2
0

general.odin 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656
  1. package linalg
  2. import "core:math"
  3. import "base:builtin"
  4. import "base:intrinsics"
  5. @require import "base:runtime"
  6. // Generic
  7. TAU :: 6.28318530717958647692528676655900576
  8. PI :: 3.14159265358979323846264338327950288
  9. E :: 2.71828182845904523536
  10. τ :: TAU
  11. π :: PI
  12. e :: E
  13. SQRT_TWO :: 1.41421356237309504880168872420969808
  14. SQRT_THREE :: 1.73205080756887729352744634150587236
  15. SQRT_FIVE :: 2.23606797749978969640917366873127623
  16. LN2 :: 0.693147180559945309417232121458176568
  17. LN10 :: 2.30258509299404568401799145468436421
  18. MAX_F64_PRECISION :: 16 // Maximum number of meaningful digits after the decimal point for 'f64'
  19. MAX_F32_PRECISION :: 8 // Maximum number of meaningful digits after the decimal point for 'f32'
  20. RAD_PER_DEG :: TAU/360.0
  21. DEG_PER_RAD :: 360.0/TAU
  22. @private IS_NUMERIC :: intrinsics.type_is_numeric
  23. @private IS_QUATERNION :: intrinsics.type_is_quaternion
  24. @private IS_ARRAY :: intrinsics.type_is_array
  25. @private IS_FLOAT :: intrinsics.type_is_float
  26. @private BASE_TYPE :: intrinsics.type_base_type
  27. @private ELEM_TYPE :: intrinsics.type_elem_type
  28. @(require_results)
  29. scalar_dot :: proc "contextless" (a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) {
  30. return a * b
  31. }
  32. @(require_results)
  33. vector_dot :: proc "contextless" (a, b: $T/[$N]$E) -> (c: E) where IS_NUMERIC(E) #no_bounds_check {
  34. for i in 0..<N {
  35. c += a[i] * b[i]
  36. }
  37. return
  38. }
  39. @(require_results)
  40. quaternion64_dot :: proc "contextless" (a, b: $T/quaternion64) -> (c: f16) {
  41. return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z
  42. }
  43. @(require_results)
  44. quaternion128_dot :: proc "contextless" (a, b: $T/quaternion128) -> (c: f32) {
  45. return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z
  46. }
  47. @(require_results)
  48. quaternion256_dot :: proc "contextless" (a, b: $T/quaternion256) -> (c: f64) {
  49. return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z
  50. }
  51. dot :: proc{scalar_dot, vector_dot, quaternion64_dot, quaternion128_dot, quaternion256_dot}
  52. inner_product :: dot
  53. outer_product :: intrinsics.outer_product
  54. @(require_results)
  55. quaternion_inverse :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) {
  56. return conj(q) * quaternion(w=1.0/dot(q, q), x=0, y=0, z=0)
  57. }
  58. @(require_results)
  59. scalar_cross :: proc "contextless" (a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) {
  60. return a * b
  61. }
  62. @(require_results)
  63. vector_cross2 :: proc "contextless" (a, b: $T/[2]$E) -> E where IS_NUMERIC(E) {
  64. return a[0]*b[1] - b[0]*a[1]
  65. }
  66. @(require_results)
  67. vector_cross3 :: proc "contextless" (a, b: $T/[3]$E) -> (c: T) where IS_NUMERIC(E) {
  68. c[0] = a[1]*b[2] - b[1]*a[2]
  69. c[1] = a[2]*b[0] - b[2]*a[0]
  70. c[2] = a[0]*b[1] - b[0]*a[1]
  71. return
  72. }
  73. @(require_results)
  74. quaternion_cross :: proc "contextless" (q1, q2: $Q) -> (q3: Q) where IS_QUATERNION(Q) {
  75. q3.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y
  76. q3.y = q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z
  77. q3.z = q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x
  78. q3.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z
  79. return
  80. }
  81. vector_cross :: proc{scalar_cross, vector_cross2, vector_cross3}
  82. cross :: proc{scalar_cross, vector_cross2, vector_cross3, quaternion_cross}
  83. @(require_results)
  84. vector_normalize :: proc "contextless" (v: $T/[$N]$E) -> T where IS_FLOAT(E) {
  85. return v / length(v)
  86. }
  87. @(require_results)
  88. quaternion_normalize :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) {
  89. return q/abs(q)
  90. }
  91. normalize :: proc{vector_normalize, quaternion_normalize}
  92. @(require_results)
  93. vector_normalize0 :: proc "contextless" (v: $T/[$N]$E) -> T where IS_FLOAT(E) {
  94. m := length(v)
  95. return 0 if m == 0 else v/m
  96. }
  97. @(require_results)
  98. quaternion_normalize0 :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) {
  99. m := abs(q)
  100. return 0 if m == 0 else q/m
  101. }
  102. normalize0 :: proc{vector_normalize0, quaternion_normalize0}
  103. @(require_results)
  104. vector_length :: proc "contextless" (v: $T/[$N]$E) -> E where IS_FLOAT(E) {
  105. return math.sqrt(dot(v, v))
  106. }
  107. @(require_results)
  108. vector_length2 :: proc "contextless" (v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
  109. return dot(v, v)
  110. }
  111. @(require_results)
  112. quaternion_length :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) {
  113. return abs(q)
  114. }
  115. @(require_results)
  116. quaternion_length2 :: proc "contextless" (q: $Q) -> Q where IS_QUATERNION(Q) {
  117. return dot(q, q)
  118. }
  119. @(require_results)
  120. scalar_triple_product :: proc "contextless" (a, b, c: $T/[$N]$E) -> E where IS_NUMERIC(E) {
  121. // a . (b x c)
  122. // b . (c x a)
  123. // c . (a x b)
  124. return dot(a, cross(b, c))
  125. }
  126. @(require_results)
  127. vector_triple_product :: proc "contextless" (a, b, c: $T/[$N]$E) -> T where IS_NUMERIC(E) {
  128. // a x (b x c)
  129. // (a . c)b - (a . b)c
  130. return cross(a, cross(b, c))
  131. }
  132. length :: proc{vector_length, quaternion_length}
  133. length2 :: proc{vector_length2, quaternion_length2}
  134. @(require_results)
  135. projection :: proc "contextless" (x, normal: $T/[$N]$E) -> T where IS_NUMERIC(E) {
  136. return dot(x, normal) / dot(normal, normal) * normal
  137. }
  138. @(require_results)
  139. identity_array_based_matrix :: proc "contextless" ($T: typeid/[$N][N]$E) -> (m: T) #no_bounds_check {
  140. for i in 0..<N {
  141. m[i][i] = E(1)
  142. }
  143. return m
  144. }
  145. @(require_results)
  146. identity_matrix :: proc "contextless" ($T: typeid/matrix[$N, N]$E) -> T #no_bounds_check {
  147. return 1
  148. }
  149. identity :: proc{
  150. identity_array_based_matrix,
  151. identity_matrix,
  152. }
  153. transpose :: intrinsics.transpose
  154. @(require_results)
  155. matrix_mul :: proc "contextless" (a, b: $M/matrix[$N, N]$E) -> (c: M)
  156. where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
  157. return a * b
  158. }
  159. @(require_results)
  160. matrix_comp_mul :: proc "contextless" (a, b: $M/matrix[$I, $J]$E) -> (c: M)
  161. where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
  162. return hadamard_product(a, b)
  163. }
  164. @(require_results)
  165. matrix_mul_differ :: proc "contextless" (a: $A/matrix[$I, $J]$E, b: $B/matrix[J, $K]E) -> (c: matrix[I, K]E)
  166. where !IS_ARRAY(E), IS_NUMERIC(E), I != K #no_bounds_check {
  167. return a * b
  168. }
  169. @(require_results)
  170. matrix_mul_vector :: proc "contextless" (a: $A/matrix[$I, $J]$E, b: $B/[J]E) -> (c: B)
  171. where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
  172. return a * b
  173. }
  174. @(require_results)
  175. quaternion_mul_quaternion :: proc "contextless" (q1, q2: $Q) -> Q where IS_QUATERNION(Q) {
  176. return q1 * q2
  177. }
  178. @(require_results)
  179. quaternion64_mul_vector3 :: proc "contextless" (q: $Q/quaternion64, v: $V/[3]$F/f16) -> V {
  180. q := transmute(runtime.Raw_Quaternion64_Vector_Scalar)q
  181. v := v
  182. t := cross(2*q.vector, v)
  183. return V(v + q.scalar*t + cross(q.vector, t))
  184. }
  185. @(require_results)
  186. quaternion128_mul_vector3 :: proc "contextless" (q: $Q/quaternion128, v: $V/[3]$F/f32) -> V {
  187. q := transmute(runtime.Raw_Quaternion128_Vector_Scalar)q
  188. v := v
  189. t := cross(2*q.vector, v)
  190. return V(v + q.scalar*t + cross(q.vector, t))
  191. }
  192. @(require_results)
  193. quaternion256_mul_vector3 :: proc "contextless" (q: $Q/quaternion256, v: $V/[3]$F/f64) -> V {
  194. q := transmute(runtime.Raw_Quaternion256_Vector_Scalar)q
  195. v := v
  196. t := cross(2*q.vector, v)
  197. return V(v + q.scalar*t + cross(q.vector, t))
  198. }
  199. quaternion_mul_vector3 :: proc{quaternion64_mul_vector3, quaternion128_mul_vector3, quaternion256_mul_vector3}
  200. mul :: proc{
  201. matrix_mul,
  202. matrix_mul_differ,
  203. matrix_mul_vector,
  204. quaternion64_mul_vector3,
  205. quaternion128_mul_vector3,
  206. quaternion256_mul_vector3,
  207. quaternion_mul_quaternion,
  208. }
  209. @(require_results)
  210. vector_to_ptr :: proc "contextless" (v: ^$V/[$N]$E) -> ^E where IS_NUMERIC(E), N > 0 #no_bounds_check {
  211. return &v[0]
  212. }
  213. @(require_results)
  214. matrix_to_ptr :: proc "contextless" (m: ^$A/matrix[$I, $J]$E) -> ^E where IS_NUMERIC(E), I > 0, J > 0 #no_bounds_check {
  215. return &m[0, 0]
  216. }
  217. to_ptr :: proc{vector_to_ptr, matrix_to_ptr}
  218. vector_angle_between :: proc "contextless" (a, b: $V/[$N]$E) -> E {
  219. a0 := normalize0(a)
  220. b0 := normalize0(b)
  221. return math.acos(dot(a0, b0))
  222. }
  223. quaternion64_angle_between :: proc "contextless" (a, b: $Q/quaternion64) -> f16 {
  224. c := normalize0(conj(a) * b)
  225. return math.acos(c.w)
  226. }
  227. quaternion128_angle_between :: proc "contextless" (a, b: $Q/quaternion128) -> f32 {
  228. c := normalize0(conj(a) * b)
  229. return math.acos(c.w)
  230. }
  231. quaternion256_angle_between :: proc "contextless" (a, b: $Q/quaternion256) -> f64 {
  232. c := normalize0(conj(a) * b)
  233. return math.acos(c.w)
  234. }
  235. angle_between :: proc{
  236. vector_angle_between,
  237. quaternion64_angle_between,
  238. quaternion128_angle_between,
  239. quaternion256_angle_between,
  240. }
  241. // Splines
  242. @(require_results)
  243. vector_slerp :: proc "contextless" (x, y: $T/[$N]$E, a: E) -> T #no_bounds_check {
  244. cos_alpha := dot(x, y)
  245. alpha := math.acos(cos_alpha)
  246. sin_alpha := math.sin(alpha)
  247. t1 := math.sin((1 - a) * alpha) / sin_alpha
  248. t2 := math.sin(a * alpha) / sin_alpha
  249. return x * t1 + y * t2
  250. }
  251. @(require_results)
  252. catmull_rom :: proc "contextless" (v1, v2, v3, v4: $T/[$N]$E, s: E) -> T #no_bounds_check {
  253. s2 := s*s
  254. s3 := s2*s
  255. f1 := -s3 + 2 * s2 - s
  256. f2 := 3 * s3 - 5 * s2 + 2
  257. f3 := -3 * s3 + 4 * s2 + s
  258. f4 := s3 - s2
  259. return (f1 * v1 + f2 * v2 + f3 * v3 + f4 * v4) * 0.5
  260. }
  261. @(require_results)
  262. hermite :: proc "contextless" (v1, t1, v2, t2: $T/[$N]$E, s: E) -> T #no_bounds_check {
  263. s2 := s*s
  264. s3 := s2*s
  265. f1 := 2 * s3 - 3 * s2 + 1
  266. f2 := -2 * s3 + 3 * s2
  267. f3 := s3 - 2 * s2 + s
  268. f4 := s3 - s2
  269. return f1 * v1 + f2 * v2 + f3 * t1 + f4 * t2
  270. }
  271. @(require_results)
  272. cubic :: proc "contextless" (v1, v2, v3, v4: $T/[$N]$E, s: E) -> T #no_bounds_check {
  273. return ((v1 * s + v2) * s + v3) * s + v4
  274. }
  275. @(require_results)
  276. array_cast :: proc "contextless" (v: $A/[$N]$T, $Elem_Type: typeid) -> (w: [N]Elem_Type) #no_bounds_check {
  277. for i in 0..<N {
  278. w[i] = Elem_Type(v[i])
  279. }
  280. return
  281. }
  282. @(require_results)
  283. matrix_cast :: proc "contextless" (v: $A/matrix[$M, $N]$T, $Elem_Type: typeid) -> (w: matrix[M, N]Elem_Type) #no_bounds_check {
  284. for j in 0..<N {
  285. for i in 0..<M {
  286. w[i, j] = Elem_Type(v[i, j])
  287. }
  288. }
  289. return
  290. }
  291. @(require_results) to_f32 :: #force_inline proc(v: $A/[$N]$T) -> [N]f32 { return array_cast(v, f32) }
  292. @(require_results) to_f64 :: #force_inline proc(v: $A/[$N]$T) -> [N]f64 { return array_cast(v, f64) }
  293. @(require_results) to_i8 :: #force_inline proc(v: $A/[$N]$T) -> [N]i8 { return array_cast(v, i8) }
  294. @(require_results) to_i16 :: #force_inline proc(v: $A/[$N]$T) -> [N]i16 { return array_cast(v, i16) }
  295. @(require_results) to_i32 :: #force_inline proc(v: $A/[$N]$T) -> [N]i32 { return array_cast(v, i32) }
  296. @(require_results) to_i64 :: #force_inline proc(v: $A/[$N]$T) -> [N]i64 { return array_cast(v, i64) }
  297. @(require_results) to_int :: #force_inline proc(v: $A/[$N]$T) -> [N]int { return array_cast(v, int) }
  298. @(require_results) to_u8 :: #force_inline proc(v: $A/[$N]$T) -> [N]u8 { return array_cast(v, u8) }
  299. @(require_results) to_u16 :: #force_inline proc(v: $A/[$N]$T) -> [N]u16 { return array_cast(v, u16) }
  300. @(require_results) to_u32 :: #force_inline proc(v: $A/[$N]$T) -> [N]u32 { return array_cast(v, u32) }
  301. @(require_results) to_u64 :: #force_inline proc(v: $A/[$N]$T) -> [N]u64 { return array_cast(v, u64) }
  302. @(require_results) to_uint :: #force_inline proc(v: $A/[$N]$T) -> [N]uint { return array_cast(v, uint) }
  303. @(require_results) to_complex32 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex32 { return array_cast(v, complex32) }
  304. @(require_results) to_complex64 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex64 { return array_cast(v, complex64) }
  305. @(require_results) to_complex128 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex128 { return array_cast(v, complex128) }
  306. @(require_results) to_quaternion64 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion64 { return array_cast(v, quaternion64) }
  307. @(require_results) to_quaternion128 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion128 { return array_cast(v, quaternion128) }
  308. @(require_results) to_quaternion256 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion256 { return array_cast(v, quaternion256) }
  309. hadamard_product :: intrinsics.hadamard_product
  310. matrix_flatten :: intrinsics.matrix_flatten
  311. determinant :: proc{
  312. matrix1x1_determinant,
  313. matrix2x2_determinant,
  314. matrix3x3_determinant,
  315. matrix4x4_determinant,
  316. }
  317. adjugate :: proc{
  318. matrix1x1_adjugate,
  319. matrix2x2_adjugate,
  320. matrix3x3_adjugate,
  321. matrix4x4_adjugate,
  322. }
  323. inverse_transpose :: proc{
  324. matrix1x1_inverse_transpose,
  325. matrix2x2_inverse_transpose,
  326. matrix3x3_inverse_transpose,
  327. matrix4x4_inverse_transpose,
  328. }
  329. inverse :: proc{
  330. matrix1x1_inverse,
  331. matrix2x2_inverse,
  332. matrix3x3_inverse,
  333. matrix4x4_inverse,
  334. }
  335. @(require_results)
  336. hermitian_adjoint :: proc "contextless" (m: $M/matrix[$N, N]$T) -> M where intrinsics.type_is_complex(T), N >= 1 #no_bounds_check {
  337. return conj(transpose(m))
  338. }
  339. @(require_results)
  340. trace :: proc "contextless" (m: $M/matrix[$N, N]$T) -> (trace: T) #no_bounds_check {
  341. for i in 0..<N {
  342. trace += m[i, i]
  343. }
  344. return
  345. }
  346. @(require_results)
  347. matrix_minor :: proc "contextless" (m: $M/matrix[$N, N]$T, #any_int row, column: int) -> (minor: T) where N > 1 #no_bounds_check {
  348. K :: int(N-1)
  349. cut_down: matrix[K, K]T
  350. for col_idx in 0..<K {
  351. j := col_idx + int(col_idx >= column)
  352. for row_idx in 0..<K {
  353. i := row_idx + int(row_idx >= row)
  354. cut_down[row_idx, col_idx] = m[i, j]
  355. }
  356. }
  357. return determinant(cut_down)
  358. }
  359. @(require_results)
  360. matrix1x1_determinant :: proc "contextless" (m: $M/matrix[1, 1]$T) -> (det: T) #no_bounds_check {
  361. return m[0, 0]
  362. }
  363. @(require_results)
  364. matrix2x2_determinant :: proc "contextless" (m: $M/matrix[2, 2]$T) -> (det: T) #no_bounds_check {
  365. return m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0]
  366. }
  367. @(require_results)
  368. matrix3x3_determinant :: proc "contextless" (m: $M/matrix[3, 3]$T) -> (det: T) #no_bounds_check {
  369. a := +m[0, 0] * (m[1, 1] * m[2, 2] - m[1, 2] * m[2, 1])
  370. b := -m[0, 1] * (m[1, 0] * m[2, 2] - m[1, 2] * m[2, 0])
  371. c := +m[0, 2] * (m[1, 0] * m[2, 1] - m[1, 1] * m[2, 0])
  372. return a + b + c
  373. }
  374. @(require_results)
  375. matrix4x4_determinant :: proc "contextless" (m: $M/matrix[4, 4]$T) -> (det: T) #no_bounds_check {
  376. a := adjugate(m)
  377. for i in 0..<4 {
  378. det += m[0, i] * a[0, i]
  379. }
  380. return
  381. }
  382. @(require_results)
  383. matrix1x1_adjugate :: proc "contextless" (x: $M/matrix[1, 1]$T) -> (y: M) #no_bounds_check {
  384. y = x
  385. return
  386. }
  387. @(require_results)
  388. matrix2x2_adjugate :: proc "contextless" (x: $M/matrix[2, 2]$T) -> (y: M) #no_bounds_check {
  389. y[0, 0] = +x[1, 1]
  390. y[0, 1] = -x[1, 0]
  391. y[1, 0] = -x[0, 1]
  392. y[1, 1] = +x[0, 0]
  393. return
  394. }
  395. @(require_results)
  396. matrix3x3_adjugate :: proc "contextless" (m: $M/matrix[3, 3]$T) -> (y: M) #no_bounds_check {
  397. y[0, 0] = +(m[1, 1] * m[2, 2] - m[2, 1] * m[1, 2])
  398. y[0, 1] = -(m[1, 0] * m[2, 2] - m[2, 0] * m[1, 2])
  399. y[0, 2] = +(m[1, 0] * m[2, 1] - m[2, 0] * m[1, 1])
  400. y[1, 0] = -(m[0, 1] * m[2, 2] - m[2, 1] * m[0, 2])
  401. y[1, 1] = +(m[0, 0] * m[2, 2] - m[2, 0] * m[0, 2])
  402. y[1, 2] = -(m[0, 0] * m[2, 1] - m[2, 0] * m[0, 1])
  403. y[2, 0] = +(m[0, 1] * m[1, 2] - m[1, 1] * m[0, 2])
  404. y[2, 1] = -(m[0, 0] * m[1, 2] - m[1, 0] * m[0, 2])
  405. y[2, 2] = +(m[0, 0] * m[1, 1] - m[1, 0] * m[0, 1])
  406. return
  407. }
  408. @(require_results)
  409. matrix4x4_adjugate :: proc "contextless" (x: $M/matrix[4, 4]$T) -> (y: M) #no_bounds_check {
  410. for i in 0..<4 {
  411. for j in 0..<4 {
  412. sign: T = 1 if (i + j) % 2 == 0 else -1
  413. y[i, j] = sign * matrix_minor(x, i, j)
  414. }
  415. }
  416. return
  417. }
  418. @(require_results)
  419. matrix1x1_inverse_transpose :: proc "contextless" (x: $M/matrix[1, 1]$T) -> (y: M) #no_bounds_check {
  420. y[0, 0] = 1/x[0, 0]
  421. return
  422. }
  423. @(require_results)
  424. matrix2x2_inverse_transpose :: proc "contextless" (x: $M/matrix[2, 2]$T) -> (y: M) #no_bounds_check {
  425. d := x[0, 0]*x[1, 1] - x[0, 1]*x[1, 0]
  426. when intrinsics.type_is_integer(T) {
  427. y[0, 0] = +x[1, 1] / d
  428. y[1, 0] = -x[0, 1] / d
  429. y[0, 1] = -x[1, 0] / d
  430. y[1, 1] = +x[0, 0] / d
  431. } else {
  432. id := 1 / d
  433. y[0, 0] = +x[1, 1] * id
  434. y[1, 0] = -x[0, 1] * id
  435. y[0, 1] = -x[1, 0] * id
  436. y[1, 1] = +x[0, 0] * id
  437. }
  438. return
  439. }
  440. @(require_results)
  441. matrix3x3_inverse_transpose :: proc "contextless" (x: $M/matrix[3, 3]$T) -> (y: M) #no_bounds_check {
  442. a := adjugate(x)
  443. d := determinant(x)
  444. when intrinsics.type_is_integer(T) {
  445. for i in 0..<3 {
  446. for j in 0..<3 {
  447. y[i, j] = a[i, j] / d
  448. }
  449. }
  450. } else {
  451. id := 1/d
  452. for i in 0..<3 {
  453. for j in 0..<3 {
  454. y[i, j] = a[i, j] * id
  455. }
  456. }
  457. }
  458. return
  459. }
  460. @(require_results)
  461. matrix4x4_inverse_transpose :: proc "contextless" (x: $M/matrix[4, 4]$T) -> (y: M) #no_bounds_check {
  462. a := adjugate(x)
  463. d: T
  464. for i in 0..<4 {
  465. d += x[0, i] * a[0, i]
  466. }
  467. when intrinsics.type_is_integer(T) {
  468. for i in 0..<4 {
  469. for j in 0..<4 {
  470. y[i, j] = a[i, j] / d
  471. }
  472. }
  473. } else {
  474. id := 1/d
  475. for i in 0..<4 {
  476. for j in 0..<4 {
  477. y[i, j] = a[i, j] * id
  478. }
  479. }
  480. }
  481. return
  482. }
  483. @(require_results)
  484. matrix1x1_inverse :: proc "contextless" (x: $M/matrix[1, 1]$T) -> (y: M) #no_bounds_check {
  485. y[0, 0] = 1/x[0, 0]
  486. return
  487. }
  488. @(require_results)
  489. matrix2x2_inverse :: proc "contextless" (x: $M/matrix[2, 2]$T) -> (y: M) #no_bounds_check {
  490. d := x[0, 0]*x[1, 1] - x[0, 1]*x[1, 0]
  491. when intrinsics.type_is_integer(T) {
  492. y[0, 0] = +x[1, 1] / d
  493. y[0, 1] = -x[0, 1] / d
  494. y[1, 0] = -x[1, 0] / d
  495. y[1, 1] = +x[0, 0] / d
  496. } else {
  497. id := 1 / d
  498. y[0, 0] = +x[1, 1] * id
  499. y[0, 1] = -x[0, 1] * id
  500. y[1, 0] = -x[1, 0] * id
  501. y[1, 1] = +x[0, 0] * id
  502. }
  503. return
  504. }
  505. @(require_results)
  506. matrix3x3_inverse :: proc "contextless" (x: $M/matrix[3, 3]$T) -> (y: M) #no_bounds_check {
  507. a := adjugate(x)
  508. d := determinant(x)
  509. when intrinsics.type_is_integer(T) {
  510. for i in 0..<3 {
  511. for j in 0..<3 {
  512. y[i, j] = a[j, i] / d
  513. }
  514. }
  515. } else {
  516. id := 1/d
  517. for i in 0..<3 {
  518. for j in 0..<3 {
  519. y[i, j] = a[j, i] * id
  520. }
  521. }
  522. }
  523. return
  524. }
  525. @(require_results)
  526. matrix4x4_inverse :: proc "contextless" (x: $M/matrix[4, 4]$T) -> (y: M) #no_bounds_check {
  527. a := adjugate(x)
  528. d: T
  529. for i in 0..<4 {
  530. d += x[0, i] * a[0, i]
  531. }
  532. when intrinsics.type_is_integer(T) {
  533. for i in 0..<4 {
  534. for j in 0..<4 {
  535. y[i, j] = a[j, i] / d
  536. }
  537. }
  538. } else {
  539. id := 1/d
  540. for i in 0..<4 {
  541. for j in 0..<4 {
  542. y[i, j] = a[j, i] * id
  543. }
  544. }
  545. }
  546. return
  547. }