123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308 |
- package math
- import "core:math/bits"
- // The original C code, the long comment, and the constants
- // below were from http://netlib.sandia.gov/cephes/cmath/sin.c,
- // available from http://www.netlib.org/cephes/cmath.tgz.
- // The go code is a simplified version of the original C.
- //
- // sin.c
- //
- // Circular sine
- //
- // SYNOPSIS:
- //
- // double x, y, sin();
- // y = sin( x );
- //
- // DESCRIPTION:
- //
- // Range reduction is into intervals of pi/4. The reduction error is nearly
- // eliminated by contriving an extended precision modular arithmetic.
- //
- // Two polynomial approximating functions are employed.
- // Between 0 and pi/4 the sine is approximated by
- // x + x**3 P(x**2).
- // Between pi/4 and pi/2 the cosine is represented as
- // 1 - x**2 Q(x**2).
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // DEC 0, 10 150000 3.0e-17 7.8e-18
- // IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
- //
- // Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss
- // is not gradual, but jumps suddenly to about 1 part in 10e7. Results may
- // be meaningless for x > 2**49 = 5.6e14.
- //
- // cos.c
- //
- // Circular cosine
- //
- // SYNOPSIS:
- //
- // double x, y, cos();
- // y = cos( x );
- //
- // DESCRIPTION:
- //
- // Range reduction is into intervals of pi/4. The reduction error is nearly
- // eliminated by contriving an extended precision modular arithmetic.
- //
- // Two polynomial approximating functions are employed.
- // Between 0 and pi/4 the cosine is approximated by
- // 1 - x**2 Q(x**2).
- // Between pi/4 and pi/2 the sine is represented as
- // x + x**3 P(x**2).
- //
- // ACCURACY:
- //
- // Relative error:
- // arithmetic domain # trials peak rms
- // IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
- // DEC 0,+1.07e9 17000 3.0e-17 7.2e-18
- //
- // Cephes Math Library Release 2.8: June, 2000
- // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
- //
- // The readme file at http://netlib.sandia.gov/cephes/ says:
- // Some software in this archive may be from the book _Methods and
- // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
- // International, 1989) or from the Cephes Mathematical Library, a
- // commercial product. In either event, it is copyrighted by the author.
- // What you see here may be used freely but it comes with no support or
- // guarantee.
- //
- // The two known misprints in the book are repaired here in the
- // source listings for the gamma function and the incomplete beta
- // integral.
- //
- // Stephen L. Moshier
- // [email protected]
- sincos :: proc{
- sincos_f16, sincos_f16le, sincos_f16be,
- sincos_f32, sincos_f32le, sincos_f32be,
- sincos_f64, sincos_f64le, sincos_f64be,
- }
- sincos_f16 :: proc "contextless" (x: f16) -> (sin, cos: f16) #no_bounds_check {
- s, c := sincos_f64(f64(x))
- return f16(s), f16(c)
- }
- sincos_f16le :: proc "contextless" (x: f16le) -> (sin, cos: f16le) #no_bounds_check {
- s, c := sincos_f64(f64(x))
- return f16le(s), f16le(c)
- }
- sincos_f16be :: proc "contextless" (x: f16be) -> (sin, cos: f16be) #no_bounds_check {
- s, c := sincos_f64(f64(x))
- return f16be(s), f16be(c)
- }
- sincos_f32 :: proc "contextless" (x: f32) -> (sin, cos: f32) #no_bounds_check {
- s, c := sincos_f64(f64(x))
- return f32(s), f32(c)
- }
- sincos_f32le :: proc "contextless" (x: f32le) -> (sin, cos: f32le) #no_bounds_check {
- s, c := sincos_f64(f64(x))
- return f32le(s), f32le(c)
- }
- sincos_f32be :: proc "contextless" (x: f32be) -> (sin, cos: f32be) #no_bounds_check {
- s, c := sincos_f64(f64(x))
- return f32be(s), f32be(c)
- }
- sincos_f64le :: proc "contextless" (x: f64le) -> (sin, cos: f64le) #no_bounds_check {
- s, c := sincos_f64(f64(x))
- return f64le(s), f64le(c)
- }
- sincos_f64be :: proc "contextless" (x: f64be) -> (sin, cos: f64be) #no_bounds_check {
- s, c := sincos_f64(f64(x))
- return f64be(s), f64be(c)
- }
- sincos_f64 :: proc "contextless" (x: f64) -> (sin, cos: f64) #no_bounds_check {
- x := x
- PI4A :: 0h3fe921fb40000000 // 7.85398125648498535156e-1 PI/4 split into three parts
- PI4B :: 0h3e64442d00000000 // 3.77489470793079817668e-8
- PI4C :: 0h3ce8469898cc5170 // 2.69515142907905952645e-15
- // special cases
- switch {
- case x == 0:
- return x, 1 // return ±0.0, 1.0
- case is_nan(x) || is_inf(x, 0):
- return nan_f64(), nan_f64()
- }
- // make argument positive
- sin_sign, cos_sign := false, false
- if x < 0 {
- x = -x
- sin_sign = true
- }
- j: u64
- y, z: f64
- if x >= REDUCE_THRESHOLD {
- j, z = _trig_reduce_f64(x)
- } else {
- j = u64(x * (4 / PI)) // integer part of x/(PI/4), as integer for tests on the phase angle
- y = f64(j) // integer part of x/(PI/4), as float
- if j&1 == 1 { // map zeros to origin
- j += 1
- y += 1
- }
- j &= 7 // octant modulo TAU radians (360 degrees)
- z = ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
- }
- if j > 3 { // reflect in x axis
- j -= 4
- sin_sign, cos_sign = !sin_sign, !cos_sign
- }
- if j > 1 {
- cos_sign = !cos_sign
- }
- zz := z * z
- cos = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
- sin = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
- if j == 1 || j == 2 {
- sin, cos = cos, sin
- }
- if cos_sign {
- cos = -cos
- }
- if sin_sign {
- sin = -sin
- }
- return
- }
- // sin coefficients
- @(private="file")
- _sin := [?]f64{
- 0h3de5d8fd1fd19ccd, // 1.58962301576546568060e-10
- 0hbe5ae5e5a9291f5d, // -2.50507477628578072866e-8
- 0h3ec71de3567d48a1, // 2.75573136213857245213e-6
- 0hbf2a01a019bfdf03, // -1.98412698295895385996e-4
- 0h3f8111111110f7d0, // 8.33333333332211858878e-3
- 0hbfc5555555555548, // -1.66666666666666307295e-1
- }
- // cos coefficients
- @(private="file")
- _cos := [?]f64{
- 0hbda8fa49a0861a9b, // -1.13585365213876817300e-11,
- 0h3e21ee9d7b4e3f05, // 2.08757008419747316778e-9,
- 0hbe927e4f7eac4bc6, // -2.75573141792967388112e-7,
- 0h3efa01a019c844f5, // 2.48015872888517045348e-5,
- 0hbf56c16c16c14f91, // -1.38888888888730564116e-3,
- 0h3fa555555555554b, // 4.16666666666665929218e-2,
- }
- // REDUCE_THRESHOLD is the maximum value of x where the reduction using Pi/4
- // in 3 f64 parts still gives accurate results. This threshold
- // is set by y*C being representable as a f64 without error
- // where y is given by y = floor(x * (4 / Pi)) and C is the leading partial
- // terms of 4/Pi. Since the leading terms (PI4A and PI4B in sin.go) have 30
- // and 32 trailing zero bits, y should have less than 30 significant bits.
- //
- // y < 1<<30 -> floor(x*4/Pi) < 1<<30 -> x < (1<<30 - 1) * Pi/4
- //
- // So, conservatively we can take x < 1<<29.
- // Above this threshold Payne-Hanek range reduction must be used.
- @(private="file")
- REDUCE_THRESHOLD :: 1 << 29
- // _trig_reduce_f64 implements Payne-Hanek range reduction by Pi/4
- // for x > 0. It returns the integer part mod 8 (j) and
- // the fractional part (z) of x / (Pi/4).
- // The implementation is based on:
- // "ARGUMENT REDUCTION FOR HUGE ARGUMENTS: Good to the Last Bit"
- // K. C. Ng et al, March 24, 1992
- // The simulated multi-precision calculation of x*B uses 64-bit integer arithmetic.
- _trig_reduce_f64 :: proc "contextless" (x: f64) -> (j: u64, z: f64) #no_bounds_check {
- // bd_pi4 is the binary digits of 4/pi as a u64 array,
- // that is, 4/pi = Sum bd_pi4[i]*2^(-64*i)
- // 19 64-bit digits and the leading one bit give 1217 bits
- // of precision to handle the largest possible f64 exponent.
- @static bd_pi4 := [?]u64{
- 0x0000000000000001,
- 0x45f306dc9c882a53,
- 0xf84eafa3ea69bb81,
- 0xb6c52b3278872083,
- 0xfca2c757bd778ac3,
- 0x6e48dc74849ba5c0,
- 0x0c925dd413a32439,
- 0xfc3bd63962534e7d,
- 0xd1046bea5d768909,
- 0xd338e04d68befc82,
- 0x7323ac7306a673e9,
- 0x3908bf177bf25076,
- 0x3ff12fffbc0b301f,
- 0xde5e2316b414da3e,
- 0xda6cfd9e4f96136e,
- 0x9e8c7ecd3cbfd45a,
- 0xea4f758fd7cbe2f6,
- 0x7a0e73ef14a525d4,
- 0xd7f6bf623f1aba10,
- 0xac06608df8f6d757,
- }
- PI4 :: PI / 4
- if x < PI4 {
- return 0, x
- }
- MASK :: 0x7FF
- SHIFT :: 64 - 11 - 1
- BIAS :: 1023
- // Extract out the integer and exponent such that,
- // x = ix * 2 ** exp.
- ix := transmute(u64)x
- exp := int(ix>>SHIFT&MASK) - BIAS - SHIFT
- ix &~= MASK << SHIFT
- ix |= 1 << SHIFT
- // Use the exponent to extract the 3 appropriate u64 digits from bd_pi4,
- // B ~ (z0, z1, z2), such that the product leading digit has the exponent -61.
- // Note, exp >= -53 since x >= PI4 and exp < 971 for maximum f64.
- digit, bitshift := uint(exp+61)/64, uint(exp+61)%64
- z0 := (bd_pi4[digit] << bitshift) | (bd_pi4[digit+1] >> (64 - bitshift))
- z1 := (bd_pi4[digit+1] << bitshift) | (bd_pi4[digit+2] >> (64 - bitshift))
- z2 := (bd_pi4[digit+2] << bitshift) | (bd_pi4[digit+3] >> (64 - bitshift))
- // Multiply mantissa by the digits and extract the upper two digits (hi, lo).
- z2hi, _ := bits.mul(z2, ix)
- z1hi, z1lo := bits.mul(z1, ix)
- z0lo := z0 * ix
- lo, c := bits.add(z1lo, z2hi, 0)
- hi, _ := bits.add(z0lo, z1hi, c)
- // The top 3 bits are j.
- j = hi >> 61
- // Extract the fraction and find its magnitude.
- hi = hi<<3 | lo>>61
- lz := uint(bits.leading_zeros(hi))
- e := u64(BIAS - (lz + 1))
- // Clear implicit mantissa bit and shift into place.
- hi = (hi << (lz + 1)) | (lo >> (64 - (lz + 1)))
- hi >>= 64 - SHIFT
- // Include the exponent and convert to a float.
- hi |= e << SHIFT
- z = transmute(f64)hi
- // Map zeros to origin.
- if j&1 == 1 {
- j += 1
- j &= 7
- z -= 1
- }
- // Multiply the fractional part by pi/4.
- return j, z * PI4
- }
|