123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412 |
- package math
- // The original C code and the long comment below are
- // from FreeBSD's /usr/src/lib/msun/src/s_erf.c and
- // came with this notice.
- //
- // ====================================================
- // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- //
- // Developed at SunPro, a Sun Microsystems, Inc. business.
- // Permission to use, copy, modify, and distribute this
- // software is freely granted, provided that this notice
- // is preserved.
- // ====================================================
- //
- //
- // double erf(double x)
- // double erfc(double x)
- // x
- // 2 |\
- // erf(x) = --------- | exp(-t*t)dt
- // sqrt(pi) \|
- // 0
- //
- // erfc(x) = 1-erf(x)
- // Note that
- // erf(-x) = -erf(x)
- // erfc(-x) = 2 - erfc(x)
- //
- // Method:
- // 1. For |x| in [0, 0.84375]
- // erf(x) = x + x*R(x**2)
- // erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
- // = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
- // where R = P/Q where P is an odd poly of degree 8 and
- // Q is an odd poly of degree 10.
- // -57.90
- // | R - (erf(x)-x)/x | <= 2
- //
- //
- // Remark. The formula is derived by noting
- // erf(x) = (2/sqrt(pi))*(x - x**3/3 + x**5/10 - x**7/42 + ....)
- // and that
- // 2/sqrt(pi) = 1.128379167095512573896158903121545171688
- // is close to one. The interval is chosen because the fix
- // point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
- // near 0.6174), and by some experiment, 0.84375 is chosen to
- // guarantee the error is less than one ulp for erf.
- //
- // 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
- // c = 0.84506291151 rounded to single (24 bits)
- // erf(x) = sign(x) * (c + P1(s)/Q1(s))
- // erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
- // 1+(c+P1(s)/Q1(s)) if x < 0
- // |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
- // Remark: here we use the taylor series expansion at x=1.
- // erf(1+s) = erf(1) + s*Poly(s)
- // = 0.845.. + P1(s)/Q1(s)
- // That is, we use rational approximation to approximate
- // erf(1+s) - (c = (single)0.84506291151)
- // Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
- // where
- // P1(s) = degree 6 poly in s
- // Q1(s) = degree 6 poly in s
- //
- // 3. For x in [1.25,1/0.35(~2.857143)],
- // erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
- // erf(x) = 1 - erfc(x)
- // where
- // R1(z) = degree 7 poly in z, (z=1/x**2)
- // S1(z) = degree 8 poly in z
- //
- // 4. For x in [1/0.35,28]
- // erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
- // = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
- // = 2.0 - tiny (if x <= -6)
- // erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
- // erf(x) = sign(x)*(1.0 - tiny)
- // where
- // R2(z) = degree 6 poly in z, (z=1/x**2)
- // S2(z) = degree 7 poly in z
- //
- // Note1:
- // To compute exp(-x*x-0.5625+R/S), let s be a single
- // precision number and s := x; then
- // -x*x = -s*s + (s-x)*(s+x)
- // exp(-x*x-0.5626+R/S) =
- // exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
- // Note2:
- // Here 4 and 5 make use of the asymptotic series
- // exp(-x*x)
- // erfc(x) ~ ---------- * ( 1 + Poly(1/x**2) )
- // x*sqrt(pi)
- // We use rational approximation to approximate
- // g(s)=f(1/x**2) = log(erfc(x)*x) - x*x + 0.5625
- // Here is the error bound for R1/S1 and R2/S2
- // |R1/S1 - f(x)| < 2**(-62.57)
- // |R2/S2 - f(x)| < 2**(-61.52)
- //
- // 5. For inf > x >= 28
- // erf(x) = sign(x) *(1 - tiny) (raise inexact)
- // erfc(x) = tiny*tiny (raise underflow) if x > 0
- // = 2 - tiny if x<0
- //
- // 7. Special case:
- // erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
- // erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
- // erfc/erf(NaN) is NaN
- erf :: proc{
- erf_f16,
- erf_f16le,
- erf_f16be,
- erf_f32,
- erf_f32le,
- erf_f32be,
- erf_f64,
- }
- @(require_results) erf_f16 :: proc "contextless" (x: f16) -> f16 { return f16(erf_f64(f64(x))) }
- @(require_results) erf_f16le :: proc "contextless" (x: f16le) -> f16le { return f16le(erf_f64(f64(x))) }
- @(require_results) erf_f16be :: proc "contextless" (x: f16be) -> f16be { return f16be(erf_f64(f64(x))) }
- @(require_results) erf_f32 :: proc "contextless" (x: f32) -> f32 { return f32(erf_f64(f64(x))) }
- @(require_results) erf_f32le :: proc "contextless" (x: f32le) -> f32le { return f32le(erf_f64(f64(x))) }
- @(require_results) erf_f32be :: proc "contextless" (x: f32be) -> f32be { return f32be(erf_f64(f64(x))) }
- @(require_results)
- erf_f64 :: proc "contextless" (x: f64) -> f64 {
- erx :: 0h3FEB0AC160000000
- // Coefficients for approximation to erf in [0, 0.84375]
- efx :: 0h3FC06EBA8214DB69
- efx8 :: 0h3FF06EBA8214DB69
- pp0 :: 0h3FC06EBA8214DB68
- pp1 :: 0hBFD4CD7D691CB913
- pp2 :: 0hBF9D2A51DBD7194F
- pp3 :: 0hBF77A291236668E4
- pp4 :: 0hBEF8EAD6120016AC
- qq1 :: 0h3FD97779CDDADC09
- qq2 :: 0h3FB0A54C5536CEBA
- qq3 :: 0h3F74D022C4D36B0F
- qq4 :: 0h3F215DC9221C1A10
- qq5 :: 0hBED09C4342A26120
- // Coefficients for approximation to erf in [0.84375, 1.25]
- pa0 :: 0hBF6359B8BEF77538
- pa1 :: 0h3FDA8D00AD92B34D
- pa2 :: 0hBFD7D240FBB8C3F1
- pa3 :: 0h3FD45FCA805120E4
- pa4 :: 0hBFBC63983D3E28EC
- pa5 :: 0h3FA22A36599795EB
- pa6 :: 0hBF61BF380A96073F
- qa1 :: 0h3FBB3E6618EEE323
- qa2 :: 0h3FE14AF092EB6F33
- qa3 :: 0h3FB2635CD99FE9A7
- qa4 :: 0h3FC02660E763351F
- qa5 :: 0h3F8BEDC26B51DD1C
- qa6 :: 0h3F888B545735151D
- // Coefficients for approximation to erfc in [1.25, 1/0.35]
- ra0 :: 0hBF843412600D6435
- ra1 :: 0hBFE63416E4BA7360
- ra2 :: 0hC0251E0441B0E726
- ra3 :: 0hC04F300AE4CBA38D
- ra4 :: 0hC0644CB184282266
- ra5 :: 0hC067135CEBCCABB2
- ra6 :: 0hC054526557E4D2F2
- ra7 :: 0hC023A0EFC69AC25C
- sa1 :: 0h4033A6B9BD707687
- sa2 :: 0h4061350C526AE721
- sa3 :: 0h407B290DD58A1A71
- sa4 :: 0h40842B1921EC2868
- sa5 :: 0h407AD02157700314
- sa6 :: 0h405B28A3EE48AE2C
- sa7 :: 0h401A47EF8E484A93
- sa8 :: 0hBFAEEFF2EE749A62
- // Coefficients for approximation to erfc in [1/.35, 28]
- rb0 :: 0hBF84341239E86F4A
- rb1 :: 0hBFE993BA70C285DE
- rb2 :: 0hC031C209555F995A
- rb3 :: 0hC064145D43C5ED98
- rb4 :: 0hC083EC881375F228
- rb5 :: 0hC09004616A2E5992
- rb6 :: 0hC07E384E9BDC383F
- sb1 :: 0h403E568B261D5190
- sb2 :: 0h40745CAE221B9F0A
- sb3 :: 0h409802EB189D5118
- sb4 :: 0h40A8FFB7688C246A
- sb5 :: 0h40A3F219CEDF3BE6
- sb6 :: 0h407DA874E79FE763
- sb7 :: 0hC03670E242712D62
-
-
- VERY_TINY :: 0h0080000000000000
- SMALL :: 1.0 / (1 << 28) // 2**-28
- // special cases
- switch {
- case is_nan(x):
- return nan_f64()
- case is_inf(x, 1):
- return 1
- case is_inf(x, -1):
- return -1
- }
- x := x
- sign := false
- if x < 0 {
- x = -x
- sign = true
- }
- if x < 0.84375 { // |x| < 0.84375
- temp: f64
- if x < SMALL { // |x| < 2**-28
- if x < VERY_TINY {
- temp = 0.125 * (8.0*x + efx8*x) // avoid underflow
- } else {
- temp = x + efx*x
- }
- } else {
- z := x * x
- r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4)))
- s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
- y := r / s
- temp = x + x*y
- }
- if sign {
- return -temp
- }
- return temp
- }
- if x < 1.25 { // 0.84375 <= |x| < 1.25
- s := x - 1
- P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))
- Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))
- if sign {
- return -erx - P/Q
- }
- return erx + P/Q
- }
- if x >= 6 { // inf > |x| >= 6
- if sign {
- return -1
- }
- return 1
- }
- s := 1 / (x * x)
- R, S: f64
- if x < 1/0.35 { // |x| < 1 / 0.35 ~ 2.857143
- R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))
- S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))
- } else { // |x| >= 1 / 0.35 ~ 2.857143
- R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))
- S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))
- }
- z := transmute(f64)(0xffffffff00000000 & transmute(u64)x) // pseudo-single (20-bit) precision x
- r := exp(-z*z-0.5625) * exp((z-x)*(z+x)+R/S)
- if sign {
- return r/x - 1
- }
- return 1 - r/x
- }
- erfc :: proc{
- erfc_f16,
- erfc_f16le,
- erfc_f16be,
- erfc_f32,
- erfc_f32le,
- erfc_f32be,
- erfc_f64,
- }
- @(require_results) erfc_f16 :: proc "contextless" (x: f16) -> f16 { return f16(erfc_f64(f64(x))) }
- @(require_results) erfc_f16le :: proc "contextless" (x: f16le) -> f16le { return f16le(erfc_f64(f64(x))) }
- @(require_results) erfc_f16be :: proc "contextless" (x: f16be) -> f16be { return f16be(erfc_f64(f64(x))) }
- @(require_results) erfc_f32 :: proc "contextless" (x: f32) -> f32 { return f32(erfc_f64(f64(x))) }
- @(require_results) erfc_f32le :: proc "contextless" (x: f32le) -> f32le { return f32le(erfc_f64(f64(x))) }
- @(require_results) erfc_f32be :: proc "contextless" (x: f32be) -> f32be { return f32be(erfc_f64(f64(x))) }
- @(require_results)
- erfc_f64 :: proc "contextless" (x: f64) -> f64 {
- erx :: 0h3FEB0AC160000000
- // Coefficients for approximation to erf in [0, 0.84375]
- efx :: 0h3FC06EBA8214DB69
- efx8 :: 0h3FF06EBA8214DB69
- pp0 :: 0h3FC06EBA8214DB68
- pp1 :: 0hBFD4CD7D691CB913
- pp2 :: 0hBF9D2A51DBD7194F
- pp3 :: 0hBF77A291236668E4
- pp4 :: 0hBEF8EAD6120016AC
- qq1 :: 0h3FD97779CDDADC09
- qq2 :: 0h3FB0A54C5536CEBA
- qq3 :: 0h3F74D022C4D36B0F
- qq4 :: 0h3F215DC9221C1A10
- qq5 :: 0hBED09C4342A26120
- // Coefficients for approximation to erf in [0.84375, 1.25]
- pa0 :: 0hBF6359B8BEF77538
- pa1 :: 0h3FDA8D00AD92B34D
- pa2 :: 0hBFD7D240FBB8C3F1
- pa3 :: 0h3FD45FCA805120E4
- pa4 :: 0hBFBC63983D3E28EC
- pa5 :: 0h3FA22A36599795EB
- pa6 :: 0hBF61BF380A96073F
- qa1 :: 0h3FBB3E6618EEE323
- qa2 :: 0h3FE14AF092EB6F33
- qa3 :: 0h3FB2635CD99FE9A7
- qa4 :: 0h3FC02660E763351F
- qa5 :: 0h3F8BEDC26B51DD1C
- qa6 :: 0h3F888B545735151D
- // Coefficients for approximation to erfc in [1.25, 1/0.35]
- ra0 :: 0hBF843412600D6435
- ra1 :: 0hBFE63416E4BA7360
- ra2 :: 0hC0251E0441B0E726
- ra3 :: 0hC04F300AE4CBA38D
- ra4 :: 0hC0644CB184282266
- ra5 :: 0hC067135CEBCCABB2
- ra6 :: 0hC054526557E4D2F2
- ra7 :: 0hC023A0EFC69AC25C
- sa1 :: 0h4033A6B9BD707687
- sa2 :: 0h4061350C526AE721
- sa3 :: 0h407B290DD58A1A71
- sa4 :: 0h40842B1921EC2868
- sa5 :: 0h407AD02157700314
- sa6 :: 0h405B28A3EE48AE2C
- sa7 :: 0h401A47EF8E484A93
- sa8 :: 0hBFAEEFF2EE749A62
- // Coefficients for approximation to erfc in [1/.35, 28]
- rb0 :: 0hBF84341239E86F4A
- rb1 :: 0hBFE993BA70C285DE
- rb2 :: 0hC031C209555F995A
- rb3 :: 0hC064145D43C5ED98
- rb4 :: 0hC083EC881375F228
- rb5 :: 0hC09004616A2E5992
- rb6 :: 0hC07E384E9BDC383F
- sb1 :: 0h403E568B261D5190
- sb2 :: 0h40745CAE221B9F0A
- sb3 :: 0h409802EB189D5118
- sb4 :: 0h40A8FFB7688C246A
- sb5 :: 0h40A3F219CEDF3BE6
- sb6 :: 0h407DA874E79FE763
- sb7 :: 0hC03670E242712D62
-
- TINY :: 1.0 / (1 << 56) // 2**-56
- // special cases
- switch {
- case is_nan(x):
- return nan_f64()
- case is_inf(x, 1):
- return 0
- case is_inf(x, -1):
- return 2
- }
- x := x
- sign := false
- if x < 0 {
- x = -x
- sign = true
- }
- if x < 0.84375 { // |x| < 0.84375
- temp: f64
- if x < TINY { // |x| < 2**-56
- temp = x
- } else {
- z := x * x
- r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4)))
- s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
- y := r / s
- if x < 0.25 { // |x| < 1/4
- temp = x + x*y
- } else {
- temp = 0.5 + (x*y + (x - 0.5))
- }
- }
- if sign {
- return 1 + temp
- }
- return 1 - temp
- }
- if x < 1.25 { // 0.84375 <= |x| < 1.25
- s := x - 1
- P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))
- Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))
- if sign {
- return 1 + erx + P/Q
- }
- return 1 - erx - P/Q
- }
- if x < 28 { // |x| < 28
- s := 1 / (x * x)
- R, S: f64
- if x < 1/0.35 { // |x| < 1 / 0.35 ~ 2.857143
- R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))
- S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))
- } else { // |x| >= 1 / 0.35 ~ 2.857143
- if sign && x > 6 {
- return 2 // x < -6
- }
- R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))
- S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))
- }
- z := transmute(f64)(0xffffffff00000000 & transmute(u64)x) // pseudo-single (20-bit) precision x
- r := exp(-z*z-0.5625) * exp((z-x)*(z+x)+R/S)
- if sign {
- return 2 - r/x
- }
- return r / x
- }
- if sign {
- return 2
- }
- return 0
- }
|