123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924 |
- package runtime
- import "core:intrinsics"
- _ :: intrinsics
- // High performance, cache-friendly, open-addressed Robin Hood hashing hash map
- // data structure with various optimizations for Odin.
- //
- // Copyright 2022 (c) Dale Weiler
- //
- // The core of the hash map data structure is the Raw_Map struct which is a
- // type-erased representation of the map. This type-erased representation is
- // used in two ways: static and dynamic. When static type information is known,
- // the procedures suffixed with _static should be used instead of _dynamic. The
- // static procedures are optimized since they have type information. Hashing of
- // keys, comparison of keys, and data lookup are all optimized. When type
- // information is not known, the procedures suffixed with _dynamic should be
- // used. The representation of the map is the same for both static and dynamic,
- // and procedures of each can be mixed and matched. The purpose of the dynamic
- // representation is to enable reflection and runtime manipulation of the map.
- // The dynamic procedures all take an additional Map_Info structure parameter
- // which carries runtime values describing the size, alignment, and offset of
- // various traits of a given key and value type pair. The Map_Info value can
- // be created by calling map_info(K, V) with the key and value typeids.
- //
- // This map implementation makes extensive use of uintptr for representing
- // sizes, lengths, capacities, masks, pointers, offsets, and addresses to avoid
- // expensive sign extension and masking that would be generated if types were
- // casted all over. The only place regular ints show up is in the cap() and
- // len() implementations.
- //
- // To make this map cache-friendly it uses a novel strategy to ensure keys and
- // values of the map are always cache-line aligned and that no single key or
- // value of any type ever straddles a cache-line. This cache efficiency makes
- // for quick lookups because the linear-probe always addresses data in a cache
- // friendly way. This is enabled through the use of a special meta-type called
- // a Map_Cell which packs as many values of a given type into a local array adding
- // internal padding to round to MAP_CACHE_LINE_SIZE. One other benefit to storing
- // the internal data in this manner is false sharing no longer occurs when using
- // a map, enabling efficient concurrent access of the map data structure with
- // minimal locking if desired.
- // With Robin Hood hashing a maximum load factor of 75% is ideal.
- MAP_LOAD_FACTOR :: 75
- // Minimum log2 capacity.
- MAP_MIN_LOG2_CAPACITY :: 3 // 8 elements
- // Has to be less than 100% though.
- #assert(MAP_LOAD_FACTOR < 100)
- // This is safe to change. The log2 size of a cache-line. At minimum it has to
- // be six though. Higher cache line sizes are permitted.
- MAP_CACHE_LINE_LOG2 :: 6
- // The size of a cache-line.
- MAP_CACHE_LINE_SIZE :: 1 << MAP_CACHE_LINE_LOG2
- // The minimum cache-line size allowed by this implementation is 64 bytes since
- // we need 6 bits in the base pointer to store the integer log2 capacity, which
- // at maximum is 63. Odin uses signed integers to represent length and capacity,
- // so only 63 bits are needed in the maximum case.
- #assert(MAP_CACHE_LINE_SIZE >= 64)
- // Map_Cell type that packs multiple T in such a way to ensure that each T stays
- // aligned by align_of(T) and such that align_of(Map_Cell(T)) % MAP_CACHE_LINE_SIZE == 0
- //
- // This means a value of type T will never straddle a cache-line.
- //
- // When multiple Ts can fit in a single cache-line the data array will have more
- // than one element. When it cannot, the data array will have one element and
- // an array of Map_Cell(T) will be padded to stay a multiple of MAP_CACHE_LINE_SIZE.
- //
- // We rely on the type system to do all the arithmetic and padding for us here.
- //
- // The usual array[index] indexing for []T backed by a []Map_Cell(T) becomes a bit
- // more involved as there now may be internal padding. The indexing now becomes
- //
- // N :: len(Map_Cell(T){}.data)
- // i := index / N
- // j := index % N
- // cell[i].data[j]
- //
- // However, since len(Map_Cell(T){}.data) is a compile-time constant, there are some
- // optimizations we can do to eliminate the need for any divisions as N will
- // be bounded by [1, 64).
- //
- // In the optimal case, len(Map_Cell(T){}.data) = 1 so the cell array can be treated
- // as a regular array of T, which is the case for hashes.
- Map_Cell :: struct($T: typeid) #align(MAP_CACHE_LINE_SIZE) {
- data: [MAP_CACHE_LINE_SIZE / size_of(T) when 0 < size_of(T) && size_of(T) < MAP_CACHE_LINE_SIZE else 1]T,
- }
- // So we can operate on a cell data structure at runtime without any type
- // information, we have a simple table that stores some traits about the cell.
- //
- // 32-bytes on 64-bit
- // 16-bytes on 32-bit
- Map_Cell_Info :: struct {
- size_of_type: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits
- align_of_type: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits
- size_of_cell: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits
- elements_per_cell: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits
- }
- // map_cell_info :: proc "contextless" ($T: typeid) -> ^Map_Cell_Info {...}
- map_cell_info :: intrinsics.type_map_cell_info
- // Same as the above procedure but at runtime with the cell Map_Cell_Info value.
- @(require_results)
- map_cell_index_dynamic :: #force_inline proc "contextless" (base: uintptr, #no_alias info: ^Map_Cell_Info, index: uintptr) -> uintptr {
- // Micro-optimize the common cases to save on integer division.
- elements_per_cell := uintptr(info.elements_per_cell)
- size_of_cell := uintptr(info.size_of_cell)
- switch elements_per_cell {
- case 1:
- return base + (index * size_of_cell)
- case 2:
- cell_index := index >> 1
- data_index := index & 1
- size_of_type := uintptr(info.size_of_type)
- return base + (cell_index * size_of_cell) + (data_index * size_of_type)
- case:
- cell_index := index / elements_per_cell
- data_index := index % elements_per_cell
- size_of_type := uintptr(info.size_of_type)
- return base + (cell_index * size_of_cell) + (data_index * size_of_type)
- }
- }
- // Same as above procedure but with compile-time constant index.
- @(require_results)
- map_cell_index_dynamic_const :: proc "contextless" (base: uintptr, #no_alias info: ^Map_Cell_Info, $INDEX: uintptr) -> uintptr {
- elements_per_cell := uintptr(info.elements_per_cell)
- size_of_cell := uintptr(info.size_of_cell)
- size_of_type := uintptr(info.size_of_type)
- cell_index := INDEX / elements_per_cell
- data_index := INDEX % elements_per_cell
- return base + (cell_index * size_of_cell) + (data_index * size_of_type)
- }
- // We always round the capacity to a power of two so this becomes [16]Foo, which
- // works out to [4]Cell(Foo).
- //
- // The following compile-time procedure indexes such a [N]Cell(T) structure as
- // if it were a flat array accounting for the internal padding introduced by the
- // Cell structure.
- @(require_results)
- map_cell_index_static :: #force_inline proc "contextless" (cells: [^]Map_Cell($T), index: uintptr) -> ^T #no_bounds_check {
- N :: size_of(Map_Cell(T){}.data) / size_of(T) when size_of(T) > 0 else 1
- #assert(N <= MAP_CACHE_LINE_SIZE)
- when size_of(Map_Cell(T)) == size_of([N]T) {
- // No padding case, can treat as a regular array of []T.
- return &([^]T)(cells)[index]
- } else when (N & (N - 1)) == 0 && N <= 8*size_of(uintptr) {
- // Likely case, N is a power of two because T is a power of two.
- // Compute the integer log 2 of N, this is the shift amount to index the
- // correct cell. Odin's intrinsics.count_leading_zeros does not produce a
- // constant, hence this approach. We only need to check up to N = 64.
- SHIFT :: 1 when N < 2 else
- 2 when N < 4 else
- 3 when N < 8 else
- 4 when N < 16 else
- 5 when N < 32 else 6
- #assert(SHIFT <= MAP_CACHE_LINE_LOG2)
- // Unique case, no need to index data here since only one element.
- when N == 1 {
- return &cells[index >> SHIFT].data[0]
- } else {
- return &cells[index >> SHIFT].data[index & (N - 1)]
- }
- } else {
- // Least likely (and worst case), we pay for a division operation but we
- // assume the compiler does not actually generate a division. N will be in the
- // range [1, CACHE_LINE_SIZE) and not a power of two.
- return &cells[index / N].data[index % N]
- }
- }
- // len() for map
- @(require_results)
- map_len :: #force_inline proc "contextless" (m: Raw_Map) -> int {
- return int(m.len)
- }
- // cap() for map
- @(require_results)
- map_cap :: #force_inline proc "contextless" (m: Raw_Map) -> int {
- // The data uintptr stores the capacity in the lower six bits which gives the
- // a maximum value of 2^6-1, or 63. We store the integer log2 of capacity
- // since our capacity is always a power of two. We only need 63 bits as Odin
- // represents length and capacity as a signed integer.
- return 0 if m.data == 0 else 1 << map_log2_cap(m)
- }
- // Query the load factor of the map. This is not actually configurable, but
- // some math is needed to compute it. Compute it as a fixed point percentage to
- // avoid floating point operations. This division can be optimized out by
- // multiplying by the multiplicative inverse of 100.
- @(require_results)
- map_load_factor :: #force_inline proc "contextless" (log2_capacity: uintptr) -> uintptr {
- return ((uintptr(1) << log2_capacity) * MAP_LOAD_FACTOR) / 100
- }
- @(require_results)
- map_resize_threshold :: #force_inline proc "contextless" (m: Raw_Map) -> uintptr {
- return map_load_factor(map_log2_cap(m))
- }
- // The data stores the log2 capacity in the lower six bits. This is primarily
- // used in the implementation rather than map_cap since the check for data = 0
- // isn't necessary in the implementation. cap() on the otherhand needs to work
- // when called on an empty map.
- @(require_results)
- map_log2_cap :: #force_inline proc "contextless" (m: Raw_Map) -> uintptr {
- return m.data & (64 - 1)
- }
- // Canonicalize the data by removing the tagged capacity stored in the lower six
- // bits of the data uintptr.
- @(require_results)
- map_data :: #force_inline proc "contextless" (m: Raw_Map) -> uintptr {
- return m.data &~ uintptr(64 - 1)
- }
- Map_Hash :: uintptr
- TOMBSTONE_MASK :: 1<<(size_of(Map_Hash)*8 - 1)
- // Procedure to check if a slot is empty for a given hash. This is represented
- // by the zero value to make the zero value useful. This is a procedure just
- // for prose reasons.
- @(require_results)
- map_hash_is_empty :: #force_inline proc "contextless" (hash: Map_Hash) -> bool {
- return hash == 0
- }
- @(require_results)
- map_hash_is_deleted :: #force_no_inline proc "contextless" (hash: Map_Hash) -> bool {
- // The MSB indicates a tombstone
- return hash & TOMBSTONE_MASK != 0
- }
- @(require_results)
- map_hash_is_valid :: #force_inline proc "contextless" (hash: Map_Hash) -> bool {
- // The MSB indicates a tombstone
- return (hash != 0) & (hash & TOMBSTONE_MASK == 0)
- }
- @(require_results)
- map_seed :: #force_inline proc "contextless" (m: Raw_Map) -> uintptr {
- return map_seed_from_map_data(map_data(m))
- }
- // splitmix for uintptr
- @(require_results)
- map_seed_from_map_data :: #force_inline proc "contextless" (data: uintptr) -> uintptr {
- when size_of(uintptr) == size_of(u64) {
- mix := data + 0x9e3779b97f4a7c15
- mix = (mix ~ (mix >> 30)) * 0xbf58476d1ce4e5b9
- mix = (mix ~ (mix >> 27)) * 0x94d049bb133111eb
- return mix ~ (mix >> 31)
- } else {
- mix := data + 0x9e3779b9
- mix = (mix ~ (mix >> 16)) * 0x21f0aaad
- mix = (mix ~ (mix >> 15)) * 0x735a2d97
- return mix ~ (mix >> 15)
- }
- }
- // Computes the desired position in the array. This is just index % capacity,
- // but a procedure as there's some math involved here to recover the capacity.
- @(require_results)
- map_desired_position :: #force_inline proc "contextless" (m: Raw_Map, hash: Map_Hash) -> uintptr {
- // We do not use map_cap since we know the capacity will not be zero here.
- capacity := uintptr(1) << map_log2_cap(m)
- return uintptr(hash & Map_Hash(capacity - 1))
- }
- @(require_results)
- map_probe_distance :: #force_inline proc "contextless" (m: Raw_Map, hash: Map_Hash, slot: uintptr) -> uintptr {
- // We do not use map_cap since we know the capacity will not be zero here.
- capacity := uintptr(1) << map_log2_cap(m)
- return (slot + capacity - map_desired_position(m, hash)) & (capacity - 1)
- }
- // When working with the type-erased structure at runtime we need information
- // about the map to make working with it possible. This info structure stores
- // that.
- //
- // `Map_Info` and `Map_Cell_Info` are read only data structures and cannot be
- // modified after creation
- //
- // 32-bytes on 64-bit
- // 16-bytes on 32-bit
- Map_Info :: struct {
- ks: ^Map_Cell_Info, // 8-bytes on 64-bit, 4-bytes on 32-bit
- vs: ^Map_Cell_Info, // 8-bytes on 64-bit, 4-bytes on 32-bit
- key_hasher: proc "contextless" (key: rawptr, seed: Map_Hash) -> Map_Hash, // 8-bytes on 64-bit, 4-bytes on 32-bit
- key_equal: proc "contextless" (lhs, rhs: rawptr) -> bool, // 8-bytes on 64-bit, 4-bytes on 32-bit
- }
- // The Map_Info structure is basically a pseudo-table of information for a given K and V pair.
- // map_info :: proc "contextless" ($T: typeid/map[$K]$V) -> ^Map_Info {...}
- map_info :: intrinsics.type_map_info
- @(require_results)
- map_kvh_data_dynamic :: proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info) -> (ks: uintptr, vs: uintptr, hs: [^]Map_Hash, sk: uintptr, sv: uintptr) {
- INFO_HS := intrinsics.type_map_cell_info(Map_Hash)
- capacity := uintptr(1) << map_log2_cap(m)
- ks = map_data(m)
- vs = map_cell_index_dynamic(ks, info.ks, capacity) // Skip past ks to get start of vs
- hs_ := map_cell_index_dynamic(vs, info.vs, capacity) // Skip past vs to get start of hs
- sk = map_cell_index_dynamic(hs_, INFO_HS, capacity) // Skip past hs to get start of sk
- // Need to skip past two elements in the scratch key space to get to the start
- // of the scratch value space, of which there's only two elements as well.
- sv = map_cell_index_dynamic_const(sk, info.ks, 2)
- hs = ([^]Map_Hash)(hs_)
- return
- }
- @(require_results)
- map_kvh_data_values_dynamic :: proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info) -> (vs: uintptr) {
- capacity := uintptr(1) << map_log2_cap(m)
- return map_cell_index_dynamic(map_data(m), info.ks, capacity) // Skip past ks to get start of vs
- }
- @(private, require_results)
- map_total_allocation_size :: #force_inline proc "contextless" (capacity: uintptr, info: ^Map_Info) -> uintptr {
- round :: #force_inline proc "contextless" (value: uintptr) -> uintptr {
- CACHE_MASK :: MAP_CACHE_LINE_SIZE - 1
- return (value + CACHE_MASK) &~ CACHE_MASK
- }
- INFO_HS := intrinsics.type_map_cell_info(Map_Hash)
- size := uintptr(0)
- size = round(map_cell_index_dynamic(size, info.ks, capacity))
- size = round(map_cell_index_dynamic(size, info.vs, capacity))
- size = round(map_cell_index_dynamic(size, INFO_HS, capacity))
- size = round(map_cell_index_dynamic(size, info.ks, 2)) // Two additional ks for scratch storage
- size = round(map_cell_index_dynamic(size, info.vs, 2)) // Two additional vs for scratch storage
- return size
- }
- // The only procedure which needs access to the context is the one which allocates the map.
- @(require_results)
- map_alloc_dynamic :: proc "odin" (info: ^Map_Info, log2_capacity: uintptr, allocator := context.allocator, loc := #caller_location) -> (result: Raw_Map, err: Allocator_Error) {
- result.allocator = allocator // set the allocator always
- if log2_capacity == 0 {
- return
- }
- if log2_capacity >= 64 {
- // Overflowed, would be caused by log2_capacity > 64
- return {}, .Out_Of_Memory
- }
- capacity := uintptr(1) << max(log2_capacity, MAP_MIN_LOG2_CAPACITY)
- CACHE_MASK :: MAP_CACHE_LINE_SIZE - 1
- size := map_total_allocation_size(capacity, info)
- data := mem_alloc_non_zeroed(int(size), MAP_CACHE_LINE_SIZE, allocator, loc) or_return
- data_ptr := uintptr(raw_data(data))
- if data_ptr == 0 {
- err = .Out_Of_Memory
- return
- }
- if intrinsics.expect(data_ptr & CACHE_MASK != 0, false) {
- panic("allocation not aligned to a cache line", loc)
- } else {
- result.data = data_ptr | log2_capacity // Tagged pointer representation for capacity.
- result.len = 0
- map_clear_dynamic(&result, info)
- }
- return
- }
- // This procedure has to stack allocate storage to store local keys during the
- // Robin Hood hashing technique where elements are swapped in the backing
- // arrays to reduce variance. This swapping can only be done with memcpy since
- // there is no type information.
- //
- // This procedure returns the address of the just inserted value.
- @(require_results)
- map_insert_hash_dynamic :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, h: Map_Hash, ik: uintptr, iv: uintptr) -> (result: uintptr) {
- h := h
- pos := map_desired_position(m^, h)
- distance := uintptr(0)
- mask := (uintptr(1) << map_log2_cap(m^)) - 1
- ks, vs, hs, sk, sv := map_kvh_data_dynamic(m^, info)
- // Avoid redundant loads of these values
- size_of_k := info.ks.size_of_type
- size_of_v := info.vs.size_of_type
- k := map_cell_index_dynamic(sk, info.ks, 0)
- v := map_cell_index_dynamic(sv, info.vs, 0)
- intrinsics.mem_copy_non_overlapping(rawptr(k), rawptr(ik), size_of_k)
- intrinsics.mem_copy_non_overlapping(rawptr(v), rawptr(iv), size_of_v)
- // Temporary k and v dynamic storage for swap below
- tk := map_cell_index_dynamic(sk, info.ks, 1)
- tv := map_cell_index_dynamic(sv, info.vs, 1)
- swap_loop: for {
- element_hash := hs[pos]
- if map_hash_is_empty(element_hash) {
- k_dst := map_cell_index_dynamic(ks, info.ks, pos)
- v_dst := map_cell_index_dynamic(vs, info.vs, pos)
- intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k)
- intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v)
- hs[pos] = h
- return result if result != 0 else v_dst
- }
- if map_hash_is_deleted(element_hash) {
- break swap_loop
- }
- if probe_distance := map_probe_distance(m^, element_hash, pos); distance > probe_distance {
- if result == 0 {
- result = map_cell_index_dynamic(vs, info.vs, pos)
- }
- kp := map_cell_index_dynamic(ks, info.ks, pos)
- vp := map_cell_index_dynamic(vs, info.vs, pos)
- intrinsics.mem_copy_non_overlapping(rawptr(tk), rawptr(k), size_of_k)
- intrinsics.mem_copy_non_overlapping(rawptr(k), rawptr(kp), size_of_k)
- intrinsics.mem_copy_non_overlapping(rawptr(kp), rawptr(tk), size_of_k)
- intrinsics.mem_copy_non_overlapping(rawptr(tv), rawptr(v), size_of_v)
- intrinsics.mem_copy_non_overlapping(rawptr(v), rawptr(vp), size_of_v)
- intrinsics.mem_copy_non_overlapping(rawptr(vp), rawptr(tv), size_of_v)
- th := h
- h = hs[pos]
- hs[pos] = th
- distance = probe_distance
- }
- pos = (pos + 1) & mask
- distance += 1
- }
- // backward shift loop
- hs[pos] = 0
- look_ahead: uintptr = 1
- for {
- la_pos := (pos + look_ahead) & mask
- element_hash := hs[la_pos]
- if map_hash_is_deleted(element_hash) {
- look_ahead += 1
- hs[la_pos] = 0
- continue
- }
- k_dst := map_cell_index_dynamic(ks, info.ks, pos)
- v_dst := map_cell_index_dynamic(vs, info.vs, pos)
- if map_hash_is_empty(element_hash) {
- intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k)
- intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v)
- hs[pos] = h
- return result if result != 0 else v_dst
- }
- k_src := map_cell_index_dynamic(ks, info.ks, la_pos)
- v_src := map_cell_index_dynamic(vs, info.vs, la_pos)
- probe_distance := map_probe_distance(m^, element_hash, la_pos)
- if probe_distance < look_ahead {
- // probed can be made ideal while placing saved (ending condition)
- if result == 0 {
- result = v_dst
- }
- intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k)
- intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v)
- hs[pos] = h
- // This will be an ideal move
- pos = (la_pos - probe_distance) & mask
- look_ahead -= probe_distance
- // shift until we hit ideal/empty
- for probe_distance != 0 {
- k_dst = map_cell_index_dynamic(ks, info.ks, pos)
- v_dst = map_cell_index_dynamic(vs, info.vs, pos)
- intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k_src), size_of_k)
- intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v_src), size_of_v)
- hs[pos] = element_hash
- hs[la_pos] = 0
- pos = (pos + 1) & mask
- la_pos = (la_pos + 1) & mask
- look_ahead = (la_pos - pos) & mask
- element_hash = hs[la_pos]
- if map_hash_is_empty(element_hash) {
- return
- }
- probe_distance = map_probe_distance(m^, element_hash, la_pos)
- if probe_distance == 0 {
- return
- }
- // can be ideal?
- if probe_distance < look_ahead {
- pos = (la_pos - probe_distance) & mask
- }
- k_src = map_cell_index_dynamic(ks, info.ks, la_pos)
- v_src = map_cell_index_dynamic(vs, info.vs, la_pos)
- }
- return
- } else if distance < probe_distance - look_ahead {
- // shift back probed
- intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k_src), size_of_k)
- intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v_src), size_of_v)
- hs[pos] = element_hash
- hs[la_pos] = 0
- } else {
- // place saved, save probed
- if result == 0 {
- result = v_dst
- }
- intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k)
- intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v)
- hs[pos] = h
- intrinsics.mem_copy_non_overlapping(rawptr(k), rawptr(k_src), size_of_k)
- intrinsics.mem_copy_non_overlapping(rawptr(v), rawptr(v_src), size_of_v)
- h = hs[la_pos]
- hs[la_pos] = 0
- distance = probe_distance - look_ahead
- }
- pos = (pos + 1) & mask
- distance += 1
- }
- }
- @(require_results)
- map_grow_dynamic :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, loc := #caller_location) -> Allocator_Error {
- log2_capacity := map_log2_cap(m^)
- new_capacity := uintptr(1) << max(log2_capacity + 1, MAP_MIN_LOG2_CAPACITY)
- return map_reserve_dynamic(m, info, new_capacity, loc)
- }
- @(require_results)
- map_reserve_dynamic :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, new_capacity: uintptr, loc := #caller_location) -> Allocator_Error {
- @(require_results)
- ceil_log2 :: #force_inline proc "contextless" (x: uintptr) -> uintptr {
- z := intrinsics.count_leading_zeros(x)
- if z > 0 && x & (x-1) != 0 {
- z -= 1
- }
- return size_of(uintptr)*8 - 1 - z
- }
- if m.allocator.procedure == nil {
- m.allocator = context.allocator
- }
- new_capacity := new_capacity
- old_capacity := uintptr(map_cap(m^))
- if old_capacity >= new_capacity {
- return nil
- }
- // ceiling nearest power of two
- log2_new_capacity := ceil_log2(new_capacity)
- log2_min_cap := max(MAP_MIN_LOG2_CAPACITY, log2_new_capacity)
- if m.data == 0 {
- m^ = map_alloc_dynamic(info, log2_min_cap, m.allocator, loc) or_return
- return nil
- }
- resized := map_alloc_dynamic(info, log2_min_cap, m.allocator, loc) or_return
- ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info)
- // Cache these loads to avoid hitting them in the for loop.
- n := m.len
- for i in 0..<old_capacity {
- hash := hs[i]
- if map_hash_is_empty(hash) {
- continue
- }
- if map_hash_is_deleted(hash) {
- continue
- }
- k := map_cell_index_dynamic(ks, info.ks, i)
- v := map_cell_index_dynamic(vs, info.vs, i)
- hash = info.key_hasher(rawptr(k), map_seed(resized))
- _ = map_insert_hash_dynamic(&resized, info, hash, k, v)
- // Only need to do this comparison on each actually added pair, so do not
- // fold it into the for loop comparator as a micro-optimization.
- n -= 1
- if n == 0 {
- break
- }
- }
- map_free_dynamic(m^, info, loc) or_return
- m.data = resized.data
- return nil
- }
- @(require_results)
- map_shrink_dynamic :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) {
- if m.allocator.procedure == nil {
- m.allocator = context.allocator
- }
- // Cannot shrink the capacity if the number of items in the map would exceed
- // one minus the current log2 capacity's resize threshold. That is the shrunk
- // map needs to be within the max load factor.
- log2_capacity := map_log2_cap(m^)
- if uintptr(m.len) >= map_load_factor(log2_capacity - 1) {
- return false, nil
- }
- shrunk := map_alloc_dynamic(info, log2_capacity - 1, m.allocator) or_return
- capacity := uintptr(1) << log2_capacity
- ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info)
- n := m.len
- for i in 0..<capacity {
- hash := hs[i]
- if map_hash_is_empty(hash) {
- continue
- }
- if map_hash_is_deleted(hash) {
- continue
- }
- k := map_cell_index_dynamic(ks, info.ks, i)
- v := map_cell_index_dynamic(vs, info.vs, i)
- hash = info.key_hasher(rawptr(k), map_seed(shrunk))
- _ = map_insert_hash_dynamic(&shrunk, info, hash, k, v)
- // Only need to do this comparison on each actually added pair, so do not
- // fold it into the for loop comparator as a micro-optimization.
- n -= 1
- if n == 0 {
- break
- }
- }
- map_free_dynamic(m^, info, loc) or_return
- m.data = shrunk.data
- return true, nil
- }
- @(require_results)
- map_free_dynamic :: proc "odin" (m: Raw_Map, info: ^Map_Info, loc := #caller_location) -> Allocator_Error {
- ptr := rawptr(map_data(m))
- size := int(map_total_allocation_size(uintptr(map_cap(m)), info))
- err := mem_free_with_size(ptr, size, m.allocator, loc)
- #partial switch err {
- case .None, .Mode_Not_Implemented:
- return nil
- }
- return err
- }
- @(require_results)
- map_lookup_dynamic :: proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info, k: uintptr) -> (index: uintptr, ok: bool) {
- if map_len(m) == 0 {
- return 0, false
- }
- h := info.key_hasher(rawptr(k), map_seed(m))
- p := map_desired_position(m, h)
- d := uintptr(0)
- c := (uintptr(1) << map_log2_cap(m)) - 1
- ks, _, hs, _, _ := map_kvh_data_dynamic(m, info)
- for {
- element_hash := hs[p]
- if map_hash_is_empty(element_hash) {
- return 0, false
- } else if d > map_probe_distance(m, element_hash, p) {
- return 0, false
- } else if element_hash == h && info.key_equal(rawptr(k), rawptr(map_cell_index_dynamic(ks, info.ks, p))) {
- return p, true
- }
- p = (p + 1) & c
- d += 1
- }
- }
- @(require_results)
- map_exists_dynamic :: proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info, k: uintptr) -> (ok: bool) {
- if map_len(m) == 0 {
- return false
- }
- h := info.key_hasher(rawptr(k), map_seed(m))
- p := map_desired_position(m, h)
- d := uintptr(0)
- c := (uintptr(1) << map_log2_cap(m)) - 1
- ks, _, hs, _, _ := map_kvh_data_dynamic(m, info)
- for {
- element_hash := hs[p]
- if map_hash_is_empty(element_hash) {
- return false
- } else if d > map_probe_distance(m, element_hash, p) {
- return false
- } else if element_hash == h && info.key_equal(rawptr(k), rawptr(map_cell_index_dynamic(ks, info.ks, p))) {
- return true
- }
- p = (p + 1) & c
- d += 1
- }
- }
- @(require_results)
- map_erase_dynamic :: #force_inline proc "contextless" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, k: uintptr) -> (old_k, old_v: uintptr, ok: bool) {
- index := map_lookup_dynamic(m^, info, k) or_return
- ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info)
- hs[index] |= TOMBSTONE_MASK
- old_k = map_cell_index_dynamic(ks, info.ks, index)
- old_v = map_cell_index_dynamic(vs, info.vs, index)
- m.len -= 1
- ok = true
- mask := (uintptr(1)<<map_log2_cap(m^)) - 1
- curr_index := uintptr(index)
- next_index := (curr_index + 1) & mask
- // if the next element is empty or has zero probe distance, then any lookup
- // will always fail on the next, so we can clear both of them
- hash := hs[next_index]
- if map_hash_is_empty(hash) || map_probe_distance(m^, hash, next_index) == 0 {
- hs[curr_index] = 0
- } else {
- hs[curr_index] |= TOMBSTONE_MASK
- }
- return
- }
- map_clear_dynamic :: #force_inline proc "contextless" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info) {
- if m.data == 0 {
- return
- }
- _, _, hs, _, _ := map_kvh_data_dynamic(m^, info)
- intrinsics.mem_zero(rawptr(hs), map_cap(m^) * size_of(Map_Hash))
- m.len = 0
- }
- @(require_results)
- map_kvh_data_static :: #force_inline proc "contextless" (m: $T/map[$K]$V) -> (ks: [^]Map_Cell(K), vs: [^]Map_Cell(V), hs: [^]Map_Hash) {
- capacity := uintptr(cap(m))
- ks = ([^]Map_Cell(K))(map_data(transmute(Raw_Map)m))
- vs = ([^]Map_Cell(V))(map_cell_index_static(ks, capacity))
- hs = ([^]Map_Hash)(map_cell_index_static(vs, capacity))
- return
- }
- @(require_results)
- map_get :: proc "contextless" (m: $T/map[$K]$V, key: K) -> (stored_key: K, stored_value: V, ok: bool) {
- rm := transmute(Raw_Map)m
- if rm.len == 0 {
- return
- }
- info := intrinsics.type_map_info(T)
- key := key
- h := info.key_hasher(&key, map_seed(rm))
- pos := map_desired_position(rm, h)
- distance := uintptr(0)
- mask := (uintptr(1) << map_log2_cap(rm)) - 1
- ks, vs, hs := map_kvh_data_static(m)
- for {
- element_hash := hs[pos]
- if map_hash_is_empty(element_hash) {
- return
- } else if distance > map_probe_distance(rm, element_hash, pos) {
- return
- } else if element_hash == h {
- element_key := map_cell_index_static(ks, pos)
- if info.key_equal(&key, rawptr(element_key)) {
- element_value := map_cell_index_static(vs, pos)
- stored_key = (^K)(element_key)^
- stored_value = (^V)(element_value)^
- ok = true
- return
- }
- }
- pos = (pos + 1) & mask
- distance += 1
- }
- }
- // IMPORTANT: USED WITHIN THE COMPILER
- __dynamic_map_get :: proc "contextless" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, h: Map_Hash, key: rawptr) -> (ptr: rawptr) {
- if m.len == 0 {
- return nil
- }
- pos := map_desired_position(m^, h)
- distance := uintptr(0)
- mask := (uintptr(1) << map_log2_cap(m^)) - 1
- ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info)
- for {
- element_hash := hs[pos]
- if map_hash_is_empty(element_hash) {
- return nil
- } else if distance > map_probe_distance(m^, element_hash, pos) {
- return nil
- } else if element_hash == h && info.key_equal(key, rawptr(map_cell_index_dynamic(ks, info.ks, pos))) {
- return rawptr(map_cell_index_dynamic(vs, info.vs, pos))
- }
- pos = (pos + 1) & mask
- distance += 1
- }
- }
- // IMPORTANT: USED WITHIN THE COMPILER
- __dynamic_map_check_grow :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, loc := #caller_location) -> (err: Allocator_Error, has_grown: bool) {
- if m.len >= map_resize_threshold(m^) {
- return map_grow_dynamic(m, info, loc), true
- }
- return nil, false
- }
- __dynamic_map_set_without_hash :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, key, value: rawptr, loc := #caller_location) -> rawptr {
- return __dynamic_map_set(m, info, info.key_hasher(key, map_seed(m^)), key, value, loc)
- }
- // IMPORTANT: USED WITHIN THE COMPILER
- __dynamic_map_set :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, hash: Map_Hash, key, value: rawptr, loc := #caller_location) -> rawptr {
- if found := __dynamic_map_get(m, info, hash, key); found != nil {
- intrinsics.mem_copy_non_overlapping(found, value, info.vs.size_of_type)
- return found
- }
- hash := hash
- err, has_grown := __dynamic_map_check_grow(m, info, loc)
- if err != nil {
- return nil
- }
- if has_grown {
- hash = info.key_hasher(key, map_seed(m^))
- }
- result := map_insert_hash_dynamic(m, info, hash, uintptr(key), uintptr(value))
- m.len += 1
- return rawptr(result)
- }
- // IMPORTANT: USED WITHIN THE COMPILER
- @(private)
- __dynamic_map_reserve :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, new_capacity: uint, loc := #caller_location) -> Allocator_Error {
- return map_reserve_dynamic(m, info, uintptr(new_capacity), loc)
- }
- // NOTE: the default hashing algorithm derives from fnv64a, with some minor modifications to work for `map` type:
- //
- // * Convert a `0` result to `1`
- // * "empty entry"
- // * Prevent the top bit from being set
- // * "deleted entry"
- //
- // Both of these modification are necessary for the implementation of the `map`
- INITIAL_HASH_SEED :: 0xcbf29ce484222325
- HASH_MASK :: 1 << (8*size_of(uintptr) - 1) -1
- default_hasher :: #force_inline proc "contextless" (data: rawptr, seed: uintptr, N: int) -> uintptr {
- h := u64(seed) + INITIAL_HASH_SEED
- p := ([^]byte)(data)
- for _ in 0..<N {
- h = (h ~ u64(p[0])) * 0x100000001b3
- p = p[1:]
- }
- h &= HASH_MASK
- return uintptr(h) | uintptr(uintptr(h) == 0)
- }
- default_hasher_string :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr {
- str := (^[]byte)(data)
- return default_hasher(raw_data(str^), seed, len(str))
- }
- default_hasher_cstring :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr {
- h := u64(seed) + INITIAL_HASH_SEED
- if ptr := (^[^]byte)(data)^; ptr != nil {
- for ptr[0] != 0 {
- h = (h ~ u64(ptr[0])) * 0x100000001b3
- ptr = ptr[1:]
- }
- }
- h &= HASH_MASK
- return uintptr(h) | uintptr(uintptr(h) == 0)
- }
|