123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227 |
- package math
- // The original C code, the long comment, and the constants
- // below are from http://netlib.sandia.gov/cephes/cprob/gamma.c.
- //
- // tgamma.c
- //
- // Gamma function
- //
- // SYNOPSIS:
- //
- // double x, y, tgamma();
- // extern int signgam;
- //
- // y = tgamma( x );
- //
- // DESCRIPTION:
- //
- // Returns gamma function of the argument. The result is
- // correctly signed, and the sign (+1 or -1) is also
- // returned in a global (extern) variable named signgam.
- // This variable is also filled in by the logarithmic gamma
- // function lgamma().
- //
- // Arguments |x| <= 34 are reduced by recurrence and the function
- // approximated by a rational function of degree 6/7 in the
- // interval (2,3). Large arguments are handled by Stirling's
- // formula. Large negative arguments are made positive using
- // a reflection formula.
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // DEC -34, 34 10000 1.3e-16 2.5e-17
- // IEEE -170,-33 20000 2.3e-15 3.3e-16
- // IEEE -33, 33 20000 9.4e-16 2.2e-16
- // IEEE 33, 171.6 20000 2.3e-15 3.2e-16
- //
- // Error for arguments outside the test range will be larger
- // owing to error amplification by the exponential function.
- //
- // Cephes Math Library Release 2.8: June, 2000
- // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
- //
- // The readme file at http://netlib.sandia.gov/cephes/ says:
- // Some software in this archive may be from the book _Methods and
- // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
- // International, 1989) or from the Cephes Mathematical Library, a
- // commercial product. In either event, it is copyrighted by the author.
- // What you see here may be used freely but it comes with no support or
- // guarantee.
- //
- // The two known misprints in the book are repaired here in the
- // source listings for the gamma function and the incomplete beta
- // integral.
- //
- // Stephen L. Moshier
- // [email protected]
- // Gamma function computed by Stirling's formula.
- // The pair of results must be multiplied together to get the actual answer.
- // The multiplication is left to the caller so that, if careful, the caller can avoid
- // infinity for 172 <= x <= 180.
- // The polynomial is valid for 33 <= x <= 172; larger values are only used
- // in reciprocal and produce denormalized floats. The lower precision there
- // masks any imprecision in the polynomial.
- @(private="file", require_results)
- stirling :: proc "contextless" (x: f64) -> (f64, f64) {
- @(static) gamS := [?]f64{
- +7.87311395793093628397e-04,
- -2.29549961613378126380e-04,
- -2.68132617805781232825e-03,
- +3.47222221605458667310e-03,
- +8.33333333333482257126e-02,
- }
-
- if x > 200 {
- return inf_f64(1), 1
- }
- SQRT_TWO_PI :: 0h40040d931ff62706 // 2.506628274631000502417
- MAX_STIRLING :: 143.01608
- w := 1 / x
- w = 1 + w*((((gamS[0]*w+gamS[1])*w+gamS[2])*w+gamS[3])*w+gamS[4])
- y1 := exp(x)
- y2 := 1.0
- if x > MAX_STIRLING { // avoid pow() overflow
- v := pow(x, 0.5*x-0.25)
- y1, y2 = v, v/y1
- } else {
- y1 = pow(x, x-0.5) / y1
- }
- return y1, SQRT_TWO_PI * w * y2
- }
- @(require_results)
- gamma_f64 :: proc "contextless" (x: f64) -> f64 {
- is_neg_int :: proc "contextless" (x: f64) -> bool {
- if x < 0 {
- _, xf := modf(x)
- return xf == 0
- }
- return false
- }
-
- @(static) gamP := [?]f64{
- 1.60119522476751861407e-04,
- 1.19135147006586384913e-03,
- 1.04213797561761569935e-02,
- 4.76367800457137231464e-02,
- 2.07448227648435975150e-01,
- 4.94214826801497100753e-01,
- 9.99999999999999996796e-01,
- }
- @(static) gamQ := [?]f64{
- -2.31581873324120129819e-05,
- +5.39605580493303397842e-04,
- -4.45641913851797240494e-03,
- +1.18139785222060435552e-02,
- +3.58236398605498653373e-02,
- -2.34591795718243348568e-01,
- +7.14304917030273074085e-02,
- +1.00000000000000000320e+00,
- }
-
- EULER :: 0.57721566490153286060651209008240243104215933593992 // A001620
-
- switch {
- case is_neg_int(x) || is_inf(x, -1) || is_nan(x):
- return nan_f64()
- case is_inf(x, 1):
- return inf_f64(1)
- case x == 0:
- if signbit(x) {
- return inf_f64(-1)
- }
- return inf_f64(1)
- }
-
- x := x
- q := abs(x)
- p := floor(q)
- if q > 33 {
- if x >= 0 {
- y1, y2 := stirling(x)
- return y1 * y2
- }
- // Note: x is negative but (checked above) not a negative integer,
- // so x must be small enough to be in range for conversion to i64.
- // If |x| were >= 2⁶³ it would have to be an integer.
- signgam := 1
- if ip := i64(p); ip&1 == 0 {
- signgam = -1
- }
- z := q - p
- if z > 0.5 {
- p = p + 1
- z = q - p
- }
- z = q * sin(PI*z)
- if z == 0 {
- return inf_f64(signgam)
- }
- sq1, sq2 := stirling(q)
- absz := abs(z)
- d := absz * sq1 * sq2
- if is_inf(d, 0) {
- z = PI / absz / sq1 / sq2
- } else {
- z = PI / d
- }
- return f64(signgam) * z
- }
- // Reduce argument
- z := 1.0
- for x >= 3 {
- x = x - 1
- z = z * x
- }
- for x < 0 {
- if x > -1e-09 {
- if x == 0 {
- return inf_f64(1)
- }
- return z / ((1 + EULER*x) * x)
- }
- z = z / x
- x = x + 1
- }
- for x < 2 {
- if x < 1e-09 {
- if x == 0 {
- return inf_f64(1)
- }
- return z / ((1 + EULER*x) * x)
- }
- z = z / x
- x = x + 1
- }
- if x == 2 {
- return z
- }
- x = x - 2
- p = (((((x*gamP[0]+gamP[1])*x+gamP[2])*x+gamP[3])*x+gamP[4])*x+gamP[5])*x + gamP[6]
- q = ((((((x*gamQ[0]+gamQ[1])*x+gamQ[2])*x+gamQ[3])*x+gamQ[4])*x+gamQ[5])*x+gamQ[6])*x + gamQ[7]
- return z * p / q
- }
- @(require_results) gamma_f16 :: proc "contextless" (x: f16) -> f16 { return f16(gamma_f64(f64(x))) }
- @(require_results) gamma_f16le :: proc "contextless" (x: f16le) -> f16le { return f16le(gamma_f64(f64(x))) }
- @(require_results) gamma_f16be :: proc "contextless" (x: f16be) -> f16be { return f16be(gamma_f64(f64(x))) }
- @(require_results) gamma_f32 :: proc "contextless" (x: f32) -> f32 { return f32(gamma_f64(f64(x))) }
- @(require_results) gamma_f32le :: proc "contextless" (x: f32le) -> f32le { return f32le(gamma_f64(f64(x))) }
- @(require_results) gamma_f32be :: proc "contextless" (x: f32be) -> f32be { return f32be(gamma_f64(f64(x))) }
- @(require_results) gamma_f64le :: proc "contextless" (x: f64le) -> f64le { return f64le(gamma_f64(f64(x))) }
- @(require_results) gamma_f64be :: proc "contextless" (x: f64be) -> f64be { return f64be(gamma_f64(f64(x))) }
- gamma :: proc{
- gamma_f16, gamma_f16le, gamma_f16be,
- gamma_f32, gamma_f32le, gamma_f32be,
- gamma_f64, gamma_f64le, gamma_f64be,
- }
|