general.odin 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. package linalg
  2. import "core:math"
  3. import "core:builtin"
  4. import "core:intrinsics"
  5. // Generic
  6. TAU :: 6.28318530717958647692528676655900576
  7. PI :: 3.14159265358979323846264338327950288
  8. E :: 2.71828182845904523536
  9. τ :: TAU
  10. π :: PI
  11. e :: E
  12. SQRT_TWO :: 1.41421356237309504880168872420969808
  13. SQRT_THREE :: 1.73205080756887729352744634150587236
  14. SQRT_FIVE :: 2.23606797749978969640917366873127623
  15. LN2 :: 0.693147180559945309417232121458176568
  16. LN10 :: 2.30258509299404568401799145468436421
  17. MAX_F64_PRECISION :: 16 // Maximum number of meaningful digits after the decimal point for 'f64'
  18. MAX_F32_PRECISION :: 8 // Maximum number of meaningful digits after the decimal point for 'f32'
  19. RAD_PER_DEG :: TAU/360.0
  20. DEG_PER_RAD :: 360.0/TAU
  21. @private IS_NUMERIC :: intrinsics.type_is_numeric
  22. @private IS_QUATERNION :: intrinsics.type_is_quaternion
  23. @private IS_ARRAY :: intrinsics.type_is_array
  24. @private IS_FLOAT :: intrinsics.type_is_float
  25. @private BASE_TYPE :: intrinsics.type_base_type
  26. @private ELEM_TYPE :: intrinsics.type_elem_type
  27. @(require_results)
  28. scalar_dot :: proc "contextless" (a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) {
  29. return a * b
  30. }
  31. @(require_results)
  32. vector_dot :: proc "contextless" (a, b: $T/[$N]$E) -> (c: E) where IS_NUMERIC(E) #no_bounds_check {
  33. for i in 0..<N {
  34. c += a[i] * b[i]
  35. }
  36. return
  37. }
  38. @(require_results)
  39. quaternion64_dot :: proc "contextless" (a, b: $T/quaternion64) -> (c: f16) {
  40. return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z
  41. }
  42. @(require_results)
  43. quaternion128_dot :: proc "contextless" (a, b: $T/quaternion128) -> (c: f32) {
  44. return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z
  45. }
  46. @(require_results)
  47. quaternion256_dot :: proc "contextless" (a, b: $T/quaternion256) -> (c: f64) {
  48. return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z
  49. }
  50. dot :: proc{scalar_dot, vector_dot, quaternion64_dot, quaternion128_dot, quaternion256_dot}
  51. inner_product :: dot
  52. outer_product :: builtin.outer_product
  53. @(require_results)
  54. quaternion_inverse :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) {
  55. return conj(q) * quaternion(1.0/dot(q, q), 0, 0, 0)
  56. }
  57. @(require_results)
  58. scalar_cross :: proc "contextless" (a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) {
  59. return a * b
  60. }
  61. @(require_results)
  62. vector_cross2 :: proc "contextless" (a, b: $T/[2]$E) -> E where IS_NUMERIC(E) {
  63. return a[0]*b[1] - b[0]*a[1]
  64. }
  65. @(require_results)
  66. vector_cross3 :: proc "contextless" (a, b: $T/[3]$E) -> (c: T) where IS_NUMERIC(E) {
  67. c[0] = a[1]*b[2] - b[1]*a[2]
  68. c[1] = a[2]*b[0] - b[2]*a[0]
  69. c[2] = a[0]*b[1] - b[0]*a[1]
  70. return
  71. }
  72. @(require_results)
  73. quaternion_cross :: proc "contextless" (q1, q2: $Q) -> (q3: Q) where IS_QUATERNION(Q) {
  74. q3.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y
  75. q3.y = q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z
  76. q3.z = q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x
  77. q3.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z
  78. return
  79. }
  80. vector_cross :: proc{scalar_cross, vector_cross2, vector_cross3}
  81. cross :: proc{scalar_cross, vector_cross2, vector_cross3, quaternion_cross}
  82. @(require_results)
  83. vector_normalize :: proc "contextless" (v: $T/[$N]$E) -> T where IS_FLOAT(E) {
  84. return v / length(v)
  85. }
  86. @(require_results)
  87. quaternion_normalize :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) {
  88. return q/abs(q)
  89. }
  90. normalize :: proc{vector_normalize, quaternion_normalize}
  91. @(require_results)
  92. vector_normalize0 :: proc "contextless" (v: $T/[$N]$E) -> T where IS_FLOAT(E) {
  93. m := length(v)
  94. return 0 if m == 0 else v/m
  95. }
  96. @(require_results)
  97. quaternion_normalize0 :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) {
  98. m := abs(q)
  99. return 0 if m == 0 else q/m
  100. }
  101. normalize0 :: proc{vector_normalize0, quaternion_normalize0}
  102. @(require_results)
  103. vector_length :: proc "contextless" (v: $T/[$N]$E) -> E where IS_FLOAT(E) {
  104. return math.sqrt(dot(v, v))
  105. }
  106. @(require_results)
  107. vector_length2 :: proc "contextless" (v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
  108. return dot(v, v)
  109. }
  110. @(require_results)
  111. quaternion_length :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) {
  112. return abs(q)
  113. }
  114. @(require_results)
  115. quaternion_length2 :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) {
  116. return dot(q, q)
  117. }
  118. @(require_results)
  119. scalar_triple_product :: proc "contextless" (a, b, c: $T/[$N]$E) -> E where IS_NUMERIC(E) {
  120. // a . (b x c)
  121. // b . (c x a)
  122. // c . (a x b)
  123. return dot(a, cross(b, c))
  124. }
  125. @(require_results)
  126. vector_triple_product :: proc "contextless" (a, b, c: $T/[$N]$E) -> T where IS_NUMERIC(E) {
  127. // a x (b x c)
  128. // (a . c)b - (a . b)c
  129. return cross(a, cross(b, c))
  130. }
  131. length :: proc{vector_length, quaternion_length}
  132. length2 :: proc{vector_length2, quaternion_length2}
  133. @(require_results)
  134. projection :: proc "contextless" (x, normal: $T/[$N]$E) -> T where IS_NUMERIC(E) {
  135. return dot(x, normal) / dot(normal, normal) * normal
  136. }
  137. @(require_results)
  138. identity :: proc "contextless" ($T: typeid/[$N][N]$E) -> (m: T) #no_bounds_check {
  139. for i in 0..<N {
  140. m[i][i] = E(1)
  141. }
  142. return m
  143. }
  144. trace :: builtin.matrix_trace
  145. transpose :: builtin.transpose
  146. @(require_results)
  147. matrix_mul :: proc "contextless" (a, b: $M/matrix[$N, N]$E) -> (c: M)
  148. where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
  149. return a * b
  150. }
  151. @(require_results)
  152. matrix_comp_mul :: proc "contextless" (a, b: $M/matrix[$I, $J]$E) -> (c: M)
  153. where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
  154. return hadamard_product(a, b)
  155. }
  156. @(require_results)
  157. matrix_mul_differ :: proc "contextless" (a: $A/matrix[$I, $J]$E, b: $B/matrix[J, $K]E) -> (c: matrix[I, K]E)
  158. where !IS_ARRAY(E), IS_NUMERIC(E), I != K #no_bounds_check {
  159. return a * b
  160. }
  161. @(require_results)
  162. matrix_mul_vector :: proc "contextless" (a: $A/matrix[$I, $J]$E, b: $B/[J]E) -> (c: B)
  163. where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
  164. return a * b
  165. }
  166. @(require_results)
  167. quaternion_mul_quaternion :: proc "contextless" (q1, q2: $Q) -> Q where IS_QUATERNION(Q) {
  168. return q1 * q2
  169. }
  170. @(require_results)
  171. quaternion64_mul_vector3 :: proc "contextless" (q: $Q/quaternion64, v: $V/[3]$F/f16) -> V {
  172. Raw_Quaternion :: struct {xyz: [3]f16, r: f16}
  173. q := transmute(Raw_Quaternion)q
  174. v := transmute([3]f16)v
  175. t := cross(2*q.xyz, v)
  176. return V(v + q.r*t + cross(q.xyz, t))
  177. }
  178. @(require_results)
  179. quaternion128_mul_vector3 :: proc "contextless" (q: $Q/quaternion128, v: $V/[3]$F/f32) -> V {
  180. Raw_Quaternion :: struct {xyz: [3]f32, r: f32}
  181. q := transmute(Raw_Quaternion)q
  182. v := transmute([3]f32)v
  183. t := cross(2*q.xyz, v)
  184. return V(v + q.r*t + cross(q.xyz, t))
  185. }
  186. @(require_results)
  187. quaternion256_mul_vector3 :: proc "contextless" (q: $Q/quaternion256, v: $V/[3]$F/f64) -> V {
  188. Raw_Quaternion :: struct {xyz: [3]f64, r: f64}
  189. q := transmute(Raw_Quaternion)q
  190. v := transmute([3]f64)v
  191. t := cross(2*q.xyz, v)
  192. return V(v + q.r*t + cross(q.xyz, t))
  193. }
  194. quaternion_mul_vector3 :: proc{quaternion64_mul_vector3, quaternion128_mul_vector3, quaternion256_mul_vector3}
  195. mul :: proc{
  196. matrix_mul,
  197. matrix_mul_differ,
  198. matrix_mul_vector,
  199. quaternion64_mul_vector3,
  200. quaternion128_mul_vector3,
  201. quaternion256_mul_vector3,
  202. quaternion_mul_quaternion,
  203. }
  204. @(require_results)
  205. vector_to_ptr :: proc "contextless" (v: ^$V/[$N]$E) -> ^E where IS_NUMERIC(E), N > 0 #no_bounds_check {
  206. return &v[0]
  207. }
  208. @(require_results)
  209. matrix_to_ptr :: proc "contextless" (m: ^$A/matrix[$I, $J]$E) -> ^E where IS_NUMERIC(E), I > 0, J > 0 #no_bounds_check {
  210. return &m[0, 0]
  211. }
  212. to_ptr :: proc{vector_to_ptr, matrix_to_ptr}
  213. // Splines
  214. @(require_results)
  215. vector_slerp :: proc "contextless" (x, y: $T/[$N]$E, a: E) -> T {
  216. cos_alpha := dot(x, y)
  217. alpha := math.acos(cos_alpha)
  218. sin_alpha := math.sin(alpha)
  219. t1 := math.sin((1 - a) * alpha) / sin_alpha
  220. t2 := math.sin(a * alpha) / sin_alpha
  221. return x * t1 + y * t2
  222. }
  223. @(require_results)
  224. catmull_rom :: proc "contextless" (v1, v2, v3, v4: $T/[$N]$E, s: E) -> T {
  225. s2 := s*s
  226. s3 := s2*s
  227. f1 := -s3 + 2 * s2 - s
  228. f2 := 3 * s3 - 5 * s2 + 2
  229. f3 := -3 * s3 + 4 * s2 + s
  230. f4 := s3 - s2
  231. return (f1 * v1 + f2 * v2 + f3 * v3 + f4 * v4) * 0.5
  232. }
  233. @(require_results)
  234. hermite :: proc "contextless" (v1, t1, v2, t2: $T/[$N]$E, s: E) -> T {
  235. s2 := s*s
  236. s3 := s2*s
  237. f1 := 2 * s3 - 3 * s2 + 1
  238. f2 := -2 * s3 + 3 * s2
  239. f3 := s3 - 2 * s2 + s
  240. f4 := s3 - s2
  241. return f1 * v1 + f2 * v2 + f3 * t1 + f4 * t2
  242. }
  243. @(require_results)
  244. cubic :: proc "contextless" (v1, v2, v3, v4: $T/[$N]$E, s: E) -> T {
  245. return ((v1 * s + v2) * s + v3) * s + v4
  246. }
  247. @(require_results)
  248. array_cast :: proc "contextless" (v: $A/[$N]$T, $Elem_Type: typeid) -> (w: [N]Elem_Type) #no_bounds_check {
  249. for i in 0..<N {
  250. w[i] = Elem_Type(v[i])
  251. }
  252. return
  253. }
  254. @(require_results)
  255. matrix_cast :: proc "contextless" (v: $A/matrix[$M, $N]$T, $Elem_Type: typeid) -> (w: matrix[M, N]Elem_Type) #no_bounds_check {
  256. for j in 0..<N {
  257. for i in 0..<M {
  258. w[i, j] = Elem_Type(v[i, j])
  259. }
  260. }
  261. return
  262. }
  263. @(require_results) to_f32 :: #force_inline proc(v: $A/[$N]$T) -> [N]f32 { return array_cast(v, f32) }
  264. @(require_results) to_f64 :: #force_inline proc(v: $A/[$N]$T) -> [N]f64 { return array_cast(v, f64) }
  265. @(require_results) to_i8 :: #force_inline proc(v: $A/[$N]$T) -> [N]i8 { return array_cast(v, i8) }
  266. @(require_results) to_i16 :: #force_inline proc(v: $A/[$N]$T) -> [N]i16 { return array_cast(v, i16) }
  267. @(require_results) to_i32 :: #force_inline proc(v: $A/[$N]$T) -> [N]i32 { return array_cast(v, i32) }
  268. @(require_results) to_i64 :: #force_inline proc(v: $A/[$N]$T) -> [N]i64 { return array_cast(v, i64) }
  269. @(require_results) to_int :: #force_inline proc(v: $A/[$N]$T) -> [N]int { return array_cast(v, int) }
  270. @(require_results) to_u8 :: #force_inline proc(v: $A/[$N]$T) -> [N]u8 { return array_cast(v, u8) }
  271. @(require_results) to_u16 :: #force_inline proc(v: $A/[$N]$T) -> [N]u16 { return array_cast(v, u16) }
  272. @(require_results) to_u32 :: #force_inline proc(v: $A/[$N]$T) -> [N]u32 { return array_cast(v, u32) }
  273. @(require_results) to_u64 :: #force_inline proc(v: $A/[$N]$T) -> [N]u64 { return array_cast(v, u64) }
  274. @(require_results) to_uint :: #force_inline proc(v: $A/[$N]$T) -> [N]uint { return array_cast(v, uint) }
  275. @(require_results) to_complex32 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex32 { return array_cast(v, complex32) }
  276. @(require_results) to_complex64 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex64 { return array_cast(v, complex64) }
  277. @(require_results) to_complex128 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex128 { return array_cast(v, complex128) }
  278. @(require_results) to_quaternion64 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion64 { return array_cast(v, quaternion64) }
  279. @(require_results) to_quaternion128 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion128 { return array_cast(v, quaternion128) }
  280. @(require_results) to_quaternion256 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion256 { return array_cast(v, quaternion256) }