1
- }
- /*
- Use that sigma to normalize B.
- */
- internal_shl(B, b, sigma) or_return
- internal_shl(A, a, sigma) or_return
- /*
- Fix the sign.
- */
- neg := a.sign != b.sign
- A.sign = .Zero_or_Positive; B.sign = .Zero_or_Positive
- /*
- If the magnitude of "A" is not more more than twice that of "B" we can work
- on them directly, otherwise we need to work at "A" in chunks.
- */
- n := B.used
- m := A.used - B.used
- /*
- Q = 0. We already ensured that when we called `internal_init_multi`.
- */
- for m > n {
- /*
- (q, r) = RecursiveDivRem(A / (beta^(m-n)), B)
- */
- j := (m - n) * _DIGIT_BITS
- internal_shrmod(A_div, A_mod, A, j) or_return
- _private_div_recursion(Q1, R, A_div, B) or_return
- /*
- Q = (Q*beta!(n)) + q
- */
- internal_shl(Q, Q, n * _DIGIT_BITS) or_return
- internal_add(Q, Q, Q1) or_return
- /*
- A = (r * beta^(m-n)) + (A % beta^(m-n))
- */
- internal_shl(R, R, (m - n) * _DIGIT_BITS) or_return
- internal_add(A, R, A_mod) or_return
- /*
- m = m - n
- */
- m -= n
- }
- /*
- (q, r) = RecursiveDivRem(A, B)
- */
- _private_div_recursion(Q1, R, A, B) or_return
- /*
- Q = (Q * beta^m) + q, R = r
- */
- internal_shl(Q, Q, m * _DIGIT_BITS) or_return
- internal_add(Q, Q, Q1) or_return
- /*
- Get sign before writing to dest.
- */
- R.sign = .Zero_or_Positive if internal_is_zero(Q) else a.sign
- if quotient != nil {
- swap(quotient, Q)
- quotient.sign = .Negative if neg else .Zero_or_Positive
- }
- if remainder != nil {
- /*
- De-normalize the remainder.
- */
- internal_shrmod(R, nil, R, sigma) or_return
- swap(remainder, R)
- }
- return nil
- }
- /*
- Slower bit-bang division... also smaller.
- */
- @(deprecated="Use `_int_div_school`, it's 3.5x faster.")
- _private_int_div_small :: proc(quotient, remainder, numerator, denominator: ^Int) -> (err: Error) {
- ta, tb, tq, q := &Int{}, &Int{}, &Int{}, &Int{}
- defer internal_destroy(ta, tb, tq, q)
- for {
- internal_one(tq) or_return
- num_bits, _ := count_bits(numerator)
- den_bits, _ := count_bits(denominator)
- n := num_bits - den_bits
- abs(ta, numerator) or_return
- abs(tb, denominator) or_return
- shl(tb, tb, n) or_return
- shl(tq, tq, n) or_return
- for n >= 0 {
- if internal_gte(ta, tb) {
- // ta -= tb
- sub(ta, ta, tb) or_return
- // q += tq
- add( q, q, tq) or_return
- }
- shr1(tb, tb) or_return
- shr1(tq, tq) or_return
- n -= 1
- }
- /*
- Now q == quotient and ta == remainder.
- */
- neg := numerator.sign != denominator.sign
- if quotient != nil {
- swap(quotient, q)
- z, _ := is_zero(quotient)
- quotient.sign = .Negative if neg && !z else .Zero_or_Positive
- }
- if remainder != nil {
- swap(remainder, ta)
- z, _ := is_zero(numerator)
- remainder.sign = .Zero_or_Positive if z else numerator.sign
- }
- break
- }
- return err
- }
- /*
- Binary split factorial algo due to: http://www.luschny.de/math/factorial/binarysplitfact.html
- */
- _private_int_factorial_binary_split :: proc(res: ^Int, n: int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- inner, outer, start, stop, temp := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}
- defer internal_destroy(inner, outer, start, stop, temp)
- internal_one(inner, false) or_return
- internal_one(outer, false) or_return
- bits_used := ilog2(n)
- for i := bits_used; i >= 0; i -= 1 {
- start := (n >> (uint(i) + 1)) + 1 | 1
- stop := (n >> uint(i)) + 1 | 1
- _private_int_recursive_product(temp, start, stop, 0) or_return
- internal_mul(inner, inner, temp) or_return
- internal_mul(outer, outer, inner) or_return
- }
- shift := n - intrinsics.count_ones(n)
- return internal_shl(res, outer, int(shift))
- }
- /*
- Recursive product used by binary split factorial algorithm.
- */
- _private_int_recursive_product :: proc(res: ^Int, start, stop: int, level := int(0), allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- t1, t2 := &Int{}, &Int{}
- defer internal_destroy(t1, t2)
- if level > FACTORIAL_BINARY_SPLIT_MAX_RECURSIONS {
- return .Max_Iterations_Reached
- }
- num_factors := (stop - start) >> 1
- if num_factors == 2 {
- internal_set(t1, start, false) or_return
- when true {
- internal_grow(t2, t1.used + 1, false) or_return
- internal_add(t2, t1, 2) or_return
- } else {
- internal_add(t2, t1, 2) or_return
- }
- return internal_mul(res, t1, t2)
- }
- if num_factors > 1 {
- mid := (start + num_factors) | 1
- _private_int_recursive_product(t1, start, mid, level + 1) or_return
- _private_int_recursive_product(t2, mid, stop, level + 1) or_return
- return internal_mul(res, t1, t2)
- }
- if num_factors == 1 {
- return #force_inline internal_set(res, start, true)
- }
- return #force_inline internal_one(res, true)
- }
- /*
- Internal function computing both GCD using the binary method,
- and, if target isn't `nil`, also LCM.
- Expects the `a` and `b` to have been initialized
- and one or both of `res_gcd` or `res_lcm` not to be `nil`.
- If both `a` and `b` are zero, return zero.
- If either `a` or `b`, return the other one.
- The `gcd` and `lcm` wrappers have already done this test,
- but `gcd_lcm` wouldn't have, so we still need to perform it.
- If neither result is wanted, we have nothing to do.
- */
- _private_int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- if res_gcd == nil && res_lcm == nil {
- return nil
- }
- /*
- We need a temporary because `res_gcd` is allowed to be `nil`.
- */
- if a.used == 0 && b.used == 0 {
- /*
- GCD(0, 0) and LCM(0, 0) are both 0.
- */
- if res_gcd != nil {
- internal_zero(res_gcd) or_return
- }
- if res_lcm != nil {
- internal_zero(res_lcm) or_return
- }
- return nil
- } else if a.used == 0 {
- /*
- We can early out with GCD = B and LCM = 0
- */
- if res_gcd != nil {
- internal_abs(res_gcd, b) or_return
- }
- if res_lcm != nil {
- internal_zero(res_lcm) or_return
- }
- return nil
- } else if b.used == 0 {
- /*
- We can early out with GCD = A and LCM = 0
- */
- if res_gcd != nil {
- internal_abs(res_gcd, a) or_return
- }
- if res_lcm != nil {
- internal_zero(res_lcm) or_return
- }
- return nil
- }
- temp_gcd_res := &Int{}
- defer internal_destroy(temp_gcd_res)
- /*
- If neither `a` or `b` was zero, we need to compute `gcd`.
- Get copies of `a` and `b` we can modify.
- */
- u, v := &Int{}, &Int{}
- defer internal_destroy(u, v)
- internal_copy(u, a) or_return
- internal_copy(v, b) or_return
- /*
- Must be positive for the remainder of the algorithm.
- */
- u.sign = .Zero_or_Positive; v.sign = .Zero_or_Positive
- /*
- B1. Find the common power of two for `u` and `v`.
- */
- u_lsb, _ := internal_count_lsb(u)
- v_lsb, _ := internal_count_lsb(v)
- k := min(u_lsb, v_lsb)
- if k > 0 {
- /*
- Divide the power of two out.
- */
- internal_shr(u, u, k) or_return
- internal_shr(v, v, k) or_return
- }
- /*
- Divide any remaining factors of two out.
- */
- if u_lsb != k {
- internal_shr(u, u, u_lsb - k) or_return
- }
- if v_lsb != k {
- internal_shr(v, v, v_lsb - k) or_return
- }
- for v.used != 0 {
- /*
- Make sure `v` is the largest.
- */
- if internal_gt(u, v) {
- /*
- Swap `u` and `v` to make sure `v` is >= `u`.
- */
- internal_swap(u, v)
- }
- /*
- Subtract smallest from largest.
- */
- internal_sub(v, v, u) or_return
- /*
- Divide out all factors of two.
- */
- b, _ := internal_count_lsb(v)
- internal_shr(v, v, b) or_return
- }
- /*
- Multiply by 2**k which we divided out at the beginning.
- */
- internal_shl(temp_gcd_res, u, k) or_return
- temp_gcd_res.sign = .Zero_or_Positive
- /*
- We've computed `gcd`, either the long way, or because one of the inputs was zero.
- If we don't want `lcm`, we're done.
- */
- if res_lcm == nil {
- internal_swap(temp_gcd_res, res_gcd)
- return nil
- }
- /*
- Computes least common multiple as `|a*b|/gcd(a,b)`
- Divide the smallest by the GCD.
- */
- if internal_lt_abs(a, b) {
- /*
- Store quotient in `t2` such that `t2 * b` is the LCM.
- */
- internal_div(res_lcm, a, temp_gcd_res) or_return
- err = internal_mul(res_lcm, res_lcm, b)
- } else {
- /*
- Store quotient in `t2` such that `t2 * a` is the LCM.
- */
- internal_div(res_lcm, b, temp_gcd_res) or_return
- err = internal_mul(res_lcm, res_lcm, a)
- }
- if res_gcd != nil {
- internal_swap(temp_gcd_res, res_gcd)
- }
- /*
- Fix the sign to positive and return.
- */
- res_lcm.sign = .Zero_or_Positive
- return err
- }
- /*
- Internal implementation of log.
- Assumes `a` not to be `nil` and to have been initialized.
- */
- _private_int_log :: proc(a: ^Int, base: DIGIT, allocator := context.allocator) -> (res: int, err: Error) {
- bracket_low, bracket_high, bracket_mid, t, bi_base := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}
- defer internal_destroy(bracket_low, bracket_high, bracket_mid, t, bi_base)
- ic := #force_inline internal_cmp(a, base)
- if ic == -1 || ic == 0 {
- return 1 if ic == 0 else 0, nil
- }
- defer if err != nil {
- res = -1
- }
- internal_set(bi_base, base, true, allocator) or_return
- internal_clear(bracket_mid, false, allocator) or_return
- internal_clear(t, false, allocator) or_return
- internal_one(bracket_low, false, allocator) or_return
- internal_set(bracket_high, base, false, allocator) or_return
- low := 0; high := 1
- /*
- A kind of Giant-step/baby-step algorithm.
- Idea shamelessly stolen from https://programmingpraxis.com/2010/05/07/integer-logarithms/2/
- The effect is asymptotic, hence needs benchmarks to test if the Giant-step should be skipped
- for small n.
- */
- for {
- /*
- Iterate until `a` is bracketed between low + high.
- */
- if #force_inline internal_gte(bracket_high, a) { break }
- low = high
- #force_inline internal_copy(bracket_low, bracket_high) or_return
- high <<= 1
- #force_inline internal_sqr(bracket_high, bracket_high) or_return
- }
- for (high - low) > 1 {
- mid := (high + low) >> 1
- #force_inline internal_pow(t, bi_base, mid - low) or_return
- #force_inline internal_mul(bracket_mid, bracket_low, t) or_return
- mc := #force_inline internal_cmp(a, bracket_mid)
- switch mc {
- case -1:
- high = mid
- internal_swap(bracket_mid, bracket_high)
- case 0:
- return mid, nil
- case 1:
- low = mid
- internal_swap(bracket_mid, bracket_low)
- }
- }
- fc := #force_inline internal_cmp(bracket_high, a)
- res = high if fc == 0 else low
- return
- }
- /*
- Computes xR**-1 == x (mod N) via Montgomery Reduction.
- This is an optimized implementation of `internal_montgomery_reduce`
- which uses the comba method to quickly calculate the columns of the reduction.
- Based on Algorithm 14.32 on pp.601 of HAC.
- */
- _private_montgomery_reduce_comba :: proc(x, n: ^Int, rho: DIGIT, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- W: [_WARRAY]_WORD = ---
- if x.used > _WARRAY { return .Invalid_Argument }
- /*
- Get old used count.
- */
- old_used := x.used
- /*
- Grow `x` as required.
- */
- internal_grow(x, n.used + 1) or_return
- /*
- First we have to get the digits of the input into an array of double precision words W[...]
- Copy the digits of `x` into W[0..`x.used` - 1]
- */
- ix: int
- for ix = 0; ix < x.used; ix += 1 {
- W[ix] = _WORD(x.digit[ix])
- }
- /*
- Zero the high words of W[a->used..m->used*2].
- */
- zero_upper := (n.used * 2) + 1
- if ix < zero_upper {
- for ix = x.used; ix < zero_upper; ix += 1 {
- W[ix] = {}
- }
- }
- /*
- Now we proceed to zero successive digits from the least significant upwards.
- */
- for ix = 0; ix < n.used; ix += 1 {
- /*
- `mu = ai * m' mod b`
- We avoid a double precision multiplication (which isn't required)
- by casting the value down to a DIGIT. Note this requires
- that W[ix-1] have the carry cleared (see after the inner loop)
- */
- mu := ((W[ix] & _WORD(_MASK)) * _WORD(rho)) & _WORD(_MASK)
- /*
- `a = a + mu * m * b**i`
-
- This is computed in place and on the fly. The multiplication
- by b**i is handled by offseting which columns the results
- are added to.
-
- Note the comba method normally doesn't handle carries in the
- inner loop In this case we fix the carry from the previous
- column since the Montgomery reduction requires digits of the
- result (so far) [see above] to work.
- This is handled by fixing up one carry after the inner loop.
- The carry fixups are done in order so after these loops the
- first m->used words of W[] have the carries fixed.
- */
- for iy := 0; iy < n.used; iy += 1 {
- W[ix + iy] += mu * _WORD(n.digit[iy])
- }
- /*
- Now fix carry for next digit, W[ix+1].
- */
- W[ix + 1] += (W[ix] >> _DIGIT_BITS)
- }
- /*
- Now we have to propagate the carries and shift the words downward
- [all those least significant digits we zeroed].
- */
- for ; ix < n.used * 2; ix += 1 {
- W[ix + 1] += (W[ix] >> _DIGIT_BITS)
- }
- /* copy out, A = A/b**n
- *
- * The result is A/b**n but instead of converting from an
- * array of mp_word to mp_digit than calling mp_rshd
- * we just copy them in the right order
- */
- for ix = 0; ix < (n.used + 1); ix += 1 {
- x.digit[ix] = DIGIT(W[n.used + ix] & _WORD(_MASK))
- }
- /*
- Set the max used.
- */
- x.used = n.used + 1
- /*
- Zero old_used digits, if the input a was larger than m->used+1 we'll have to clear the digits.
- */
- internal_zero_unused(x, old_used)
- internal_clamp(x)
- /*
- if A >= m then A = A - m
- */
- if internal_gte_abs(x, n) {
- return internal_sub(x, x, n)
- }
- return nil
- }
- /*
- Computes xR**-1 == x (mod N) via Montgomery Reduction.
- Assumes `x` and `n` not to be nil.
- */
- _private_int_montgomery_reduce :: proc(x, n: ^Int, rho: DIGIT, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- /*
- Can the fast reduction [comba] method be used?
- Note that unlike in mul, you're safely allowed *less* than the available columns [255 per default],
- since carries are fixed up in the inner loop.
- */
- internal_clear_if_uninitialized(x, n) or_return
- digs := (n.used * 2) + 1
- if digs < _WARRAY && x.used <= _WARRAY && n.used < _MAX_COMBA {
- return _private_montgomery_reduce_comba(x, n, rho)
- }
- /*
- Grow the input as required
- */
- internal_grow(x, digs) or_return
- x.used = digs
- for ix := 0; ix < n.used; ix += 1 {
- /*
- `mu = ai * rho mod b`
- The value of rho must be precalculated via `int_montgomery_setup()`,
- such that it equals -1/n0 mod b this allows the following inner loop
- to reduce the input one digit at a time.
- */
- mu := DIGIT((_WORD(x.digit[ix]) * _WORD(rho)) & _WORD(_MASK))
- /*
- a = a + mu * m * b**i
- Multiply and add in place.
- */
- u := DIGIT(0)
- iy := int(0)
- for ; iy < n.used; iy += 1 {
- /*
- Compute product and sum.
- */
- r := (_WORD(mu) * _WORD(n.digit[iy]) + _WORD(u) + _WORD(x.digit[ix + iy]))
- /*
- Get carry.
- */
- u = DIGIT(r >> _DIGIT_BITS)
- /*
- Fix digit.
- */
- x.digit[ix + iy] = DIGIT(r & _WORD(_MASK))
- }
- /*
- At this point the ix'th digit of x should be zero.
- Propagate carries upwards as required.
- */
- for u != 0 {
- x.digit[ix + iy] += u
- u = x.digit[ix + iy] >> _DIGIT_BITS
- x.digit[ix + iy] &= _MASK
- iy += 1
- }
- }
- /*
- At this point the n.used'th least significant digits of x are all zero,
- which means we can shift x to the right by n.used digits and the
- residue is unchanged.
- x = x/b**n.used.
- */
- internal_clamp(x)
- _private_int_shr_leg(x, n.used)
- /*
- if x >= n then x = x - n
- */
- if internal_gte_abs(x, n) {
- return internal_sub(x, x, n)
- }
- return nil
- }
- /*
- Shifts with subtractions when the result is greater than b.
- The method is slightly modified to shift B unconditionally upto just under
- the leading bit of b. This saves alot of multiple precision shifting.
- Assumes `a` and `b` not to be `nil`.
- */
- _private_int_montgomery_calc_normalization :: proc(a, b: ^Int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- /*
- How many bits of last digit does b use.
- */
- internal_clear_if_uninitialized(a, b) or_return
- bits := internal_count_bits(b) % _DIGIT_BITS
- if b.used > 1 {
- power := ((b.used - 1) * _DIGIT_BITS) + bits - 1
- internal_int_power_of_two(a, power) or_return
- } else {
- internal_one(a) or_return
- bits = 1
- }
- /*
- Now compute C = A * B mod b.
- */
- for x := bits - 1; x < _DIGIT_BITS; x += 1 {
- internal_int_shl1(a, a) or_return
- if internal_gte_abs(a, b) {
- internal_sub(a, a, b) or_return
- }
- }
- return nil
- }
- /*
- Sets up the Montgomery reduction stuff.
- */
- _private_int_montgomery_setup :: proc(n: ^Int, allocator := context.allocator) -> (rho: DIGIT, err: Error) {
- /*
- Fast inversion mod 2**k
- Based on the fact that:
- XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
- => 2*X*A - X*X*A*A = 1
- => 2*(1) - (1) = 1
- */
- internal_clear_if_uninitialized(n, allocator) or_return
- b := n.digit[0]
- if b & 1 == 0 { return 0, .Invalid_Argument }
- x := (((b + 2) & 4) << 1) + b /* here x*a==1 mod 2**4 */
- x *= 2 - (b * x) /* here x*a==1 mod 2**8 */
- x *= 2 - (b * x) /* here x*a==1 mod 2**16 */
- when _DIGIT_TYPE_BITS == 64 {
- x *= 2 - (b * x) /* here x*a==1 mod 2**32 */
- x *= 2 - (b * x) /* here x*a==1 mod 2**64 */
- }
- /*
- rho = -1/m mod b
- */
- rho = DIGIT(((_WORD(1) << _WORD(_DIGIT_BITS)) - _WORD(x)) & _WORD(_MASK))
- return rho, nil
- }
- /*
- Reduces `x` mod `m`, assumes 0 < x < m**2, mu is precomputed via reduce_setup.
- From HAC pp.604 Algorithm 14.42
- Assumes `x`, `m` and `mu` all not to be `nil` and have been initialized.
- */
- _private_int_reduce :: proc(x, m, mu: ^Int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- q := &Int{}
- defer internal_destroy(q)
- um := m.used
- /*
- q = x
- */
- internal_copy(q, x) or_return
- /*
- q1 = x / b**(k-1)
- */
- _private_int_shr_leg(q, um - 1)
- /*
- According to HAC this optimization is ok.
- */
- if DIGIT(um) > DIGIT(1) << (_DIGIT_BITS - 1) {
- internal_mul(q, q, mu) or_return
- } else {
- _private_int_mul_high(q, q, mu, um) or_return
- }
- /*
- q3 = q2 / b**(k+1)
- */
- _private_int_shr_leg(q, um + 1)
- /*
- x = x mod b**(k+1), quick (no division)
- */
- internal_int_mod_bits(x, x, _DIGIT_BITS * (um + 1)) or_return
- /*
- q = q * m mod b**(k+1), quick (no division)
- */
- _private_int_mul(q, q, m, um + 1) or_return
- /*
- x = x - q
- */
- internal_sub(x, x, q) or_return
- /*
- If x < 0, add b**(k+1) to it.
- */
- if internal_is_negative(x) {
- internal_set(q, 1) or_return
- _private_int_shl_leg(q, um + 1) or_return
- internal_add(x, x, q) or_return
- }
- /*
- Back off if it's too big.
- */
- for internal_gte(x, m) {
- internal_sub(x, x, m) or_return
- }
- return nil
- }
- /*
- Reduces `a` modulo `n`, where `n` is of the form 2**p - d.
- */
- _private_int_reduce_2k :: proc(a, n: ^Int, d: DIGIT, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- q := &Int{}
- defer internal_destroy(q)
- internal_zero(q) or_return
- p := internal_count_bits(n)
- for {
- /*
- q = a/2**p, a = a mod 2**p
- */
- internal_shrmod(q, a, a, p) or_return
- if d != 1 {
- /*
- q = q * d
- */
- internal_mul(q, q, d) or_return
- }
- /*
- a = a + q
- */
- internal_add(a, a, q) or_return
- if internal_lt_abs(a, n) { break }
- internal_sub(a, a, n) or_return
- }
- return nil
- }
- /*
- Reduces `a` modulo `n` where `n` is of the form 2**p - d
- This differs from reduce_2k since "d" can be larger than a single digit.
- */
- _private_int_reduce_2k_l :: proc(a, n, d: ^Int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- q := &Int{}
- defer internal_destroy(q)
- internal_zero(q) or_return
- p := internal_count_bits(n)
- for {
- /*
- q = a/2**p, a = a mod 2**p
- */
- internal_shrmod(q, a, a, p) or_return
- /*
- q = q * d
- */
- internal_mul(q, q, d) or_return
- /*
- a = a + q
- */
- internal_add(a, a, q) or_return
- if internal_lt_abs(a, n) { break }
- internal_sub(a, a, n) or_return
- }
- return nil
- }
- /*
- Determines if `internal_int_reduce_2k` can be used.
- Asssumes `a` not to be `nil` and to have been initialized.
- */
- _private_int_reduce_is_2k :: proc(a: ^Int) -> (reducible: bool, err: Error) {
- assert_if_nil(a)
- if internal_is_zero(a) {
- return false, nil
- } else if a.used == 1 {
- return true, nil
- } else if a.used > 1 {
- iy := internal_count_bits(a)
- iw := 1
- iz := DIGIT(1)
- /*
- Test every bit from the second digit up, must be 1.
- */
- for ix := _DIGIT_BITS; ix < iy; ix += 1 {
- if a.digit[iw] & iz == 0 {
- return false, nil
- }
- iz <<= 1
- if iz > _DIGIT_MAX {
- iw += 1
- iz = 1
- }
- }
- return true, nil
- } else {
- return true, nil
- }
- }
- /*
- Determines if `internal_int_reduce_2k_l` can be used.
- Asssumes `a` not to be `nil` and to have been initialized.
- */
- _private_int_reduce_is_2k_l :: proc(a: ^Int) -> (reducible: bool, err: Error) {
- assert_if_nil(a)
- if internal_int_is_zero(a) {
- return false, nil
- } else if a.used == 1 {
- return true, nil
- } else if a.used > 1 {
- /*
- If more than half of the digits are -1 we're sold.
- */
- ix := 0
- iy := 0
- for ; ix < a.used; ix += 1 {
- if a.digit[ix] == _DIGIT_MAX {
- iy += 1
- }
- }
- return iy >= (a.used / 2), nil
- } else {
- return false, nil
- }
- }
- /*
- Determines the setup value.
- Assumes `a` is not `nil`.
- */
- _private_int_reduce_2k_setup :: proc(a: ^Int, allocator := context.allocator) -> (d: DIGIT, err: Error) {
- context.allocator = allocator
- tmp := &Int{}
- defer internal_destroy(tmp)
- internal_zero(tmp) or_return
- internal_int_power_of_two(tmp, internal_count_bits(a)) or_return
- internal_sub(tmp, tmp, a) or_return
- return tmp.digit[0], nil
- }
- /*
- Determines the setup value.
- Assumes `mu` and `P` are not `nil`.
- d := (1 << a.bits) - a;
- */
- _private_int_reduce_2k_setup_l :: proc(mu, P: ^Int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- tmp := &Int{}
- defer internal_destroy(tmp)
- internal_zero(tmp) or_return
- internal_int_power_of_two(tmp, internal_count_bits(P)) or_return
- internal_sub(mu, tmp, P) or_return
- return nil
- }
- /*
- Pre-calculate the value required for Barrett reduction.
- For a given modulus "P" it calulates the value required in "mu"
- Assumes `mu` and `P` are not `nil`.
- */
- _private_int_reduce_setup :: proc(mu, P: ^Int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- internal_int_power_of_two(mu, P.used * 2 * _DIGIT_BITS) or_return
- return internal_int_div(mu, mu, P)
- }
- /*
- Determines the setup value.
- Assumes `a` to not be `nil` and to have been initialized.
- */
- _private_int_dr_setup :: proc(a: ^Int) -> (d: DIGIT) {
- /*
- The casts are required if _DIGIT_BITS is one less than
- the number of bits in a DIGIT [e.g. _DIGIT_BITS==31].
- */
- return DIGIT((1 << _DIGIT_BITS) - a.digit[0])
- }
- /*
- Determines if a number is a valid DR modulus.
- Assumes `a` to not be `nil` and to have been initialized.
- */
- _private_dr_is_modulus :: proc(a: ^Int) -> (res: bool) {
- /*
- Must be at least two digits.
- */
- if a.used < 2 { return false }
- /*
- Must be of the form b**k - a [a <= b] so all but the first digit must be equal to -1 (mod b).
- */
- for ix := 1; ix < a.used; ix += 1 {
- if a.digit[ix] != _MASK {
- return false
- }
- }
- return true
- }
- /*
- Reduce "x" in place modulo "n" using the Diminished Radix algorithm.
- Based on algorithm from the paper
- "Generating Efficient Primes for Discrete Log Cryptosystems"
- Chae Hoon Lim, Pil Joong Lee,
- POSTECH Information Research Laboratories
- The modulus must be of a special format [see manual].
- Has been modified to use algorithm 7.10 from the LTM book instead
- Input x must be in the range 0 <= x <= (n-1)**2
- Assumes `x` and `n` to not be `nil` and to have been initialized.
- */
- _private_int_dr_reduce :: proc(x, n: ^Int, k: DIGIT, allocator := context.allocator) -> (err: Error) {
- /*
- m = digits in modulus.
- */
- m := n.used
- /*
- Ensure that "x" has at least 2m digits.
- */
- internal_grow(x, m + m) or_return
- /*
- Top of loop, this is where the code resumes if another reduction pass is required.
- */
- for {
- i: int
- mu := DIGIT(0)
- /*
- Compute (x mod B**m) + k * [x/B**m] inline and inplace.
- */
- for i = 0; i < m; i += 1 {
- r := _WORD(x.digit[i + m]) * _WORD(k) + _WORD(x.digit[i] + mu)
- x.digit[i] = DIGIT(r & _WORD(_MASK))
- mu = DIGIT(r >> _WORD(_DIGIT_BITS))
- }
- /*
- Set final carry.
- */
- x.digit[i] = mu
- /*
- Zero words above m.
- */
- mem.zero_slice(x.digit[m + 1:][:x.used - m])
- /*
- Clamp, sub and return.
- */
- internal_clamp(x) or_return
- /*
- If x >= n then subtract and reduce again.
- Each successive "recursion" makes the input smaller and smaller.
- */
- if internal_lt_abs(x, n) { break }
- internal_sub(x, x, n) or_return
- }
- return nil
- }
- /*
- Computes res == G**X mod P.
- Assumes `res`, `G`, `X` and `P` to not be `nil` and for `G`, `X` and `P` to have been initialized.
- */
- _private_int_exponent_mod :: proc(res, G, X, P: ^Int, redmode: int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- M := [_TAB_SIZE]Int{}
- winsize: uint
- /*
- Use a pointer to the reduction algorithm.
- This allows us to use one of many reduction algorithms without modding the guts of the code with if statements everywhere.
- */
- redux: #type proc(x, m, mu: ^Int, allocator := context.allocator) -> (err: Error)
- defer {
- internal_destroy(&M[1])
- for x := 1 << (winsize - 1); x < (1 << winsize); x += 1 {
- internal_destroy(&M[x])
- }
- }
- /*
- Find window size.
- */
- x := internal_count_bits(X)
- switch {
- case x <= 7:
- winsize = 2
- case x <= 36:
- winsize = 3
- case x <= 140:
- winsize = 4
- case x <= 450:
- winsize = 5
- case x <= 1303:
- winsize = 6
- case x <= 3529:
- winsize = 7
- case:
- winsize = 8
- }
- winsize = min(_MAX_WIN_SIZE, winsize) if _MAX_WIN_SIZE > 0 else winsize
- /*
- Init M array.
- Init first cell.
- */
- internal_zero(&M[1]) or_return
- /*
- Now init the second half of the array.
- */
- for x = 1 << (winsize - 1); x < (1 << winsize); x += 1 {
- internal_zero(&M[x]) or_return
- }
- /*
- Create `mu`, used for Barrett reduction.
- */
- mu := &Int{}
- defer internal_destroy(mu)
- internal_zero(mu) or_return
- if redmode == 0 {
- _private_int_reduce_setup(mu, P) or_return
- redux = _private_int_reduce
- } else {
- _private_int_reduce_2k_setup_l(mu, P) or_return
- redux = _private_int_reduce_2k_l
- }
- /*
- Create M table.
- The M table contains powers of the base, e.g. M[x] = G**x mod P.
- The first half of the table is not computed, though, except for M[0] and M[1].
- */
- internal_int_mod(&M[1], G, P) or_return
- /*
- Compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times.
- TODO: This can probably be replaced by computing the power and using `pow` to raise to it
- instead of repeated squaring.
- */
- slot := 1 << (winsize - 1)
- internal_copy(&M[slot], &M[1]) or_return
- for x = 0; x < int(winsize - 1); x += 1 {
- /*
- Square it.
- */
- internal_sqr(&M[slot], &M[slot]) or_return
- /*
- Reduce modulo P
- */
- redux(&M[slot], P, mu) or_return
- }
- /*
- Create upper table, that is M[x] = M[x-1] * M[1] (mod P)
- for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
- */
- for x = slot + 1; x < (1 << winsize); x += 1 {
- internal_mul(&M[x], &M[x - 1], &M[1]) or_return
- redux(&M[x], P, mu) or_return
- }
- /*
- Setup result.
- */
- internal_one(res) or_return
- /*
- Set initial mode and bit cnt.
- */
- mode := 0
- bitcnt := 1
- buf := DIGIT(0)
- digidx := X.used - 1
- bitcpy := uint(0)
- bitbuf := DIGIT(0)
- for {
- /*
- Grab next digit as required.
- */
- bitcnt -= 1
- if bitcnt == 0 {
- /*
- If digidx == -1 we are out of digits.
- */
- if digidx == -1 { break }
- /*
- Read next digit and reset the bitcnt.
- */
- buf = X.digit[digidx]
- digidx -= 1
- bitcnt = _DIGIT_BITS
- }
- /*
- Grab the next msb from the exponent.
- */
- y := buf >> (_DIGIT_BITS - 1) & 1
- buf <<= 1
- /*
- If the bit is zero and mode == 0 then we ignore it.
- These represent the leading zero bits before the first 1 bit
- in the exponent. Technically this opt is not required but it
- does lower the # of trivial squaring/reductions used.
- */
- if mode == 0 && y == 0 {
- continue
- }
- /*
- If the bit is zero and mode == 1 then we square.
- */
- if mode == 1 && y == 0 {
- internal_sqr(res, res) or_return
- redux(res, P, mu) or_return
- continue
- }
- /*
- Else we add it to the window.
- */
- bitcpy += 1
- bitbuf |= (y << (winsize - bitcpy))
- mode = 2
- if (bitcpy == winsize) {
- /*
- Window is filled so square as required and multiply.
- Square first.
- */
- for x = 0; x < int(winsize); x += 1 {
- internal_sqr(res, res) or_return
- redux(res, P, mu) or_return
- }
- /*
- Then multiply.
- */
- internal_mul(res, res, &M[bitbuf]) or_return
- redux(res, P, mu) or_return
- /*
- Empty window and reset.
- */
- bitcpy = 0
- bitbuf = 0
- mode = 1
- }
- }
- /*
- If bits remain then square/multiply.
- */
- if mode == 2 && bitcpy > 0 {
- /*
- Square then multiply if the bit is set.
- */
- for x = 0; x < int(bitcpy); x += 1 {
- internal_sqr(res, res) or_return
- redux(res, P, mu) or_return
- bitbuf <<= 1
- if ((bitbuf & (1 << winsize)) != 0) {
- /*
- Then multiply.
- */
- internal_mul(res, res, &M[1]) or_return
- redux(res, P, mu) or_return
- }
- }
- }
- return err
- }
- /*
- Computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
- Uses a left-to-right `k`-ary sliding window to compute the modular exponentiation.
- The value of `k` changes based on the size of the exponent.
- Uses Montgomery or Diminished Radix reduction [whichever appropriate]
- Assumes `res`, `G`, `X` and `P` to not be `nil` and for `G`, `X` and `P` to have been initialized.
- */
- _private_int_exponent_mod_fast :: proc(res, G, X, P: ^Int, redmode: int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- M := [_TAB_SIZE]Int{}
- winsize: uint
- /*
- Use a pointer to the reduction algorithm.
- This allows us to use one of many reduction algorithms without modding the guts of the code with if statements everywhere.
- */
- redux: #type proc(x, n: ^Int, rho: DIGIT, allocator := context.allocator) -> (err: Error)
- defer {
- internal_destroy(&M[1])
- for x := 1 << (winsize - 1); x < (1 << winsize); x += 1 {
- internal_destroy(&M[x])
- }
- }
- /*
- Find window size.
- */
- x := internal_count_bits(X)
- switch {
- case x <= 7:
- winsize = 2
- case x <= 36:
- winsize = 3
- case x <= 140:
- winsize = 4
- case x <= 450:
- winsize = 5
- case x <= 1303:
- winsize = 6
- case x <= 3529:
- winsize = 7
- case:
- winsize = 8
- }
- winsize = min(_MAX_WIN_SIZE, winsize) if _MAX_WIN_SIZE > 0 else winsize
- /*
- Init M array
- Init first cell.
- */
- cap := internal_int_allocated_cap(P)
- internal_grow(&M[1], cap) or_return
- /*
- Now init the second half of the array.
- */
- for x = 1 << (winsize - 1); x < (1 << winsize); x += 1 {
- internal_grow(&M[x], cap) or_return
- }
- /*
- Determine and setup reduction code.
- */
- rho: DIGIT
- if redmode == 0 {
- /*
- Now setup Montgomery.
- */
- rho = _private_int_montgomery_setup(P) or_return
- /*
- Automatically pick the comba one if available (saves quite a few calls/ifs).
- */
- if ((P.used * 2) + 1) < _WARRAY && P.used < _MAX_COMBA {
- redux = _private_montgomery_reduce_comba
- } else {
- /*
- Use slower baseline Montgomery method.
- */
- redux = _private_int_montgomery_reduce
- }
- } else if redmode == 1 {
- /*
- Setup DR reduction for moduli of the form B**k - b.
- */
- rho = _private_int_dr_setup(P)
- redux = _private_int_dr_reduce
- } else {
- /*
- Setup DR reduction for moduli of the form 2**k - b.
- */
- rho = _private_int_reduce_2k_setup(P) or_return
- redux = _private_int_reduce_2k
- }
- /*
- Setup result.
- */
- internal_grow(res, cap) or_return
- /*
- Create M table
- The first half of the table is not computed, though, except for M[0] and M[1]
- */
- if redmode == 0 {
- /*
- Now we need R mod m.
- */
- _private_int_montgomery_calc_normalization(res, P) or_return
- /*
- Now set M[1] to G * R mod m.
- */
- internal_mulmod(&M[1], G, res, P) or_return
- } else {
- internal_one(res) or_return
- internal_mod(&M[1], G, P) or_return
- }
- /*
- Compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times.
- */
- slot := 1 << (winsize - 1)
- internal_copy(&M[slot], &M[1]) or_return
- for x = 0; x < int(winsize - 1); x += 1 {
- internal_sqr(&M[slot], &M[slot]) or_return
- redux(&M[slot], P, rho) or_return
- }
- /*
- Create upper table.
- */
- for x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x += 1 {
- internal_mul(&M[x], &M[x - 1], &M[1]) or_return
- redux(&M[x], P, rho) or_return
- }
- /*
- Set initial mode and bit cnt.
- */
- mode := 0
- bitcnt := 1
- buf := DIGIT(0)
- digidx := X.used - 1
- bitcpy := 0
- bitbuf := DIGIT(0)
- for {
- /*
- Grab next digit as required.
- */
- bitcnt -= 1
- if bitcnt == 0 {
- /*
- If digidx == -1 we are out of digits so break.
- */
- if digidx == -1 { break }
- /*
- Read next digit and reset the bitcnt.
- */
- buf = X.digit[digidx]
- digidx -= 1
- bitcnt = _DIGIT_BITS
- }
- /*
- Grab the next msb from the exponent.
- */
- y := (buf >> (_DIGIT_BITS - 1)) & 1
- buf <<= 1
- /*
- If the bit is zero and mode == 0 then we ignore it.
- These represent the leading zero bits before the first 1 bit in the exponent.
- Technically this opt is not required but it does lower the # of trivial squaring/reductions used.
- */
- if mode == 0 && y == 0 { continue }
- /*
- If the bit is zero and mode == 1 then we square.
- */
- if mode == 1 && y == 0 {
- internal_sqr(res, res) or_return
- redux(res, P, rho) or_return
- continue
- }
- /*
- Else we add it to the window.
- */
- bitcpy += 1
- bitbuf |= (y << (winsize - uint(bitcpy)))
- mode = 2
- if bitcpy == int(winsize) {
- /*
- Window is filled so square as required and multiply
- Square first.
- */
- for x = 0; x < int(winsize); x += 1 {
- internal_sqr(res, res) or_return
- redux(res, P, rho) or_return
- }
- /*
- Then multiply.
- */
- internal_mul(res, res, &M[bitbuf]) or_return
- redux(res, P, rho) or_return
- /*
- Empty window and reset.
- */
- bitcpy = 0
- bitbuf = 0
- mode = 1
- }
- }
- /*
- If bits remain then square/multiply.
- */
- if mode == 2 && bitcpy > 0 {
- /*
- Square then multiply if the bit is set.
- */
- for x = 0; x < bitcpy; x += 1 {
- internal_sqr(res, res) or_return
- redux(res, P, rho) or_return
- /*
- Get next bit of the window.
- */
- bitbuf <<= 1
- if bitbuf & (1 << winsize) != 0 {
- /*
- Then multiply.
- */
- internal_mul(res, res, &M[1]) or_return
- redux(res, P, rho) or_return
- }
- }
- }
- if redmode == 0 {
- /*
- Fixup result if Montgomery reduction is used.
- Recall that any value in a Montgomery system is actually multiplied by R mod n.
- So we have to reduce one more time to cancel out the factor of R.
- */
- redux(res, P, rho) or_return
- }
- return nil
- }
- /*
- hac 14.61, pp608
- */
- _private_inverse_modulo :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- x, y, u, v, A, B, C, D := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}
- defer internal_destroy(x, y, u, v, A, B, C, D)
- /*
- `b` cannot be negative.
- */
- if b.sign == .Negative || internal_is_zero(b) {
- return .Invalid_Argument
- }
- /*
- init temps.
- */
- internal_init_multi(x, y, u, v, A, B, C, D) or_return
- /*
- `x` = `a` % `b`, `y` = `b`
- */
- internal_mod(x, a, b) or_return
- internal_copy(y, b) or_return
- /*
- 2. [modified] if x,y are both even then return an error!
- */
- if internal_is_even(x) && internal_is_even(y) {
- return .Invalid_Argument
- }
- /*
- 3. u=x, v=y, A=1, B=0, C=0, D=1
- */
- internal_copy(u, x) or_return
- internal_copy(v, y) or_return
- internal_one(A) or_return
- internal_one(D) or_return
- for {
- /*
- 4. while `u` is even do:
- */
- for internal_is_even(u) {
- /*
- 4.1 `u` = `u` / 2
- */
- internal_int_shr1(u, u) or_return
- /*
- 4.2 if `A` or `B` is odd then:
- */
- if internal_is_odd(A) || internal_is_odd(B) {
- /*
- `A` = (`A`+`y`) / 2, `B` = (`B`-`x`) / 2
- */
- internal_add(A, A, y) or_return
- internal_add(B, B, x) or_return
- }
- /*
- `A` = `A` / 2, `B` = `B` / 2
- */
- internal_int_shr1(A, A) or_return
- internal_int_shr1(B, B) or_return
- }
- /*
- 5. while `v` is even do:
- */
- for internal_is_even(v) {
- /*
- 5.1 `v` = `v` / 2
- */
- internal_int_shr1(v, v) or_return
- /*
- 5.2 if `C` or `D` is odd then:
- */
- if internal_is_odd(C) || internal_is_odd(D) {
- /*
- `C` = (`C`+`y`) / 2, `D` = (`D`-`x`) / 2
- */
- internal_add(C, C, y) or_return
- internal_add(D, D, x) or_return
- }
- /*
- `C` = `C` / 2, `D` = `D` / 2
- */
- internal_int_shr1(C, C) or_return
- internal_int_shr1(D, D) or_return
- }
- /*
- 6. if `u` >= `v` then:
- */
- if internal_cmp(u, v) != -1 {
- /*
- `u` = `u` - `v`, `A` = `A` - `C`, `B` = `B` - `D`
- */
- internal_sub(u, u, v) or_return
- internal_sub(A, A, C) or_return
- internal_sub(B, B, D) or_return
- } else {
- /* v - v - u, C = C - A, D = D - B */
- internal_sub(v, v, u) or_return
- internal_sub(C, C, A) or_return
- internal_sub(D, D, B) or_return
- }
- /*
- If not zero goto step 4
- */
- if internal_is_zero(u) {
- break
- }
- }
- /*
- Now `a` = `C`, `b` = `D`, `gcd` == `g`*`v`
- */
- /*
- If `v` != `1` then there is no inverse.
- */
- if !internal_eq(v, 1) {
- return .Invalid_Argument
- }
- /*
- If its too low.
- */
- if internal_is_negative(C) {
- internal_add(C, C, b) or_return
- }
- /*
- Too big.
- */
- if internal_gte(C, 0) {
- internal_sub(C, C, b) or_return
- }
- /*
- `C` is now the inverse.
- */
- swap(dest, C)
- return
- }
- /*
- Computes the modular inverse via binary extended Euclidean algorithm, that is `dest` = 1 / `a` mod `b`.
- Based on slow invmod except this is optimized for the case where `b` is odd,
- as per HAC Note 14.64 on pp. 610.
- */
- _private_inverse_modulo_odd :: proc(dest, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- x, y, u, v, B, D := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}
- defer internal_destroy(x, y, u, v, B, D)
- sign: Sign
- /*
- 2. [modified] `b` must be odd.
- */
- if internal_is_even(b) { return .Invalid_Argument }
- /*
- Init all our temps.
- */
- internal_init_multi(x, y, u, v, B, D) or_return
- /*
- `x` == modulus, `y` == value to invert.
- */
- internal_copy(x, b) or_return
- /*
- We need `y` = `|a|`.
- */
- internal_mod(y, a, b) or_return
- /*
- If one of `x`, `y` is zero return an error!
- */
- if internal_is_zero(x) || internal_is_zero(y) { return .Invalid_Argument }
- /*
- 3. `u` = `x`, `v` = `y`, `A` = 1, `B` = 0, `C` = 0, `D` = 1
- */
- internal_copy(u, x) or_return
- internal_copy(v, y) or_return
- internal_one(D) or_return
- for {
- /*
- 4. while `u` is even do.
- */
- for internal_is_even(u) {
- /*
- 4.1 `u` = `u` / 2
- */
- internal_int_shr1(u, u) or_return
- /*
- 4.2 if `B` is odd then:
- */
- if internal_is_odd(B) {
- /*
- `B` = (`B` - `x`) / 2
- */
- internal_sub(B, B, x) or_return
- }
- /*
- `B` = `B` / 2
- */
- internal_int_shr1(B, B) or_return
- }
- /*
- 5. while `v` is even do:
- */
- for internal_is_even(v) {
- /*
- 5.1 `v` = `v` / 2
- */
- internal_int_shr1(v, v) or_return
- /*
- 5.2 if `D` is odd then:
- */
- if internal_is_odd(D) {
- /*
- `D` = (`D` - `x`) / 2
- */
- internal_sub(D, D, x) or_return
- }
- /*
- `D` = `D` / 2
- */
- internal_int_shr1(D, D) or_return
- }
- /*
- 6. if `u` >= `v` then:
- */
- if internal_cmp(u, v) != -1 {
- /*
- `u` = `u` - `v`, `B` = `B` - `D`
- */
- internal_sub(u, u, v) or_return
- internal_sub(B, B, D) or_return
- } else {
- /*
- `v` - `v` - `u`, `D` = `D` - `B`
- */
- internal_sub(v, v, u) or_return
- internal_sub(D, D, B) or_return
- }
- /*
- If not zero goto step 4.
- */
- if internal_is_zero(u) { break }
- }
- /*
- Now `a` = C, `b` = D, gcd == g*v
- */
- /*
- if `v` != 1 then there is no inverse
- */
- if internal_cmp(v, 1) != 0 {
- return .Invalid_Argument
- }
- /*
- `b` is now the inverse.
- */
- sign = a.sign
- for internal_int_is_negative(D) {
- internal_add(D, D, b) or_return
- }
- /*
- Too big.
- */
- for internal_gte_abs(D, b) {
- internal_sub(D, D, b) or_return
- }
- swap(dest, D)
- dest.sign = sign
- return nil
- }
- /*
- Returns the log2 of an `Int`.
- Assumes `a` not to be `nil` and to have been initialized.
- Also assumes `base` is a power of two.
- */
- _private_log_power_of_two :: proc(a: ^Int, base: DIGIT) -> (log: int, err: Error) {
- base := base
- y: int
- for y = 0; base & 1 == 0; {
- y += 1
- base >>= 1
- }
- log = internal_count_bits(a)
- return (log - 1) / y, err
- }
- /*
- Copies DIGITs from `src` to `dest`.
- Assumes `src` and `dest` to not be `nil` and have been initialized.
- */
- _private_copy_digits :: proc(dest, src: ^Int, digits: int, offset := int(0)) -> (err: Error) {
- digits := digits
- /*
- If dest == src, do nothing
- */
- if dest == src {
- return nil
- }
- digits = min(digits, len(src.digit), len(dest.digit))
- mem.copy_non_overlapping(&dest.digit[0], &src.digit[offset], size_of(DIGIT) * digits)
- return nil
- }
- /*
- Shift left by `digits` * _DIGIT_BITS bits.
- */
- _private_int_shl_leg :: proc(quotient: ^Int, digits: int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- if digits <= 0 { return nil }
- /*
- No need to shift a zero.
- */
- if #force_inline internal_is_zero(quotient) {
- return nil
- }
- /*
- Resize `quotient` to accomodate extra digits.
- */
- #force_inline internal_grow(quotient, quotient.used + digits) or_return
- /*
- Increment the used by the shift amount then copy upwards.
- */
- /*
- Much like `_private_int_shr_leg`, this is implemented using a sliding window,
- except the window goes the other way around.
- */
- #no_bounds_check for x := quotient.used; x > 0; x -= 1 {
- quotient.digit[x+digits-1] = quotient.digit[x-1]
- }
- quotient.used += digits
- mem.zero_slice(quotient.digit[:digits])
- return nil
- }
- /*
- Shift right by `digits` * _DIGIT_BITS bits.
- */
- _private_int_shr_leg :: proc(quotient: ^Int, digits: int, allocator := context.allocator) -> (err: Error) {
- context.allocator = allocator
- if digits <= 0 { return nil }
- /*
- If digits > used simply zero and return.
- */
- if digits > quotient.used { return internal_zero(quotient) }
- /*
- Much like `int_shl_digit`, this is implemented using a sliding window,
- except the window goes the other way around.
- b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
- /\ | ---->
- \-------------------/ ---->
- */
- #no_bounds_check for x := 0; x < (quotient.used - digits); x += 1 {
- quotient.digit[x] = quotient.digit[x + digits]
- }
- quotient.used -= digits
- internal_zero_unused(quotient)
- return internal_clamp(quotient)
- }
- /*
- ======================== End of private procedures =======================
- =============================== Private tables ===============================
- Tables used by `internal_*` and `_*`.
- */
- _private_int_rem_128 := [?]DIGIT{
- 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
- 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
- 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
- 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
- 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
- 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
- 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
- 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
- }
- #assert(128 * size_of(DIGIT) == size_of(_private_int_rem_128))
- _private_int_rem_105 := [?]DIGIT{
- 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
- 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
- 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
- 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
- 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
- 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
- 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1,
- }
- #assert(105 * size_of(DIGIT) == size_of(_private_int_rem_105))
- _PRIME_TAB_SIZE :: 256
- _private_prime_table := [_PRIME_TAB_SIZE]DIGIT{
- 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
- 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
- 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
- 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, 0x0083,
- 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
- 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
- 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
- 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
- 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
- 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
- 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
- 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
- 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
- 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
- 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
- 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
- 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
- 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
- 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
- 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
- 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
- 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
- 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
- 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
- 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
- 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
- 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
- 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
- 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
- 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
- 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
- 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653,
- }
- #assert(_PRIME_TAB_SIZE * size_of(DIGIT) == size_of(_private_prime_table))
- when MATH_BIG_FORCE_64_BIT || (!MATH_BIG_FORCE_32_BIT && size_of(rawptr) == 8) {
- _factorial_table := [35]_WORD{
- /* f(00): */ 1,
- /* f(01): */ 1,
- /* f(02): */ 2,
- /* f(03): */ 6,
- /* f(04): */ 24,
- /* f(05): */ 120,
- /* f(06): */ 720,
- /* f(07): */ 5_040,
- /* f(08): */ 40_320,
- /* f(09): */ 362_880,
- /* f(10): */ 3_628_800,
- /* f(11): */ 39_916_800,
- /* f(12): */ 479_001_600,
- /* f(13): */ 6_227_020_800,
- /* f(14): */ 87_178_291_200,
- /* f(15): */ 1_307_674_368_000,
- /* f(16): */ 20_922_789_888_000,
- /* f(17): */ 355_687_428_096_000,
- /* f(18): */ 6_402_373_705_728_000,
- /* f(19): */ 121_645_100_408_832_000,
- /* f(20): */ 2_432_902_008_176_640_000,
- /* f(21): */ 51_090_942_171_709_440_000,
- /* f(22): */ 1_124_000_727_777_607_680_000,
- /* f(23): */ 25_852_016_738_884_976_640_000,
- /* f(24): */ 620_448_401_733_239_439_360_000,
- /* f(25): */ 15_511_210_043_330_985_984_000_000,
- /* f(26): */ 403_291_461_126_605_635_584_000_000,
- /* f(27): */ 10_888_869_450_418_352_160_768_000_000,
- /* f(28): */ 304_888_344_611_713_860_501_504_000_000,
- /* f(29): */ 8_841_761_993_739_701_954_543_616_000_000,
- /* f(30): */ 265_252_859_812_191_058_636_308_480_000_000,
- /* f(31): */ 8_222_838_654_177_922_817_725_562_880_000_000,
- /* f(32): */ 263_130_836_933_693_530_167_218_012_160_000_000,
- /* f(33): */ 8_683_317_618_811_886_495_518_194_401_280_000_000,
- /* f(34): */ 295_232_799_039_604_140_847_618_609_643_520_000_000,
- }
- } else {
- _factorial_table := [21]_WORD{
- /* f(00): */ 1,
- /* f(01): */ 1,
- /* f(02): */ 2,
- /* f(03): */ 6,
- /* f(04): */ 24,
- /* f(05): */ 120,
- /* f(06): */ 720,
- /* f(07): */ 5_040,
- /* f(08): */ 40_320,
- /* f(09): */ 362_880,
- /* f(10): */ 3_628_800,
- /* f(11): */ 39_916_800,
- /* f(12): */ 479_001_600,
- /* f(13): */ 6_227_020_800,
- /* f(14): */ 87_178_291_200,
- /* f(15): */ 1_307_674_368_000,
- /* f(16): */ 20_922_789_888_000,
- /* f(17): */ 355_687_428_096_000,
- /* f(18): */ 6_402_373_705_728_000,
- /* f(19): */ 121_645_100_408_832_000,
- /* f(20): */ 2_432_902_008_176_640_000,
- }
- }
- /*
- ========================= End of private tables ========================
- */
|