123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615 |
- package linalg
- import "base:builtin"
- import "core:math"
- @(require_results)
- to_radians :: proc "contextless" (degrees: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = degrees[i] * RAD_PER_DEG
- }
- } else {
- out = degrees * RAD_PER_DEG
- }
- return
- }
- @(require_results)
- to_degrees :: proc "contextless" (radians: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = radians[i] * DEG_PER_RAD
- }
- } else {
- out = radians * DEG_PER_RAD
- }
- return
- }
- @(require_results)
- min_double :: proc "contextless" (a, b: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = builtin.min(a[i], b[i])
- }
- } else {
- out = builtin.min(a, b)
- }
- return
- }
- @(require_results)
- min_single :: proc "contextless" (a: $T) -> (out: ELEM_TYPE(T)) where IS_NUMERIC(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- N :: len(T)
- when N == 1 {
- out = a[0]
- } else when N == 2 {
- out = builtin.min(a[0], a[1])
- } else {
- out = builtin.min(a[0], a[1])
- for i in 2..<N {
- out = builtin.min(out, a[i])
- }
- }
- } else {
- out = a
- }
- return
- }
- @(require_results)
- min_triple :: proc "contextless" (a, b, c: $T) -> T where IS_NUMERIC(ELEM_TYPE(T)) {
- return min_double(a, min_double(b, c))
- }
- min :: proc{min_single, min_double, min_triple}
- @(require_results)
- max_double :: proc "contextless" (a, b: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = builtin.max(a[i], b[i])
- }
- } else {
- out = builtin.max(a, b)
- }
- return
- }
- @(require_results)
- max_single :: proc "contextless" (a: $T) -> (out: ELEM_TYPE(T)) where IS_NUMERIC(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- N :: len(T)
- when N == 1 {
- out = a[0]
- } else when N == 2 {
- out = builtin.max(a[0], a[1])
- } else when N == 3 {
- out = builtin.max(a[0], a[1], a[2])
- }else {
- out = builtin.max(a[0], a[1])
- for i in 2..<N {
- out = builtin.max(out, a[i])
- }
- }
- } else {
- out = a
- }
- return
- }
- @(require_results)
- max_triple :: proc "contextless" (a, b, c: $T) -> T where IS_NUMERIC(ELEM_TYPE(T)) {
- return max_double(a, max_double(b, c))
- }
- max :: proc{max_single, max_double, max_triple}
- @(require_results)
- abs :: proc "contextless" (a: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = auto_cast builtin.abs(a[i])
- }
- } else {
- out = auto_cast builtin.abs(a)
- }
- return
- }
- @(require_results)
- sign :: proc "contextless" (a: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = #force_inline math.sign(a[i])
- }
- } else {
- out = #force_inline math.sign(a)
- }
- return
- }
- @(require_results)
- clamp :: proc "contextless" (x, a, b: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = builtin.clamp(x[i], a[i], b[i])
- }
- } else {
- out = builtin.clamp(x, a, b)
- }
- return
- }
- @(require_results)
- saturate :: proc "contextless" (x: $T) -> T where IS_FLOAT(ELEM_TYPE(T)) {
- return clamp(x, 0.0, 1.0)
- }
- @(require_results)
- lerp :: proc "contextless" (a, b, t: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = a[i]*(1-t[i]) + b[i]*t[i]
- }
- } else {
- out = a * (1.0 - t) + b * t
- }
- return
- }
- @(require_results)
- mix :: proc "contextless" (a, b, t: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = a[i]*(1-t[i]) + b[i]*t[i]
- }
- } else {
- out = a * (1.0 - t) + b * t
- }
- return
- }
- @(require_results)
- unlerp :: proc "contextless" (a, b, x: $T) -> T where IS_FLOAT(ELEM_TYPE(T)) {
- return (x - a) / (b - a)
- }
- @(require_results)
- step :: proc "contextless" (e, x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = x[i] < e[i] ? 0.0 : 1.0
- }
- } else {
- out = x < e ? 0.0 : 1.0
- }
- return
- }
- @(require_results)
- smoothstep :: proc "contextless" (e0, e1, x: $T) -> T where IS_FLOAT(ELEM_TYPE(T)) {
- t := saturate(unlerp(e0, e1, x))
- return t * t * (3.0 - 2.0 * t)
- }
- @(require_results)
- smootherstep :: proc "contextless" (e0, e1, x: $T) -> T where IS_FLOAT(ELEM_TYPE(T)) {
- t := saturate(unlerp(e0, e1, x))
- return t * t * t * (t * (6*t - 15) + 10)
- }
- @(require_results)
- sqrt :: proc "contextless" (x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = math.sqrt(x[i])
- }
- } else {
- out = math.sqrt(x)
- }
- return
- }
- @(require_results)
- inverse_sqrt :: proc "contextless" (x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = 1.0/math.sqrt(x[i])
- }
- } else {
- out = 1.0/math.sqrt(x)
- }
- return
- }
- @(require_results)
- cos :: proc "contextless" (x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = math.cos(x[i])
- }
- } else {
- out = math.cos(x)
- }
- return
- }
- @(require_results)
- sin :: proc "contextless" (x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = math.sin(x[i])
- }
- } else {
- out = math.sin(x)
- }
- return
- }
- @(require_results)
- tan :: proc "contextless" (x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = math.tan(x[i])
- }
- } else {
- out = math.tan(x)
- }
- return
- }
- @(require_results)
- acos :: proc "contextless" (x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = math.acos(x[i])
- }
- } else {
- out = math.acos(x)
- }
- return
- }
- @(require_results)
- asin :: proc "contextless" (x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = math.asin(x[i])
- }
- } else {
- out = math.asin(x)
- }
- return
- }
- @(require_results)
- atan :: proc "contextless" (x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = math.atan(x[i])
- }
- } else {
- out = math.atan(x)
- }
- return
- }
- @(require_results)
- atan2 :: proc "contextless" (y, x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = math.atan2(y[i], x[i])
- }
- } else {
- out = math.atan2(y, x)
- }
- return
- }
- @(require_results)
- ln :: proc "contextless" (x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = math.ln(x[i])
- }
- } else {
- out = math.ln(x)
- }
- return
- }
- @(require_results)
- log2 :: proc "contextless" (x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- INVLN2 :: 1.4426950408889634073599246810018921374266459541529859341354494069
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = INVLN2 * math.ln(x[i])
- }
- } else {
- out = INVLN2 * math.ln(x)
- }
- return
- }
- @(require_results)
- log10 :: proc "contextless" (x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- INVLN10 :: 0.4342944819032518276511289189166050822943970058036665661144537831
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = INVLN10 * math.ln(x[i])
- }
- } else {
- out = INVLN10 * math.ln(x)
- }
- return
- }
- @(require_results)
- log :: proc "contextless" (x, b: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = math.ln(x[i]) / math.ln(cast(ELEM_TYPE(T))b[i])
- }
- } else {
- out = math.ln(x) / math.ln(cast(ELEM_TYPE(T))b)
- }
- return
- }
- @(require_results)
- exp :: proc "contextless" (x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = math.exp(x[i])
- }
- } else {
- out = math.exp(x)
- }
- return
- }
- @(require_results)
- exp2 :: proc "contextless" (x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = math.exp(LN2 * x[i])
- }
- } else {
- out = math.exp(LN2 * x)
- }
- return
- }
- @(require_results)
- exp10 :: proc "contextless" (x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = math.exp(LN10 * x[i])
- }
- } else {
- out = math.exp(LN10 * x)
- }
- return
- }
- @(require_results)
- pow :: proc "contextless" (x, e: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = math.pow(x[i], e[i])
- }
- } else {
- out = math.pow(x, e)
- }
- return
- }
- @(require_results)
- ceil :: proc "contextless" (x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = #force_inline math.ceil(x[i])
- }
- } else {
- out = #force_inline math.ceil(x)
- }
- return
- }
- @(require_results)
- floor :: proc "contextless" (x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = #force_inline math.floor(x[i])
- }
- } else {
- out = #force_inline math.floor(x)
- }
- return
- }
- @(require_results)
- round :: proc "contextless" (x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
- when IS_ARRAY(T) {
- for i in 0..<len(T) {
- out[i] = #force_inline math.round(x[i])
- }
- } else {
- out = #force_inline math.round(x)
- }
- return
- }
- @(require_results)
- fract :: proc "contextless" (x: $T) -> T where IS_FLOAT(ELEM_TYPE(T)) {
- f := #force_inline floor(x)
- return x - f
- }
- @(require_results)
- mod :: proc "contextless" (x, m: $T) -> T where IS_FLOAT(ELEM_TYPE(T)) {
- f := #force_inline floor(x / m)
- return x - f * m
- }
- @(require_results)
- face_forward :: proc "contextless" (N, I, N_ref: $T) -> (out: T) where IS_ARRAY(T), IS_FLOAT(ELEM_TYPE(T)) {
- return dot(N_ref, I) < 0 ? N : -N
- }
- @(require_results)
- distance :: proc "contextless" (p0, p1: $V/[$N]$E) -> E where IS_NUMERIC(E) {
- return length(p1 - p0)
- }
- @(require_results)
- reflect :: proc "contextless" (I, N: $T) -> (out: T) where IS_ARRAY(T), IS_FLOAT(ELEM_TYPE(T)) {
- b := N * (2 * dot(N, I))
- return I - b
- }
- @(require_results)
- refract :: proc "contextless" (I, Normal: $V/[$N]$E, eta: E) -> (out: V) where IS_ARRAY(V), IS_FLOAT(ELEM_TYPE(V)) {
- dv := dot(Normal, I)
- k := 1 - eta*eta * (1 - dv*dv)
- a := I * eta
- b := Normal * (eta*dv+math.sqrt(k))
- return (a - b) * E(int(k >= 0))
- }
- @(require_results)
- is_nan_single :: proc "contextless" (x: $T) -> bool where IS_FLOAT(T) {
- return #force_inline math.is_nan(x)
- }
- @(require_results)
- is_nan_array :: proc "contextless" (x: $A/[$N]$T) -> (out: [N]bool) where IS_FLOAT(T) {
- for i in 0..<N {
- out[i] = #force_inline is_nan(x[i])
- }
- return
- }
- @(require_results)
- is_inf_single :: proc "contextless" (x: $T) -> bool where IS_FLOAT(T) {
- return #force_inline math.is_inf(x)
- }
- @(require_results)
- is_inf_array :: proc "contextless" (x: $A/[$N]$T) -> (out: [N]bool) where IS_FLOAT(T) {
- for i in 0..<N {
- out[i] = #force_inline is_inf(x[i])
- }
- return
- }
- @(require_results)
- classify_single :: proc "contextless" (x: $T) -> math.Float_Class where IS_FLOAT(T) {
- return #force_inline math.classify(x)
- }
- @(require_results)
- classify_array :: proc "contextless" (x: $A/[$N]$T) -> (out: [N]math.Float_Class) where IS_FLOAT(T) {
- for i in 0..<N {
- out[i] = #force_inline classify_single(x[i])
- }
- return
- }
- is_nan :: proc{is_nan_single, is_nan_array}
- is_inf :: proc{is_inf_single, is_inf_array}
- classify :: proc{classify_single, classify_array}
- @(require_results) less_than_single :: proc "contextless" (x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x < y }
- @(require_results) less_than_equal_single :: proc "contextless" (x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x <= y }
- @(require_results) greater_than_single :: proc "contextless" (x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x > y }
- @(require_results) greater_than_equal_single :: proc "contextless" (x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x >= y }
- @(require_results) equal_single :: proc "contextless" (x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x == y }
- @(require_results) not_equal_single :: proc "contextless" (x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x != y }
- @(require_results)
- less_than_array :: proc "contextless" (x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(A), IS_FLOAT(ELEM_TYPE(A)) {
- for i in 0..<N {
- out[i] = x[i] < y[i]
- }
- return
- }
- @(require_results)
- less_than_equal_array :: proc "contextless" (x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(A), IS_FLOAT(ELEM_TYPE(A)) {
- for i in 0..<N {
- out[i] = x[i] <= y[i]
- }
- return
- }
- @(require_results)
- greater_than_array :: proc "contextless" (x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(A), IS_FLOAT(ELEM_TYPE(A)) {
- for i in 0..<N {
- out[i] = x[i] > y[i]
- }
- return
- }
- @(require_results)
- greater_than_equal_array :: proc "contextless" (x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(A), IS_FLOAT(ELEM_TYPE(A)) {
- for i in 0..<N {
- out[i] = x[i] >= y[i]
- }
- return
- }
- @(require_results)
- equal_array :: proc "contextless" (x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(A), IS_FLOAT(ELEM_TYPE(A)) {
- for i in 0..<N {
- out[i] = x[i] == y[i]
- }
- return
- }
- @(require_results)
- not_equal_array :: proc "contextless" (x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(A), IS_FLOAT(ELEM_TYPE(A)) {
- for i in 0..<N {
- out[i] = x[i] != y[i]
- }
- return
- }
- less_than :: proc{less_than_single, less_than_array}
- less_than_equal :: proc{less_than_equal_single, less_than_equal_array}
- greater_than :: proc{greater_than_single, greater_than_array}
- greater_than_equal :: proc{greater_than_equal_single, greater_than_equal_array}
- equal :: proc{equal_single, equal_array}
- not_equal :: proc{not_equal_single, not_equal_array}
- @(require_results)
- any :: proc "contextless" (x: $A/[$N]bool) -> (out: bool) {
- for e in x {
- if e {
- return true
- }
- }
- return false
- }
- @(require_results)
- all :: proc "contextless" (x: $A/[$N]bool) -> (out: bool) {
- for e in x {
- if !e {
- return false
- }
- }
- return true
- }
- @(require_results)
- not :: proc "contextless" (x: $A/[$N]bool) -> (out: A) {
- for e, i in x {
- out[i] = !e
- }
- return
- }
|