heap_windows.odin 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106
  1. //+private
  2. package os2
  3. import "core:mem"
  4. import win32 "core:sys/windows"
  5. heap_alloc :: proc(size: int, zero_memory: bool) -> rawptr {
  6. return win32.HeapAlloc(win32.GetProcessHeap(), win32.HEAP_ZERO_MEMORY if zero_memory else 0, uint(size))
  7. }
  8. heap_resize :: proc(ptr: rawptr, new_size: int, zero_memory: bool) -> rawptr {
  9. if new_size == 0 {
  10. heap_free(ptr)
  11. return nil
  12. }
  13. if ptr == nil {
  14. return heap_alloc(new_size, zero_memory)
  15. }
  16. return win32.HeapReAlloc(win32.GetProcessHeap(), win32.HEAP_ZERO_MEMORY, ptr, uint(new_size))
  17. }
  18. heap_free :: proc(ptr: rawptr) {
  19. if ptr == nil {
  20. return
  21. }
  22. win32.HeapFree(win32.GetProcessHeap(), 0, ptr)
  23. }
  24. _heap_allocator_proc :: proc(allocator_data: rawptr, mode: mem.Allocator_Mode,
  25. size, alignment: int,
  26. old_memory: rawptr, old_size: int, loc := #caller_location) -> ([]byte, mem.Allocator_Error) {
  27. //
  28. // NOTE(tetra, 2020-01-14): The heap doesn't respect alignment.
  29. // Instead, we overallocate by `alignment + size_of(rawptr) - 1`, and insert
  30. // padding. We also store the original pointer returned by heap_alloc right before
  31. // the pointer we return to the user.
  32. //
  33. aligned_alloc :: proc(size, alignment: int, zero_memory: bool, old_ptr: rawptr = nil) -> ([]byte, mem.Allocator_Error) {
  34. a := max(alignment, align_of(rawptr))
  35. space := size + a - 1
  36. allocated_mem: rawptr
  37. if old_ptr != nil {
  38. original_old_ptr := mem.ptr_offset((^rawptr)(old_ptr), -1)^
  39. allocated_mem = heap_resize(original_old_ptr, space+size_of(rawptr), zero_memory)
  40. } else {
  41. allocated_mem = heap_alloc(space+size_of(rawptr), zero_memory)
  42. }
  43. aligned_mem := rawptr(mem.ptr_offset((^u8)(allocated_mem), size_of(rawptr)))
  44. ptr := uintptr(aligned_mem)
  45. aligned_ptr := (ptr - 1 + uintptr(a)) & -uintptr(a)
  46. diff := int(aligned_ptr - ptr)
  47. if (size + diff) > space || allocated_mem == nil {
  48. return nil, .Out_Of_Memory
  49. }
  50. aligned_mem = rawptr(aligned_ptr)
  51. mem.ptr_offset((^rawptr)(aligned_mem), -1)^ = allocated_mem
  52. return mem.byte_slice(aligned_mem, size), nil
  53. }
  54. aligned_free :: proc(p: rawptr) {
  55. if p != nil {
  56. heap_free(mem.ptr_offset((^rawptr)(p), -1)^)
  57. }
  58. }
  59. aligned_resize :: proc(p: rawptr, old_size: int, new_size: int, new_alignment: int) -> ([]byte, mem.Allocator_Error) {
  60. if p == nil {
  61. return nil, nil
  62. }
  63. return aligned_alloc(new_size, new_alignment, true, p)
  64. }
  65. switch mode {
  66. case .Alloc, .Alloc_Non_Zeroed:
  67. return aligned_alloc(size, alignment, mode == .Alloc)
  68. case .Free:
  69. aligned_free(old_memory)
  70. case .Free_All:
  71. return nil, .Mode_Not_Implemented
  72. case .Resize, .Resize_Non_Zeroed:
  73. if old_memory == nil {
  74. return aligned_alloc(size, alignment, true)
  75. }
  76. return aligned_resize(old_memory, old_size, size, alignment)
  77. case .Query_Features:
  78. set := (^mem.Allocator_Mode_Set)(old_memory)
  79. if set != nil {
  80. set^ = {.Alloc, .Free, .Resize, .Query_Features}
  81. }
  82. return nil, nil
  83. case .Query_Info:
  84. return nil, .Mode_Not_Implemented
  85. }
  86. return nil, nil
  87. }