socket_darwin.odin 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396
  1. package net
  2. // +build darwin
  3. /*
  4. Package net implements cross-platform Berkeley Sockets, DNS resolution and associated procedures.
  5. For other protocols and their features, see subdirectories of this package.
  6. */
  7. /*
  8. Copyright 2022 Tetralux <[email protected]>
  9. Copyright 2022 Colin Davidson <[email protected]>
  10. Copyright 2022 Jeroen van Rijn <[email protected]>.
  11. Made available under Odin's BSD-3 license.
  12. List of contributors:
  13. Tetralux: Initial implementation
  14. Colin Davidson: Linux platform code, OSX platform code, Odin-native DNS resolver
  15. Jeroen van Rijn: Cross platform unification, code style, documentation
  16. */
  17. import "core:c"
  18. import "core:os"
  19. import "core:time"
  20. Socket_Option :: enum c.int {
  21. Broadcast = c.int(os.SO_BROADCAST),
  22. Reuse_Address = c.int(os.SO_REUSEADDR),
  23. Keep_Alive = c.int(os.SO_KEEPALIVE),
  24. Out_Of_Bounds_Data_Inline = c.int(os.SO_OOBINLINE),
  25. TCP_Nodelay = c.int(os.TCP_NODELAY),
  26. Linger = c.int(os.SO_LINGER),
  27. Receive_Buffer_Size = c.int(os.SO_RCVBUF),
  28. Send_Buffer_Size = c.int(os.SO_SNDBUF),
  29. Receive_Timeout = c.int(os.SO_RCVTIMEO),
  30. Send_Timeout = c.int(os.SO_SNDTIMEO),
  31. }
  32. @(private)
  33. _create_socket :: proc(family: Address_Family, protocol: Socket_Protocol) -> (socket: Any_Socket, err: Network_Error) {
  34. c_type, c_protocol, c_family: int
  35. switch family {
  36. case .IP4: c_family = os.AF_INET
  37. case .IP6: c_family = os.AF_INET6
  38. case:
  39. unreachable()
  40. }
  41. switch protocol {
  42. case .TCP: c_type = os.SOCK_STREAM; c_protocol = os.IPPROTO_TCP
  43. case .UDP: c_type = os.SOCK_DGRAM; c_protocol = os.IPPROTO_UDP
  44. case:
  45. unreachable()
  46. }
  47. sock, ok := os.socket(c_family, c_type, c_protocol)
  48. if ok != os.ERROR_NONE {
  49. err = Create_Socket_Error(ok)
  50. return
  51. }
  52. switch protocol {
  53. case .TCP: return TCP_Socket(sock), nil
  54. case .UDP: return UDP_Socket(sock), nil
  55. case:
  56. unreachable()
  57. }
  58. }
  59. @(private)
  60. _dial_tcp_from_endpoint :: proc(endpoint: Endpoint, options := default_tcp_options) -> (skt: TCP_Socket, err: Network_Error) {
  61. if endpoint.port == 0 {
  62. return 0, .Port_Required
  63. }
  64. family := family_from_endpoint(endpoint)
  65. sock := create_socket(family, .TCP) or_return
  66. skt = sock.(TCP_Socket)
  67. // NOTE(tetra): This is so that if we crash while the socket is open, we can
  68. // bypass the cooldown period, and allow the next run of the program to
  69. // use the same address immediately.
  70. _ = set_option(skt, .Reuse_Address, true)
  71. sockaddr := _endpoint_to_sockaddr(endpoint)
  72. res := os.connect(os.Socket(skt), (^os.SOCKADDR)(&sockaddr), i32(sockaddr.len))
  73. if res != os.ERROR_NONE {
  74. err = Dial_Error(res)
  75. return
  76. }
  77. return
  78. }
  79. @(private)
  80. _bind :: proc(skt: Any_Socket, ep: Endpoint) -> (err: Network_Error) {
  81. sockaddr := _endpoint_to_sockaddr(ep)
  82. s := any_socket_to_socket(skt)
  83. res := os.bind(os.Socket(s), (^os.SOCKADDR)(&sockaddr), i32(sockaddr.len))
  84. if res != os.ERROR_NONE {
  85. err = Bind_Error(res)
  86. }
  87. return
  88. }
  89. @(private)
  90. _listen_tcp :: proc(interface_endpoint: Endpoint, backlog := 1000) -> (skt: TCP_Socket, err: Network_Error) {
  91. assert(backlog > 0 && i32(backlog) < max(i32))
  92. family := family_from_endpoint(interface_endpoint)
  93. sock := create_socket(family, .TCP) or_return
  94. skt = sock.(TCP_Socket)
  95. // NOTE(tetra): This is so that if we crash while the socket is open, we can
  96. // bypass the cooldown period, and allow the next run of the program to
  97. // use the same address immediately.
  98. //
  99. // TODO(tetra, 2022-02-15): Confirm that this doesn't mean other processes can hijack the address!
  100. set_option(sock, .Reuse_Address, true) or_return
  101. bind(sock, interface_endpoint) or_return
  102. res := os.listen(os.Socket(skt), backlog)
  103. if res != os.ERROR_NONE {
  104. err = Listen_Error(res)
  105. return
  106. }
  107. return
  108. }
  109. @(private)
  110. _accept_tcp :: proc(sock: TCP_Socket, options := default_tcp_options) -> (client: TCP_Socket, source: Endpoint, err: Network_Error) {
  111. sockaddr: os.SOCKADDR_STORAGE_LH
  112. sockaddrlen := c.int(size_of(sockaddr))
  113. client_sock, ok := os.accept(os.Socket(sock), cast(^os.SOCKADDR) &sockaddr, &sockaddrlen)
  114. if ok != os.ERROR_NONE {
  115. err = Accept_Error(ok)
  116. return
  117. }
  118. client = TCP_Socket(client_sock)
  119. source = _sockaddr_to_endpoint(&sockaddr)
  120. return
  121. }
  122. @(private)
  123. _close :: proc(skt: Any_Socket) {
  124. s := any_socket_to_socket(skt)
  125. os.close(os.Handle(os.Socket(s)))
  126. }
  127. @(private)
  128. _recv_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_read: int, err: Network_Error) {
  129. if len(buf) <= 0 {
  130. return
  131. }
  132. res, ok := os.recv(os.Socket(skt), buf, 0)
  133. if ok != os.ERROR_NONE {
  134. err = TCP_Recv_Error(ok)
  135. return
  136. }
  137. return int(res), nil
  138. }
  139. @(private)
  140. _recv_udp :: proc(skt: UDP_Socket, buf: []byte) -> (bytes_read: int, remote_endpoint: Endpoint, err: Network_Error) {
  141. if len(buf) <= 0 {
  142. return
  143. }
  144. from: os.SOCKADDR_STORAGE_LH
  145. fromsize := c.int(size_of(from))
  146. res, ok := os.recvfrom(os.Socket(skt), buf, 0, cast(^os.SOCKADDR) &from, &fromsize)
  147. if ok != os.ERROR_NONE {
  148. err = UDP_Recv_Error(ok)
  149. return
  150. }
  151. bytes_read = int(res)
  152. remote_endpoint = _sockaddr_to_endpoint(&from)
  153. return
  154. }
  155. @(private)
  156. _send_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_written: int, err: Network_Error) {
  157. for bytes_written < len(buf) {
  158. limit := min(int(max(i32)), len(buf) - bytes_written)
  159. remaining := buf[bytes_written:][:limit]
  160. res, ok := os.send(os.Socket(skt), remaining, 0)
  161. if ok != os.ERROR_NONE {
  162. err = TCP_Send_Error(ok)
  163. return
  164. }
  165. bytes_written += int(res)
  166. }
  167. return
  168. }
  169. @(private)
  170. _send_udp :: proc(skt: UDP_Socket, buf: []byte, to: Endpoint) -> (bytes_written: int, err: Network_Error) {
  171. toaddr := _endpoint_to_sockaddr(to)
  172. for bytes_written < len(buf) {
  173. limit := min(1<<31, len(buf) - bytes_written)
  174. remaining := buf[bytes_written:][:limit]
  175. res, ok := os.sendto(os.Socket(skt), remaining, 0, cast(^os.SOCKADDR)&toaddr, i32(toaddr.len))
  176. if ok != os.ERROR_NONE {
  177. err = UDP_Send_Error(ok)
  178. return
  179. }
  180. bytes_written += int(res)
  181. }
  182. return
  183. }
  184. @(private)
  185. _shutdown :: proc(skt: Any_Socket, manner: Shutdown_Manner) -> (err: Network_Error) {
  186. s := any_socket_to_socket(skt)
  187. res := os.shutdown(os.Socket(s), int(manner))
  188. if res != os.ERROR_NONE {
  189. return Shutdown_Error(res)
  190. }
  191. return
  192. }
  193. @(private)
  194. _set_option :: proc(s: Any_Socket, option: Socket_Option, value: any, loc := #caller_location) -> Network_Error {
  195. level := os.SOL_SOCKET if option != .TCP_Nodelay else os.IPPROTO_TCP
  196. // NOTE(tetra, 2022-02-15): On Linux, you cannot merely give a single byte for a bool;
  197. // it _has_ to be a b32.
  198. // I haven't tested if you can give more than that.
  199. bool_value: b32
  200. int_value: i32
  201. timeval_value: os.Timeval
  202. ptr: rawptr
  203. len: os.socklen_t
  204. switch option {
  205. case
  206. .Broadcast,
  207. .Reuse_Address,
  208. .Keep_Alive,
  209. .Out_Of_Bounds_Data_Inline,
  210. .TCP_Nodelay:
  211. // TODO: verify whether these are options or not on Linux
  212. // .Broadcast,
  213. // .Conditional_Accept,
  214. // .Dont_Linger:
  215. switch x in value {
  216. case bool, b8:
  217. x2 := x
  218. bool_value = b32((^bool)(&x2)^)
  219. case b16:
  220. bool_value = b32(x)
  221. case b32:
  222. bool_value = b32(x)
  223. case b64:
  224. bool_value = b32(x)
  225. case:
  226. panic("set_option() value must be a boolean here", loc)
  227. }
  228. ptr = &bool_value
  229. len = size_of(bool_value)
  230. case
  231. .Linger,
  232. .Send_Timeout,
  233. .Receive_Timeout:
  234. t, ok := value.(time.Duration)
  235. if !ok do panic("set_option() value must be a time.Duration here", loc)
  236. micros := i64(time.duration_microseconds(t))
  237. timeval_value.microseconds = int(micros % 1e6)
  238. timeval_value.seconds = (micros - i64(timeval_value.microseconds)) / 1e6
  239. ptr = &timeval_value
  240. len = size_of(timeval_value)
  241. case
  242. .Receive_Buffer_Size,
  243. .Send_Buffer_Size:
  244. // TODO: check for out of range values and return .Value_Out_Of_Range?
  245. switch i in value {
  246. case i8, u8: i2 := i; int_value = os.socklen_t((^u8)(&i2)^)
  247. case i16, u16: i2 := i; int_value = os.socklen_t((^u16)(&i2)^)
  248. case i32, u32: i2 := i; int_value = os.socklen_t((^u32)(&i2)^)
  249. case i64, u64: i2 := i; int_value = os.socklen_t((^u64)(&i2)^)
  250. case i128, u128: i2 := i; int_value = os.socklen_t((^u128)(&i2)^)
  251. case int, uint: i2 := i; int_value = os.socklen_t((^uint)(&i2)^)
  252. case:
  253. panic("set_option() value must be an integer here", loc)
  254. }
  255. ptr = &int_value
  256. len = size_of(int_value)
  257. }
  258. skt := any_socket_to_socket(s)
  259. res := os.setsockopt(os.Socket(skt), int(level), int(option), ptr, len)
  260. if res != os.ERROR_NONE {
  261. return Socket_Option_Error(res)
  262. }
  263. return nil
  264. }
  265. @(private)
  266. _set_blocking :: proc(socket: Any_Socket, should_block: bool) -> (err: Network_Error) {
  267. socket := any_socket_to_socket(socket)
  268. flags, getfl_err := os.fcntl(int(socket), os.F_GETFL, 0)
  269. if getfl_err != os.ERROR_NONE {
  270. return Set_Blocking_Error(getfl_err)
  271. }
  272. if should_block {
  273. flags &= ~int(os.O_NONBLOCK)
  274. } else {
  275. flags |= int(os.O_NONBLOCK)
  276. }
  277. _, setfl_err := os.fcntl(int(socket), os.F_SETFL, flags)
  278. if setfl_err != os.ERROR_NONE {
  279. return Set_Blocking_Error(setfl_err)
  280. }
  281. return nil
  282. }
  283. @private
  284. _endpoint_to_sockaddr :: proc(ep: Endpoint) -> (sockaddr: os.SOCKADDR_STORAGE_LH) {
  285. switch a in ep.address {
  286. case IP4_Address:
  287. (^os.sockaddr_in)(&sockaddr)^ = os.sockaddr_in {
  288. sin_port = u16be(ep.port),
  289. sin_addr = transmute(os.in_addr) a,
  290. sin_family = u8(os.AF_INET),
  291. sin_len = size_of(os.sockaddr_in),
  292. }
  293. return
  294. case IP6_Address:
  295. (^os.sockaddr_in6)(&sockaddr)^ = os.sockaddr_in6 {
  296. sin6_port = u16be(ep.port),
  297. sin6_addr = transmute(os.in6_addr) a,
  298. sin6_family = u8(os.AF_INET6),
  299. sin6_len = size_of(os.sockaddr_in6),
  300. }
  301. return
  302. }
  303. unreachable()
  304. }
  305. @private
  306. _sockaddr_to_endpoint :: proc(native_addr: ^os.SOCKADDR_STORAGE_LH) -> (ep: Endpoint) {
  307. switch native_addr.family {
  308. case u8(os.AF_INET):
  309. addr := cast(^os.sockaddr_in) native_addr
  310. port := int(addr.sin_port)
  311. ep = Endpoint {
  312. address = IP4_Address(transmute([4]byte) addr.sin_addr),
  313. port = port,
  314. }
  315. case u8(os.AF_INET6):
  316. addr := cast(^os.sockaddr_in6) native_addr
  317. port := int(addr.sin6_port)
  318. ep = Endpoint {
  319. address = IP6_Address(transmute([8]u16be) addr.sin6_addr),
  320. port = port,
  321. }
  322. case:
  323. panic("native_addr is neither IP4 or IP6 address")
  324. }
  325. return
  326. }
  327. @(private)
  328. _sockaddr_basic_to_endpoint :: proc(native_addr: ^os.SOCKADDR) -> (ep: Endpoint) {
  329. switch u16(native_addr.family) {
  330. case u16(os.AF_INET):
  331. addr := cast(^os.sockaddr_in) native_addr
  332. port := int(addr.sin_port)
  333. ep = Endpoint {
  334. address = IP4_Address(transmute([4]byte) addr.sin_addr),
  335. port = port,
  336. }
  337. case u16(os.AF_INET6):
  338. addr := cast(^os.sockaddr_in6) native_addr
  339. port := int(addr.sin6_port)
  340. ep = Endpoint {
  341. address = IP6_Address(transmute([8]u16be) addr.sin6_addr),
  342. port = port,
  343. }
  344. case:
  345. panic("native_addr is neither IP4 or IP6 address")
  346. }
  347. return
  348. }