123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776 |
- #
- # Copyright 2021 Jeroen van Rijn <[email protected]>.
- # Made available under Odin's BSD-3 license.
- #
- # A BigInt implementation in Odin.
- # For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
- # The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
- #
- from ctypes import *
- from random import *
- import math
- import os
- import platform
- import time
- import gc
- from enum import Enum
- import argparse
- parser = argparse.ArgumentParser(
- description = "Odin core:math/big test suite",
- epilog = "By default we run regression and random tests with preset parameters.",
- formatter_class = argparse.ArgumentDefaultsHelpFormatter,
- )
- #
- # Normally, we report the number of passes and fails. With this option set, we exit at first fail.
- #
- parser.add_argument(
- "-exit-on-fail",
- help = "Exit when a test fails",
- action = "store_true",
- )
- #
- # We skip randomized tests altogether if this is set.
- #
- no_random = parser.add_mutually_exclusive_group()
- no_random.add_argument(
- "-no-random",
- help = "No random tests",
- action = "store_true",
- )
- #
- # Normally we run a given number of cycles on each test.
- # Timed tests budget 1 second per 20_000 bits instead.
- #
- # For timed tests we budget a second per `n` bits and iterate until we hit that time.
- #
- timed_or_fast = no_random.add_mutually_exclusive_group()
- timed_or_fast.add_argument(
- "-timed",
- type = bool,
- default = False,
- help = "Timed tests instead of a preset number of iterations.",
- )
- parser.add_argument(
- "-timed-bits",
- type = int,
- metavar = "BITS",
- default = 20_000,
- help = "Timed tests. Every `BITS` worth of input is given a second of running time.",
- )
- #
- # For normal tests (non-timed), `-fast-tests` cuts down on the number of iterations.
- #
- timed_or_fast.add_argument(
- "-fast-tests",
- help = "Cut down on the number of iterations of each test",
- action = "store_true",
- )
- args = parser.parse_args()
- EXIT_ON_FAIL = args.exit_on_fail
- #
- # How many iterations of each random test do we want to run?
- #
- BITS_AND_ITERATIONS = [
- ( 120, 10_000),
- ( 1_200, 1_000),
- ( 4_096, 100),
- (12_000, 10),
- ]
- if args.fast_tests:
- for k in range(len(BITS_AND_ITERATIONS)):
- b, i = BITS_AND_ITERATIONS[k]
- BITS_AND_ITERATIONS[k] = (b, i // 10 if i >= 100 else 5)
- if args.no_random:
- BITS_AND_ITERATIONS = []
- #
- # Where is the DLL? If missing, build using: `odin build . -build-mode:shared`
- #
- if platform.system() == "Windows":
- LIB_PATH = os.getcwd() + os.sep + "math_big_test_library.dll"
- elif platform.system() == "Linux":
- LIB_PATH = os.getcwd() + os.sep + "math_big_test_library.so"
- elif platform.system() == "Darwin":
- LIB_PATH = os.getcwd() + os.sep + "math_big_test_library.dylib"
- else:
- print("Platform is unsupported.")
- exit(1)
- TOTAL_TIME = 0
- UNTIL_TIME = 0
- UNTIL_ITERS = 0
- def we_iterate():
- if args.timed:
- return TOTAL_TIME < UNTIL_TIME
- else:
- global UNTIL_ITERS
- UNTIL_ITERS -= 1
- return UNTIL_ITERS != -1
- #
- # Error enum values
- #
- class Error(Enum):
- Okay = 0
- Out_Of_Memory = 1
- Invalid_Pointer = 2
- Invalid_Argument = 3
- Unknown_Error = 4
- Assignment_To_Immutable = 10
- Max_Iterations_Reached = 11
- Buffer_Overflow = 12
- Integer_Overflow = 13
- Integer_Underflow = 14
- Division_by_Zero = 30
- Math_Domain_Error = 31
- Cannot_Open_File = 50
- Cannot_Read_File = 51
- Cannot_Write_File = 52
- Unimplemented = 127
- #
- # Disable garbage collection
- #
- gc.disable()
- #
- # Set up exported procedures
- #
- try:
- l = cdll.LoadLibrary(LIB_PATH)
- except:
- print("Couldn't find or load " + LIB_PATH + ".")
- exit(1)
- def load(export_name, args, res):
- export_name.argtypes = args
- export_name.restype = res
- return export_name
- #
- # Result values will be passed in a struct { res: cstring, err: Error }
- #
- class Res(Structure):
- _fields_ = [("res", c_char_p), ("err", c_uint64)]
- initialize_constants = load(l.test_initialize_constants, [], c_uint64)
- NAILS = initialize_constants()
- LEG_BITS = 64 - NAILS
- print("LEG BITS: ", LEG_BITS)
- error_string = load(l.test_error_string, [c_byte], c_char_p)
- add = load(l.test_add, [c_char_p, c_char_p ], Res)
- sub = load(l.test_sub, [c_char_p, c_char_p ], Res)
- mul = load(l.test_mul, [c_char_p, c_char_p ], Res)
- sqr = load(l.test_sqr, [c_char_p ], Res)
- div = load(l.test_div, [c_char_p, c_char_p ], Res)
- # Powers and such
- int_log = load(l.test_log, [c_char_p, c_longlong], Res)
- int_pow = load(l.test_pow, [c_char_p, c_longlong], Res)
- int_sqrt = load(l.test_sqrt, [c_char_p ], Res)
- int_root_n = load(l.test_root_n, [c_char_p, c_longlong], Res)
- # Logical operations
- int_shl_leg = load(l.test_shl_leg, [c_char_p, c_longlong], Res)
- int_shr_leg = load(l.test_shr_leg, [c_char_p, c_longlong], Res)
- int_shl = load(l.test_shl, [c_char_p, c_longlong], Res)
- int_shr = load(l.test_shr, [c_char_p, c_longlong], Res)
- int_shr_signed = load(l.test_shr_signed, [c_char_p, c_longlong], Res)
- int_factorial = load(l.test_factorial, [c_uint64 ], Res)
- int_gcd = load(l.test_gcd, [c_char_p, c_char_p ], Res)
- int_lcm = load(l.test_lcm, [c_char_p, c_char_p ], Res)
- is_square = load(l.test_is_square, [c_char_p ], Res)
- def test(test_name: "", res: Res, param=[], expected_error = Error.Okay, expected_result = "", radix=16):
- passed = True
- r = None
- err = Error(res.err)
- if err != expected_error:
- error_loc = res.res.decode('utf-8')
- error = "{}: {} in '{}'".format(test_name, err, error_loc)
- if len(param):
- error += " with params {}".format(param)
- print(error, flush=True)
- passed = False
- elif err == Error.Okay:
- r = None
- try:
- r = res.res.decode('utf-8')
- r = int(res.res, radix)
- except:
- pass
- if r != expected_result:
- error = "{}: Result was '{}', expected '{}'".format(test_name, r, expected_result)
- if len(param):
- error += " with params {}".format(param)
- print(error, flush=True)
- passed = False
- if EXIT_ON_FAIL and not passed: exit(res.err)
- return passed
- def arg_to_odin(a):
- if a >= 0:
- s = hex(a)[2:]
- else:
- s = '-' + hex(a)[3:]
- return s.encode('utf-8')
- def big_integer_sqrt(src):
- # The Python version on Github's CI doesn't offer math.isqrt.
- # We implement our own
- count = src.bit_length()
- a, b = count >> 1, count & 1
- x = 1 << (a + b)
- while True:
- # y = (x + n // x) // 2
- t1 = src // x
- t2 = t1 + x
- y = t2 >> 1
- if y >= x:
- return x
- x, y = y, x
- def big_integer_lcm(a, b):
- # Computes least common multiple as `|a*b|/gcd(a,b)`
- # Divide the smallest by the GCD.
- if a == 0 or b == 0:
- return 0
- if abs(a) < abs(b):
- # Store quotient in `t2` such that `t2 * b` is the LCM.
- lcm = a // math.gcd(a, b)
- return abs(b * lcm)
- else:
- # Store quotient in `t2` such that `t2 * a` is the LCM.
- lcm = b // math.gcd(a, b)
- return abs(a * lcm)
- def test_add(a = 0, b = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), arg_to_odin(b)]
- res = add(*args)
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = a + b
- return test("test_add", res, [a, b], expected_error, expected_result)
- def test_sub(a = 0, b = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), arg_to_odin(b)]
- res = sub(*args)
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = a - b
- return test("test_sub", res, [a, b], expected_error, expected_result)
- def test_mul(a = 0, b = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), arg_to_odin(b)]
- try:
- res = mul(*args)
- except OSError as e:
- print("{} while trying to multiply {} x {}.".format(e, a, b))
- if EXIT_ON_FAIL: exit(3)
- return False
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = a * b
- return test("test_mul", res, [a, b], expected_error, expected_result)
- def test_sqr(a = 0, b = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a)]
- try:
- res = sqr(*args)
- except OSError as e:
- print("{} while trying to square {}.".format(e, a))
- if EXIT_ON_FAIL: exit(3)
- return False
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = a * a
- return test("test_sqr", res, [a], expected_error, expected_result)
- def test_div(a = 0, b = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), arg_to_odin(b)]
- try:
- res = div(*args)
- except OSError as e:
- print("{} while trying divide to {} / {}.".format(e, a, b))
- if EXIT_ON_FAIL: exit(3)
- return False
- expected_result = None
- if expected_error == Error.Okay:
- #
- # We don't round the division results, so if one component is negative, we're off by one.
- #
- if a < 0 and b > 0:
- expected_result = int(-(abs(a) // b))
- elif b < 0 and a > 0:
- expected_result = int(-(a // abs((b))))
- else:
- expected_result = a // b if b != 0 else None
- return test("test_div", res, [a, b], expected_error, expected_result)
- def test_log(a = 0, base = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), base]
- res = int_log(*args)
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = int(math.log(a, base))
- return test("test_log", res, [a, base], expected_error, expected_result)
- def test_pow(base = 0, power = 0, expected_error = Error.Okay):
- args = [arg_to_odin(base), power]
- res = int_pow(*args)
- expected_result = None
- if expected_error == Error.Okay:
- if power < 0:
- expected_result = 0
- else:
- # NOTE(Jeroen): Don't use `math.pow`, it's a floating point approximation.
- # Use built-in `pow` or `a**b` instead.
- expected_result = pow(base, power)
- return test("test_pow", res, [base, power], expected_error, expected_result)
- def test_sqrt(number = 0, expected_error = Error.Okay):
- args = [arg_to_odin(number)]
- try:
- res = int_sqrt(*args)
- except OSError as e:
- print("{} while trying to sqrt {}.".format(e, number))
- if EXIT_ON_FAIL: exit(3)
- return False
- expected_result = None
- if expected_error == Error.Okay:
- if number < 0:
- expected_result = 0
- else:
- expected_result = big_integer_sqrt(number)
- return test("test_sqrt", res, [number], expected_error, expected_result)
- def root_n(number, root):
- u, s = number, number + 1
- while u < s:
- s = u
- t = (root-1) * s + number // pow(s, root - 1)
- u = t // root
- return s
- def test_root_n(number = 0, root = 0, expected_error = Error.Okay):
- args = [arg_to_odin(number), root]
- res = int_root_n(*args)
- expected_result = None
- if expected_error == Error.Okay:
- if number < 0:
- expected_result = 0
- else:
- expected_result = root_n(number, root)
- return test("test_root_n", res, [number, root], expected_error, expected_result)
- def test_shl_leg(a = 0, digits = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), digits]
- res = int_shl_leg(*args)
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = a << (digits * LEG_BITS)
- return test("test_shl_leg", res, [a, digits], expected_error, expected_result)
- def test_shr_leg(a = 0, digits = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), digits]
- res = int_shr_leg(*args)
- expected_result = None
- if expected_error == Error.Okay:
- if a < 0:
- # Don't pass negative numbers. We have a shr_signed.
- return False
- else:
- expected_result = a >> (digits * LEG_BITS)
-
- return test("test_shr_leg", res, [a, digits], expected_error, expected_result)
- def test_shl(a = 0, bits = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), bits]
- res = int_shl(*args)
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = a << bits
- return test("test_shl", res, [a, bits], expected_error, expected_result)
- def test_shr(a = 0, bits = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), bits]
- res = int_shr(*args)
- expected_result = None
- if expected_error == Error.Okay:
- if a < 0:
- # Don't pass negative numbers. We have a shr_signed.
- return False
- else:
- expected_result = a >> bits
-
- return test("test_shr", res, [a, bits], expected_error, expected_result)
- def test_shr_signed(a = 0, bits = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), bits]
- res = int_shr_signed(*args)
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = a >> bits
-
- return test("test_shr_signed", res, [a, bits], expected_error, expected_result)
- def test_factorial(number = 0, expected_error = Error.Okay):
- args = [number]
- try:
- res = int_factorial(*args)
- except OSError as e:
- print("{} while trying to factorial {}.".format(e, number))
- if EXIT_ON_FAIL: exit(3)
- return False
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = math.factorial(number)
-
- return test("test_factorial", res, [number], expected_error, expected_result)
- def test_gcd(a = 0, b = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), arg_to_odin(b)]
- res = int_gcd(*args)
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = math.gcd(a, b)
-
- return test("test_gcd", res, [a, b], expected_error, expected_result)
- def test_lcm(a = 0, b = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a), arg_to_odin(b)]
- res = int_lcm(*args)
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = big_integer_lcm(a, b)
-
- return test("test_lcm", res, [a, b], expected_error, expected_result)
- def test_is_square(a = 0, b = 0, expected_error = Error.Okay):
- args = [arg_to_odin(a)]
- res = is_square(*args)
- expected_result = None
- if expected_error == Error.Okay:
- expected_result = str(big_integer_sqrt(a) ** 2 == a) if a > 0 else "False"
-
- return test("test_is_square", res, [a], expected_error, expected_result)
- # TODO(Jeroen): Make sure tests cover edge cases, fast paths, and so on.
- #
- # The last two arguments in tests are the expected error and expected result.
- #
- # The expected error defaults to None.
- # By default the Odin implementation will be tested against the Python one.
- # You can override that by supplying an expected result as the last argument instead.
- TESTS = {
- test_add: [
- [ 1234, 5432],
- ],
- test_sub: [
- [ 1234, 5432],
- ],
- test_mul: [
- [ 1234, 5432],
- [ 0xd3b4e926aaba3040e1c12b5ea553b5, 0x1a821e41257ed9281bee5bc7789ea7 ],
- [ 1 << 21_105, 1 << 21_501 ],
- [
- 0x200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000,
- 0x200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000,
- ]
- ],
- test_sqr: [
- [ 5432],
- [ 0xd3b4e926aaba3040e1c12b5ea553b5 ],
- ],
- test_div: [
- [ 54321, 12345],
- [ 55431, 0, Error.Division_by_Zero],
- [ 12980742146337069150589594264770969721, 4611686018427387904 ],
- [ 831956404029821402159719858789932422, 243087903122332132 ],
- ],
- test_log: [
- [ 3192, 1, Error.Invalid_Argument],
- [ -1234, 2, Error.Math_Domain_Error],
- [ 0, 2, Error.Math_Domain_Error],
- [ 1024, 2],
- ],
- test_pow: [
- [ 0, -1, Error.Math_Domain_Error ], # Math
- [ 0, 0 ], # 1
- [ 0, 2 ], # 0
- [ 42, -1,], # 0
- [ 42, 1 ], # 1
- [ 42, 0 ], # 42
- [ 42, 2 ], # 42*42
- [ 1023423462055631945665902260039819522, 6],
- [ 2351415513563017480724958108064794964140712340951636081608226461329298597792428177392182921045756382154475969841516481766099091057155043079113409578271460350765774152509347176654430118446048617733844782454267084644777022821998489944144604889308377152515711394170267839394315842510152114743680838721625924309675796181595284284935359605488617487126635442626578631, 4],
- ],
- test_sqrt: [
- [ -1, Error.Invalid_Argument, ],
- [ 42, Error.Okay, ],
- [ 12345678901234567890, Error.Okay, ],
- [ 1298074214633706907132624082305024, Error.Okay, ],
- [ 0xa85e79177036820e9e63d14514884413c283db3dba2771f66ec888ae94fe253826ed3230efc1de0cbb4a2ba16fede5fe980d232472cca9e8f339714c56a9e64b5cff7538c33773f128898e8cad47234e8a086b4ce5b902231e2da75cc6cb510d892feb9c9c19ee5f5b7967cb7f081fb79099afe2d20203b0693ecc95c656e5515e0903a4ebc84d22fc2a176ba36dd795195535cfdf473e547930fbd6eae51ad11e974198b4733a10115f391c0fefd22654f5acd63c6415d4cbdaad6c1fc1812333d701b64bb230307fb37911561f5287efd67c2eec5a26a694931aec299c67874881bab0c42941cf0f4ef8ca3548e1adcc7f712eb714762184d656385ceacc7b9f75620dfa7ec62b70ee92a5998cee14ad2b9df3f0c861678bc3311c1fe78c5ce4ed30b90c56d18d50261a4f46fdbf6af94737920b50adf1229503edea8b32900000697f366eba632074a66dcd9999a1510ccefa6110bac2207602b16cd4ce42a36fbf276b5b14550faf75194256f175a867169ff30f8e4770d094b617e3df29612359e33d2a3e8f4e12acf243a22b2732e35a5039fea630886e80f49fb310cb34cd1ecb0dc3036761ac8eed5e2e3d6ea88c5b2f552405149fcb100f50368e969c7d1d45db10ea868838dddc3fbc54c9b658761522c31e46661f46205a6c8783d60638db10bc9515ece8509aa181332207c5a2753ee4a8297a65695fbd8184de, Error.Okay, ],
- ],
- test_root_n: [
- [ 1298074214633706907132624082305024, 2, Error.Okay, ],
- ],
- test_shl_leg: [
- [ 3192, 1 ],
- [ 1298074214633706907132624082305024, 2 ],
- [ 1024, 3 ],
- ],
- test_shr_leg: [
- [ 3680125442705055547392, 1 ],
- [ 1725436586697640946858688965569256363112777243042596638790631055949824, 2 ],
- [ 219504133884436710204395031992179571, 2 ],
- ],
- test_shl: [
- [ 3192, 1 ],
- [ 1298074214633706907132624082305024, 2 ],
- [ 1024, 3 ],
- ],
- test_shr: [
- [ 3680125442705055547392, 1 ],
- [ 1725436586697640946858688965569256363112777243042596638790631055949824, 2 ],
- [ 219504133884436710204395031992179571, 2 ],
- ],
- test_shr_signed: [
- [ -611105530635358368578155082258244262, 12 ],
- [ -149195686190273039203651143129455, 12 ],
- [ 611105530635358368578155082258244262, 12 ],
- [ 149195686190273039203651143129455, 12 ],
- ],
- test_factorial: [
- [ 6_000 ], # Regular factorial, see cutoff in common.odin.
- [ 12_345 ], # Binary split factorial
- ],
- test_gcd: [
- [ 23, 25, ],
- [ 125, 25, ],
- [ 125, 0, ],
- [ 0, 0, ],
- [ 0, 125,],
- ],
- test_lcm: [
- [ 23, 25,],
- [ 125, 25, ],
- [ 125, 0, ],
- [ 0, 0, ],
- [ 0, 125,],
- ],
- test_is_square: [
- [ 12, ],
- [ 0x4fa3f9fe4edb58bfae7bab80b94ffce6e02cdd067c509f75a5918e510d002a8b41949dee96f482678b6e593ee2a984aa68809af5bdc3c0ee839c588b3b619e0f4a5267a7533765f8621dd20994a9a5bdd7faca4aab4f84a72f4f30d623a44cbc974d48e7ab63259d3141da5467e0a2225d90e6388f8d05e0bcdcb67f6d11c4e17d4c168b9fb23bf0932d6082ed82241b01d7d80bb43bf516fc650d86d62e13df218557df8b3f2e4eb295485e3f221c01130791c0b1b4c77fae4ae98e000e42d943a1dff9bfd960fdabe6a729913f99d74b1a7736c213b6c134bbc6914e0b5ae9d1909a32c2084af5a49a99a97a8c3856fdf1e4ff39306ede6234f85f0dca94382a118d97058d0be641c7b0cecead08450042a56dff16808115f78857d8844df61d8e930427d410ee33a63c79, ]
- ],
- }
- if not args.fast_tests:
- TESTS[test_factorial].append(
- # This one on its own takes around 800ms, so we exclude it for FAST_TESTS
- [ 10_000 ],
- )
- total_passes = 0
- total_failures = 0
- #
- # test_shr_signed also tests shr, so we're not going to test shr randomly.
- #
- RANDOM_TESTS = [
- test_add, test_sub, test_mul, test_sqr,
- test_log, test_pow, test_sqrt, test_root_n,
- test_shl_leg, test_shr_leg, test_shl, test_shr_signed,
- test_gcd, test_lcm, test_is_square, test_div,
- ]
- SKIP_LARGE = [
- test_pow, test_root_n, # test_gcd,
- ]
- SKIP_LARGEST = []
- # Untimed warmup.
- for test_proc in TESTS:
- for t in TESTS[test_proc]:
- res = test_proc(*t)
- if __name__ == '__main__':
- print("\n---- math/big tests ----")
- print()
- max_name = 0
- for test_proc in TESTS:
- max_name = max(max_name, len(test_proc.__name__))
- fmt_string = "{name:>{max_name}}: {count_pass:7,} passes and {count_fail:7,} failures in {timing:9.3f} ms."
- fmt_string = fmt_string.replace("{max_name}", str(max_name))
- for test_proc in TESTS:
- count_pass = 0
- count_fail = 0
- TIMINGS = {}
- for t in TESTS[test_proc]:
- start = time.perf_counter()
- res = test_proc(*t)
- diff = time.perf_counter() - start
- TOTAL_TIME += diff
- if test_proc not in TIMINGS:
- TIMINGS[test_proc] = diff
- else:
- TIMINGS[test_proc] += diff
- if res:
- count_pass += 1
- total_passes += 1
- else:
- count_fail += 1
- total_failures += 1
- print(fmt_string.format(name=test_proc.__name__, count_pass=count_pass, count_fail=count_fail, timing=TIMINGS[test_proc] * 1_000))
- for BITS, ITERATIONS in BITS_AND_ITERATIONS:
- print()
- print("---- math/big with two random {bits:,} bit numbers ----".format(bits=BITS))
- print()
- #
- # We've already tested up to the 10th root.
- #
- TEST_ROOT_N_PARAMS = [2, 3, 4, 5, 6]
- for test_proc in RANDOM_TESTS:
- if BITS > 1_200 and test_proc in SKIP_LARGE: continue
- if BITS > 4_096 and test_proc in SKIP_LARGEST: continue
- count_pass = 0
- count_fail = 0
- TIMINGS = {}
- UNTIL_ITERS = ITERATIONS
- if test_proc == test_root_n and BITS == 1_200:
- UNTIL_ITERS /= 10
- UNTIL_TIME = TOTAL_TIME + BITS / args.timed_bits
- # We run each test for a second per 20k bits
- index = 0
- while we_iterate():
- a = randint(-(1 << BITS), 1 << BITS)
- b = randint(-(1 << BITS), 1 << BITS)
- if test_proc == test_div:
- # We've already tested division by zero above.
- bits = int(BITS * 0.6)
- b = randint(-(1 << bits), 1 << bits)
- if b == 0:
- b == 42
- elif test_proc == test_log:
- # We've already tested log's domain errors.
- a = randint(1, 1 << BITS)
- b = randint(2, 1 << 60)
- elif test_proc == test_pow:
- b = randint(1, 10)
- elif test_proc == test_sqrt:
- a = randint(1, 1 << BITS)
- b = Error.Okay
- elif test_proc == test_root_n:
- a = randint(1, 1 << BITS)
- b = TEST_ROOT_N_PARAMS[index]
- index = (index + 1) % len(TEST_ROOT_N_PARAMS)
- elif test_proc == test_shl_leg:
- b = randint(0, 10);
- elif test_proc == test_shr_leg:
- a = abs(a)
- b = randint(0, 10);
- elif test_proc == test_shl:
- b = randint(0, min(BITS, 120))
- elif test_proc == test_shr_signed:
- b = randint(0, min(BITS, 120))
- elif test_proc == test_is_square:
- a = randint(0, 1 << BITS)
- elif test_proc == test_lcm:
- smallest = min(a, b)
- biggest = max(a, b)
- # Randomly swap biggest and smallest
- if randint(1, 11) % 2 == 0:
- smallest, biggest = biggest, smallest
- a, b = smallest, biggest
- else:
- b = randint(0, 1 << BITS)
- res = None
- start = time.perf_counter()
- res = test_proc(a, b)
- diff = time.perf_counter() - start
- TOTAL_TIME += diff
- if test_proc not in TIMINGS:
- TIMINGS[test_proc] = diff
- else:
- TIMINGS[test_proc] += diff
- if res:
- count_pass += 1; total_passes += 1
- else:
- count_fail += 1; total_failures += 1
- print(fmt_string.format(name=test_proc.__name__, count_pass=count_pass, count_fail=count_fail, timing=TIMINGS[test_proc] * 1_000))
- print()
- print("---- THE END ----")
- print()
- print(fmt_string.format(name="total", count_pass=total_passes, count_fail=total_failures, timing=TOTAL_TIME * 1_000))
- if total_failures:
- exit(1)
|