123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318 |
- // Procedures to manipulate UTF-8 encoded strings
- package strings
- import "base:intrinsics"
- import "core:bytes"
- import "core:io"
- import "core:mem"
- import "core:unicode"
- import "core:unicode/utf8"
- /*
- Clones a string
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The string to be cloned
- - allocator: (default: context.allocator)
- - loc: The caller location for debugging purposes (default: #caller_location)
- Returns:
- - res: The cloned string
- - err: An optional allocator error if one occured, `nil` otherwise
- */
- clone :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error {
- c := make([]byte, len(s), allocator, loc) or_return
- copy(c, s)
- return string(c[:len(s)]), nil
- }
- /*
- Clones a string safely (returns early with an allocation error on failure)
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The string to be cloned
- - allocator: (default: context.allocator)
- - loc: The caller location for debugging purposes (default: #caller_location)
- Returns:
- - res: The cloned string
- - err: An allocator error if one occured, `nil` otherwise
- */
- @(deprecated="Prefer clone. It now returns an optional allocator error")
- clone_safe :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) {
- return clone(s, allocator, loc)
- }
- /*
- Clones a string and appends a null-byte to make it a cstring
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The string to be cloned
- - allocator: (default: context.allocator)
- - loc: The caller location for debugging purposes (default: #caller_location)
- Returns:
- - res: A cloned cstring with an appended null-byte
- - err: An optional allocator error if one occured, `nil` otherwise
- */
- clone_to_cstring :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> (res: cstring, err: mem.Allocator_Error) #optional_allocator_error {
- c := make([]byte, len(s)+1, allocator, loc) or_return
- copy(c, s)
- c[len(s)] = 0
- return cstring(&c[0]), nil
- }
- /*
- Transmutes a raw pointer into a string. Non-allocating.
- Inputs:
- - ptr: A pointer to the start of the byte sequence
- - len: The length of the byte sequence
- NOTE: The created string is only valid as long as the pointer and length are valid.
- Returns:
- - res: A string created from the byte pointer and length
- */
- string_from_ptr :: proc(ptr: ^byte, len: int) -> (res: string) {
- return transmute(string)mem.Raw_String{ptr, len}
- }
- /*
- Transmutes a raw pointer (null-terminated) into a string. Non-allocating. Searches for a null-byte from `0..<len`, otherwise `len` will be the end size
- NOTE: The created string is only valid as long as the pointer and length are valid.
- The string is truncated at the first null-byte encountered.
- Inputs:
- - ptr: A pointer to the start of the null-terminated byte sequence
- - len: The length of the byte sequence
- Returns:
- - res: A string created from the null-terminated byte pointer and length
- */
- string_from_null_terminated_ptr :: proc(ptr: [^]byte, len: int) -> (res: string) {
- s := string(ptr[:len])
- s = truncate_to_byte(s, 0)
- return s
- }
- /*
- Gets the raw byte pointer for the start of a string `str`
- Inputs:
- - str: The input string
- Returns:
- - res: A pointer to the start of the string's bytes
- */
- @(deprecated="Prefer the builtin raw_data.")
- ptr_from_string :: proc(str: string) -> (res: ^byte) {
- d := transmute(mem.Raw_String)str
- return d.data
- }
- /*
- Converts a string `str` to a cstring
- Inputs:
- - str: The input string
- WARNING: This is unsafe because the original string may not contain a null-byte.
- Returns:
- - res: The converted cstring
- */
- unsafe_string_to_cstring :: proc(str: string) -> (res: cstring) {
- d := transmute(mem.Raw_String)str
- return cstring(d.data)
- }
- /*
- Truncates a string `str` at the first occurrence of char/byte `b`
- Inputs:
- - str: The input string
- - b: The byte to truncate the string at
- NOTE: Failure to find the byte results in returning the entire string.
- Returns:
- - res: The truncated string
- */
- truncate_to_byte :: proc(str: string, b: byte) -> (res: string) {
- n := index_byte(str, b)
- if n < 0 {
- n = len(str)
- }
- return str[:n]
- }
- /*
- Truncates a string `str` at the first occurrence of rune `r` as a slice of the original, entire string if not found
- Inputs:
- - str: The input string
- - r: The rune to truncate the string at
- Returns:
- - res: The truncated string
- */
- truncate_to_rune :: proc(str: string, r: rune) -> (res: string) {
- n := index_rune(str, r)
- if n < 0 {
- n = len(str)
- }
- return str[:n]
- }
- /*
- Clones a byte array `s` and appends a null-byte
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The byte array to be cloned
- - allocator: (default: context.allocator)
- - loc: The caller location for debugging purposes (default: `#caller_location`)
- Returns:
- - res: The cloned string from the byte array with a null-byte
- - err: An optional allocator error if one occured, `nil` otherwise
- */
- clone_from_bytes :: proc(s: []byte, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error {
- c := make([]byte, len(s)+1, allocator, loc) or_return
- copy(c, s)
- c[len(s)] = 0
- return string(c[:len(s)]), nil
- }
- /*
- Clones a cstring `s` as a string
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The cstring to be cloned
- - allocator: (default: context.allocator)
- - loc: The caller location for debugging purposes (default: `#caller_location`)
- Returns:
- - res: The cloned string from the cstring
- - err: An optional allocator error if one occured, `nil` otherwise
- */
- clone_from_cstring :: proc(s: cstring, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error {
- return clone(string(s), allocator, loc)
- }
- /*
- Clones a string from a byte pointer `ptr` and a byte length `len`
- *Allocates Using Provided Allocator*
- Inputs:
- - ptr: A pointer to the start of the byte sequence
- - len: The length of the byte sequence
- - allocator: (default: context.allocator)
- - loc: The caller location for debugging purposes (default: `#caller_location`)
- NOTE: Same as `string_from_ptr`, but perform an additional `clone` operation
- Returns:
- - res: The cloned string from the byte pointer and length
- - err: An optional allocator error if one occured, `nil` otherwise
- */
- clone_from_ptr :: proc(ptr: ^byte, len: int, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error {
- s := string_from_ptr(ptr, len)
- return clone(s, allocator, loc)
- }
- // Overloaded procedure to clone from a string, `[]byte`, `cstring` or a `^byte` + length
- clone_from :: proc{
- clone,
- clone_from_bytes,
- clone_from_cstring,
- clone_from_ptr,
- }
- /*
- Clones a string from a null-terminated cstring `ptr` and a byte length `len`
- *Allocates Using Provided Allocator*
- Inputs:
- - ptr: A pointer to the start of the null-terminated cstring
- - len: The byte length of the cstring
- - allocator: (default: context.allocator)
- - loc: The caller location for debugging purposes (default: `#caller_location`)
- NOTE: Truncates at the first null-byte encountered or the byte length.
- Returns:
- - res: The cloned string from the null-terminated cstring and byte length
- - err: An optional allocator error if one occured, `nil` otherwise
- */
- clone_from_cstring_bounded :: proc(ptr: cstring, len: int, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error {
- s := string_from_ptr((^u8)(ptr), len)
- s = truncate_to_byte(s, 0)
- return clone(s, allocator, loc)
- }
- /*
- Compares two strings, returning a value representing which one comes first lexicographically.
- -1 for `lhs`; 1 for `rhs`, or 0 if they are equal.
- Inputs:
- - lhs: First string for comparison
- - rhs: Second string for comparison
- Returns:
- - result: `-1` if `lhs` comes first, `1` if `rhs` comes first, or `0` if they are equal
- */
- compare :: proc(lhs, rhs: string) -> (result: int) {
- return mem.compare(transmute([]byte)lhs, transmute([]byte)rhs)
- }
- /*
- Checks if rune `r` in the string `s`
- Inputs:
- - s: The input string
- - r: The rune to search for
- Returns:
- - result: `true` if the rune `r` in the string `s`, `false` otherwise
- */
- contains_rune :: proc(s: string, r: rune) -> (result: bool) {
- for c in s {
- if c == r {
- return true
- }
- }
- return false
- }
- /*
- Returns true when the string `substr` is contained inside the string `s`
- Inputs:
- - s: The input string
- - substr: The substring to search for
- Returns:
- - res: `true` if `substr` is contained inside the string `s`, `false` otherwise
- Example:
- import "core:fmt"
- import "core:strings"
- contains_example :: proc() {
- fmt.println(strings.contains("testing", "test"))
- fmt.println(strings.contains("testing", "ing"))
- fmt.println(strings.contains("testing", "text"))
- }
- Output:
- true
- true
- false
- */
- contains :: proc(s, substr: string) -> (res: bool) {
- return index(s, substr) >= 0
- }
- /*
- Returns `true` when the string `s` contains any of the characters inside the string `chars`
- Inputs:
- - s: The input string
- - chars: The characters to search for
- Returns:
- - res: `true` if the string `s` contains any of the characters in `chars`, `false` otherwise
- Example:
- import "core:fmt"
- import "core:strings"
- contains_any_example :: proc() {
- fmt.println(strings.contains_any("test", "test"))
- fmt.println(strings.contains_any("test", "ts"))
- fmt.println(strings.contains_any("test", "et"))
- fmt.println(strings.contains_any("test", "a"))
- }
- Output:
- true
- true
- true
- false
- */
- contains_any :: proc(s, chars: string) -> (res: bool) {
- return index_any(s, chars) >= 0
- }
- contains_space :: proc(s: string) -> (res: bool) {
- for c in s {
- if is_space(c) {
- return true
- }
- }
- return false
- }
- /*
- Returns the UTF-8 rune count of the string `s`
- Inputs:
- - s: The input string
- Returns:
- - res: The UTF-8 rune count of the string `s`
- Example:
- import "core:fmt"
- import "core:strings"
- rune_count_example :: proc() {
- fmt.println(strings.rune_count("test"))
- fmt.println(strings.rune_count("testö")) // where len("testö") == 6
- }
- Output:
- 4
- 5
- */
- rune_count :: proc(s: string) -> (res: int) {
- return utf8.rune_count_in_string(s)
- }
- /*
- Returns whether the strings `u` and `v` are the same alpha characters, ignoring different casings
- Works with UTF-8 string content
- Inputs:
- - u: The first string for comparison
- - v: The second string for comparison
- Returns:
- - res: `true` if the strings `u` and `v` are the same alpha characters (ignoring case)
- Example:
- import "core:fmt"
- import "core:strings"
- equal_fold_example :: proc() {
- fmt.println(strings.equal_fold("test", "test"))
- fmt.println(strings.equal_fold("Test", "test"))
- fmt.println(strings.equal_fold("Test", "tEsT"))
- fmt.println(strings.equal_fold("test", "tes"))
- }
- Output:
- true
- true
- true
- false
- */
- equal_fold :: proc(u, v: string) -> (res: bool) {
- s, t := u, v
- loop: for s != "" && t != "" {
- sr, tr: rune
- if s[0] < utf8.RUNE_SELF {
- sr, s = rune(s[0]), s[1:]
- } else {
- r, size := utf8.decode_rune_in_string(s)
- sr, s = r, s[size:]
- }
- if t[0] < utf8.RUNE_SELF {
- tr, t = rune(t[0]), t[1:]
- } else {
- r, size := utf8.decode_rune_in_string(t)
- tr, t = r, t[size:]
- }
- if tr == sr { // easy case
- continue loop
- }
- if tr < sr {
- tr, sr = sr, tr
- }
- if tr < utf8.RUNE_SELF {
- switch sr {
- case 'A'..='Z':
- if tr == (sr+'a')-'A' {
- continue loop
- }
- }
- return false
- }
- // TODO(bill): Unicode folding
- return false
- }
- return s == t
- }
- /*
- Returns the prefix length common between strings `a` and `b`
- Inputs:
- - a: The first input string
- - b: The second input string
- Returns:
- - n: The prefix length common between strings `a` and `b`
- Example:
- import "core:fmt"
- import "core:strings"
- prefix_length_example :: proc() {
- fmt.println(strings.prefix_length("testing", "test"))
- fmt.println(strings.prefix_length("testing", "te"))
- fmt.println(strings.prefix_length("telephone", "te"))
- fmt.println(strings.prefix_length("testing", "est"))
- }
- Output:
- 4
- 2
- 2
- 0
- */
- prefix_length :: proc(a, b: string) -> (n: int) {
- _len := min(len(a), len(b))
- // Scan for matches including partial codepoints.
- #no_bounds_check for n < _len && a[n] == b[n] {
- n += 1
- }
- // Now scan to ignore partial codepoints.
- if n > 0 {
- s := a[:n]
- n = 0
- for {
- r0, w := utf8.decode_rune(s[n:])
- if r0 != utf8.RUNE_ERROR {
- n += w
- } else {
- break
- }
- }
- }
- return
- }
- /*
- Determines if a string `s` starts with a given `prefix`
- Inputs:
- - s: The string to check for the `prefix`
- - prefix: The prefix to look for
- Returns:
- - result: `true` if the string `s` starts with the `prefix`, otherwise `false`
- Example:
- import "core:fmt"
- import "core:strings"
- has_prefix_example :: proc() {
- fmt.println(strings.has_prefix("testing", "test"))
- fmt.println(strings.has_prefix("testing", "te"))
- fmt.println(strings.has_prefix("telephone", "te"))
- fmt.println(strings.has_prefix("testing", "est"))
- }
- Output:
- true
- true
- true
- false
- */
- has_prefix :: proc(s, prefix: string) -> (result: bool) {
- return len(s) >= len(prefix) && s[0:len(prefix)] == prefix
- }
- starts_with :: has_prefix
- /*
- Determines if a string `s` ends with a given `suffix`
- Inputs:
- - s: The string to check for the `suffix`
- - suffix: The suffix to look for
- Returns:
- - result: `true` if the string `s` ends with the `suffix`, otherwise `false`
- Example:
- import "core:fmt"
- import "core:strings"
- has_suffix_example :: proc() {
- fmt.println(strings.has_suffix("todo.txt", ".txt"))
- fmt.println(strings.has_suffix("todo.doc", ".txt"))
- fmt.println(strings.has_suffix("todo.doc.txt", ".txt"))
- }
- Output:
- true
- false
- true
- */
- has_suffix :: proc(s, suffix: string) -> (result: bool) {
- return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
- }
- ends_with :: has_suffix
- /*
- Joins a slice of strings `a` with a `sep` string
- *Allocates Using Provided Allocator*
- Inputs:
- - a: A slice of strings to join
- - sep: The separator string
- - allocator: (default is context.allocator)
- Returns:
- - res: A combined string from the slice of strings `a` separated with the `sep` string
- - err: An optional allocator error if one occured, `nil` otherwise
- Example:
- import "core:fmt"
- import "core:strings"
- join_example :: proc() {
- a := [?]string { "a", "b", "c" }
- fmt.println(strings.join(a[:], " "))
- fmt.println(strings.join(a[:], "-"))
- fmt.println(strings.join(a[:], "..."))
- }
- Output:
- a b c
- a-b-c
- a...b...c
- */
- join :: proc(a: []string, sep: string, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error {
- if len(a) == 0 {
- return "", nil
- }
- n := len(sep) * (len(a) - 1)
- for s in a {
- n += len(s)
- }
- b := make([]byte, n, allocator, loc) or_return
- i := copy(b, a[0])
- for s in a[1:] {
- i += copy(b[i:], sep)
- i += copy(b[i:], s)
- }
- return string(b), nil
- }
- /*
- Joins a slice of strings `a` with a `sep` string, returns an error on allocation failure
- *Allocates Using Provided Allocator*
- Inputs:
- - a: A slice of strings to join
- - sep: The separator string
- - allocator: (default is context.allocator)
- Returns:
- - str: A combined string from the slice of strings `a` separated with the `sep` string
- - err: An allocator error if one occured, `nil` otherwise
- */
- @(deprecated="Prefer join. It now returns an optional allocator error")
- join_safe :: proc(a: []string, sep: string, allocator := context.allocator) -> (res: string, err: mem.Allocator_Error) {
- return join(a, sep, allocator)
- }
- /*
- Returns a combined string from the slice of strings `a` without a separator
- *Allocates Using Provided Allocator*
- Inputs:
- - a: A slice of strings to concatenate
- - allocator: (default is context.allocator)
- Returns:
- - res: The concatenated string
- - err: An optional allocator error if one occured, `nil` otherwise
- Example:
- import "core:fmt"
- import "core:strings"
- concatenate_example :: proc() {
- a := [?]string { "a", "b", "c" }
- fmt.println(strings.concatenate(a[:]))
- }
- Output:
- abc
- */
- concatenate :: proc(a: []string, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error {
- if len(a) == 0 {
- return "", nil
- }
- n := 0
- for s in a {
- n += len(s)
- }
- b := make([]byte, n, allocator, loc) or_return
- i := 0
- for s in a {
- i += copy(b[i:], s)
- }
- return string(b), nil
- }
- /*
- Returns a combined string from the slice of strings `a` without a separator, or an error if allocation fails
- *Allocates Using Provided Allocator*
- Inputs:
- - a: A slice of strings to concatenate
- - allocator: (default is context.allocator)
- Returns:
- The concatenated string, and an error if allocation fails
- */
- @(deprecated="Prefer concatenate. It now returns an optional allocator error")
- concatenate_safe :: proc(a: []string, allocator := context.allocator) -> (res: string, err: mem.Allocator_Error) {
- return concatenate(a, allocator)
- }
- /*
- Returns a substring of the input string `s` with the specified rune offset and length
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The input string to cut
- - rune_offset: The starting rune index (default is 0). In runes, not bytes.
- - rune_length: The number of runes to include in the substring (default is 0, which returns the remainder of the string). In runes, not bytes.
- - allocator: (default is context.allocator)
- Returns:
- - res: The substring
- - err: An optional allocator error if one occured, `nil` otherwise
- Example:
- import "core:fmt"
- import "core:strings"
- cut_example :: proc() {
- fmt.println(strings.cut("some example text", 0, 4)) // -> "some"
- fmt.println(strings.cut("some example text", 2, 2)) // -> "me"
- fmt.println(strings.cut("some example text", 5, 7)) // -> "example"
- }
- Output:
- some
- me
- example
- */
- cut :: proc(s: string, rune_offset := int(0), rune_length := int(0), allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error {
- s := s; rune_length := rune_length
- context.allocator = allocator
- // If we signal that we want the entire remainder (length <= 0) *and*
- // the offset is zero, then we can early out by cloning the input
- if rune_offset == 0 && rune_length <= 0 {
- return clone(s)
- }
- // We need to know if we have enough runes to cover offset + length.
- rune_count := utf8.rune_count_in_string(s)
- // We're asking for a substring starting after the end of the input string.
- // That's just an empty string.
- if rune_offset >= rune_count {
- return "", nil
- }
- // If we don't specify the length of the substring, use the remainder.
- if rune_length <= 0 {
- rune_length = rune_count - rune_offset
- }
- // We don't yet know how many bytes we need exactly.
- // But we do know it's bounded by the number of runes * 4 bytes,
- // and can be no more than the size of the input string.
- bytes_needed := min(rune_length * 4, len(s))
- buf := make([]u8, bytes_needed, allocator, loc) or_return
- byte_offset := 0
- for i := 0; i < rune_count; i += 1 {
- _, w := utf8.decode_rune_in_string(s)
- // If the rune is part of the substring, copy it to the output buffer.
- if i >= rune_offset {
- for j := 0; j < w; j += 1 {
- buf[byte_offset+j] = s[j]
- }
- byte_offset += w
- }
- // We're done if we reach the end of the input string, *or*
- // if we've reached a specified length in runes.
- if rune_length > 0 {
- if i == rune_offset + rune_length - 1 { break }
- }
- s = s[w:]
- }
- return string(buf[:byte_offset]), nil
- }
- /*
- Splits the input string `s` into a slice of substrings separated by the specified `sep` string
- *Allocates Using Provided Allocator*
- *Used Internally - Private Function*
- Inputs:
- - s: The input string to split
- - sep: The separator string
- - sep_save: A flag determining if the separator should be saved in the resulting substrings
- - n: The maximum number of substrings to return, returns `nil` without alloc when `n=0`
- - allocator: (default is context.allocator)
- NOTE: Allocation occurs for the array, the splits are all views of the original string.
- Returns:
- - res: The slice of substrings
- - err: An optional allocator error if one occured, `nil` otherwise
- */
- @private
- _split :: proc(s_, sep: string, sep_save, n_: int, allocator := context.allocator, loc := #caller_location) -> (res: []string, err: mem.Allocator_Error) {
- s, n := s_, n_
- if n == 0 {
- return nil, nil
- }
- if sep == "" {
- l := utf8.rune_count_in_string(s)
- if n < 0 || n > l {
- n = l
- }
- res = make([]string, n, allocator, loc) or_return
- for i := 0; i < n-1; i += 1 {
- _, w := utf8.decode_rune_in_string(s)
- res[i] = s[:w]
- s = s[w:]
- }
- if n > 0 {
- res[n-1] = s
- }
- return res[:], nil
- }
- if n < 0 {
- n = count(s, sep) + 1
- }
- res = make([]string, n, allocator, loc) or_return
- n -= 1
- i := 0
- for ; i < n; i += 1 {
- m := index(s, sep)
- if m < 0 {
- break
- }
- res[i] = s[:m+sep_save]
- s = s[m+len(sep):]
- }
- res[i] = s
- return res[:i+1], nil
- }
- /*
- Splits a string into parts based on a separator.
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The string to split.
- - sep: The separator string used to split the input string.
- - allocator: (default is context.allocator).
- Returns:
- - res: The slice of strings, each representing a part of the split string.
- - err: An optional allocator error if one occured, `nil` otherwise
- NOTE: Allocation occurs for the array, the splits are all views of the original string.
- Example:
- import "core:fmt"
- import "core:strings"
- split_example :: proc() {
- s := "aaa.bbb.ccc.ddd.eee" // 5 parts
- ss := strings.split(s, ".")
- fmt.println(ss)
- }
- Output:
- ["aaa", "bbb", "ccc", "ddd", "eee"]
- */
- split :: proc(s, sep: string, allocator := context.allocator) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error {
- return _split(s, sep, 0, -1, allocator)
- }
- /*
- Splits a string into parts based on a separator. If n < count of seperators, the remainder of the string is returned in the last entry.
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The string to split.
- - sep: The separator string used to split the input string.
- - n: The maximum amount of parts to split the string into.
- - allocator: (default is context.allocator)
- Returns:
- - res: The slice of strings, each representing a part of the split string.
- - err: An optional allocator error if one occured, `nil` otherwise
- NOTE: Allocation occurs for the array, the splits are all views of the original string.
- Example:
- import "core:fmt"
- import "core:strings"
- split_n_example :: proc() {
- s := "aaa.bbb.ccc.ddd.eee" // 5 parts present
- ss := strings.split_n(s, ".",3) // total of 3 wanted
- fmt.println(ss)
- }
- Output:
- ["aaa", "bbb", "ccc.ddd.eee"]
- */
- split_n :: proc(s, sep: string, n: int, allocator := context.allocator) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error {
- return _split(s, sep, 0, n, allocator)
- }
- /*
- Splits a string into parts after the separator, retaining it in the substrings.
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The string to split.
- - sep: The separator string used to split the input string.
- - allocator: (default is context.allocator).
- Returns:
- - res: The slice of strings, each representing a part of the split string after the separator
- - err: An optional allocator error if one occured, `nil` otherwise
- NOTE: Allocation occurs for the array, the splits are all views of the original string.
- Example:
- import "core:fmt"
- import "core:strings"
- split_after_example :: proc() {
- a := "aaa.bbb.ccc.ddd.eee" // 5 parts
- aa := strings.split_after(a, ".")
- fmt.println(aa)
- }
- Output:
- ["aaa.", "bbb.", "ccc.", "ddd.", "eee"]
- */
- split_after :: proc(s, sep: string, allocator := context.allocator) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error {
- return _split(s, sep, len(sep), -1, allocator)
- }
- /*
- Splits a string into a total of `n` parts after the separator.
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The string to split.
- - sep: The separator string used to split the input string.
- - n: The maximum number of parts to split the string into.
- - allocator: (default is context.allocator)
- Returns:
- - res: The slice of strings with `n` parts or fewer if there weren't
- - err: An optional allocator error if one occured, `nil` otherwise
- NOTE: Allocation occurs for the array, the splits are all views of the original string.
- Example:
- import "core:fmt"
- import "core:strings"
- split_after_n_example :: proc() {
- a := "aaa.bbb.ccc.ddd.eee"
- aa := strings.split_after_n(a, ".", 3)
- fmt.println(aa)
- }
- Output:
- ["aaa.", "bbb.", "ccc.ddd.eee"]
- */
- split_after_n :: proc(s, sep: string, n: int, allocator := context.allocator) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error {
- return _split(s, sep, len(sep), n, allocator)
- }
- /*
- Searches for the first occurrence of `sep` in the given string and returns the substring
- up to (but not including) the separator, as well as a boolean indicating success.
- *Used Internally - Private Function*
- Inputs:
- - s: Pointer to the input string, which is modified during the search.
- - sep: The separator string to search for.
- - sep_save: Number of characters from the separator to include in the result.
- Returns:
- - res: The resulting substring
- - ok: `true` if an iteration result was returned, `false` if the iterator has reached the end
- */
- @private
- _split_iterator :: proc(s: ^string, sep: string, sep_save: int) -> (res: string, ok: bool) {
- if sep == "" {
- res = s[:]
- ok = true
- s^ = s[len(s):]
- return
- }
- m := index(s^, sep)
- if m < 0 {
- // not found
- res = s[:]
- ok = res != ""
- s^ = s[len(s):]
- } else {
- res = s[:m+sep_save]
- ok = true
- s^ = s[m+len(sep):]
- }
- return
- }
- /*
- Splits the input string by the byte separator in an iterator fashion.
- Inputs:
- - s: Pointer to the input string, which is modified during the search.
- - sep: The byte separator to search for.
- Returns:
- - res: The resulting substring
- - ok: `true` if an iteration result was returned, `false` if the iterator has reached the end
- Example:
- import "core:fmt"
- import "core:strings"
- split_by_byte_iterator_example :: proc() {
- text := "a.b.c.d.e"
- for str in strings.split_by_byte_iterator(&text, '.') {
- fmt.println(str) // every loop -> a b c d e
- }
- }
- Output:
- a
- b
- c
- d
- e
- */
- split_by_byte_iterator :: proc(s: ^string, sep: u8) -> (res: string, ok: bool) {
- m := index_byte(s^, sep)
- if m < 0 {
- // not found
- res = s[:]
- ok = res != ""
- s^ = {}
- } else {
- res = s[:m]
- ok = true
- s^ = s[m+1:]
- }
- return
- }
- /*
- Splits the input string by the separator string in an iterator fashion.
- Inputs:
- - s: Pointer to the input string, which is modified during the search.
- - sep: The separator string to search for.
- Returns:
- - res: The resulting substring
- - ok: `true` if an iteration result was returned, `false` if the iterator has reached the end
- Example:
- import "core:fmt"
- import "core:strings"
- split_iterator_example :: proc() {
- text := "a.b.c.d.e"
- for str in strings.split_iterator(&text, ".") {
- fmt.println(str)
- }
- }
- Output:
- a
- b
- c
- d
- e
- */
- split_iterator :: proc(s: ^string, sep: string) -> (res: string, ok: bool) {
- return _split_iterator(s, sep, 0)
- }
- /*
- Splits the input string after every separator string in an iterator fashion.
- Inputs:
- - s: Pointer to the input string, which is modified during the search.
- - sep: The separator string to search for.
- Returns:
- - res: The resulting substring
- - ok: `true` if an iteration result was returned, `false` if the iterator has reached the end
- Example:
- import "core:fmt"
- import "core:strings"
- split_after_iterator_example :: proc() {
- text := "a.b.c.d.e"
- for str in strings.split_after_iterator(&text, ".") {
- fmt.println(str)
- }
- }
- Output:
- a.
- b.
- c.
- d.
- e
- */
- split_after_iterator :: proc(s: ^string, sep: string) -> (res: string, ok: bool) {
- return _split_iterator(s, sep, len(sep))
- }
- /*
- Trims the carriage return character from the end of the input string.
- *Used Internally - Private Function*
- Inputs:
- - s: The input string to trim.
- Returns:
- - res: The trimmed string as a slice of the original.
- */
- @(private)
- _trim_cr :: proc(s: string) -> (res: string) {
- n := len(s)
- if n > 0 {
- if s[n-1] == '\r' {
- return s[:n-1]
- }
- }
- return s
- }
- /*
- Splits the input string at every line break `\n`.
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The input string to split.
- - allocator: (default is context.allocator)
- Returns:
- - res: The slice (allocated) of the split string (slices into original string)
- - err: An optional allocator error if one occured, `nil` otherwise
- Example:
- import "core:fmt"
- import "core:strings"
- split_lines_example :: proc() {
- a := "a\nb\nc\nd\ne"
- b := strings.split_lines(a)
- fmt.println(b)
- }
- Output:
- ["a", "b", "c", "d", "e"]
- */
- split_lines :: proc(s: string, allocator := context.allocator) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error {
- sep :: "\n"
- lines := _split(s, sep, 0, -1, allocator) or_return
- for &line in lines {
- line = _trim_cr(line)
- }
- return lines, nil
- }
- /*
- Splits the input string at every line break `\n` for `n` parts.
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The input string to split.
- - n: The number of parts to split into.
- - allocator: (default is context.allocator)
- Returns:
- - res: The slice (allocated) of the split string (slices into original string)
- - err: An optional allocator error if one occured, `nil` otherwise
- NOTE: Allocation occurs for the array, the splits are all views of the original string.
- Example:
- import "core:fmt"
- import "core:strings"
- split_lines_n_example :: proc() {
- a := "a\nb\nc\nd\ne"
- b := strings.split_lines_n(a, 3)
- fmt.println(b)
- }
- Output:
- ["a", "b", "c\nd\ne"]
- */
- split_lines_n :: proc(s: string, n: int, allocator := context.allocator) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error {
- sep :: "\n"
- lines := _split(s, sep, 0, n, allocator) or_return
- for &line in lines {
- line = _trim_cr(line)
- }
- return lines, nil
- }
- /*
- Splits the input string at every line break `\n` leaving the `\n` in the resulting strings.
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The input string to split.
- - allocator: (default is context.allocator)
- Returns:
- - res: The slice (allocated) of the split string (slices into original string), with `\n` included
- - err: An optional allocator error if one occured, `nil` otherwise
- NOTE: Allocation occurs for the array, the splits are all views of the original string.
- Example:
- import "core:fmt"
- import "core:strings"
- split_lines_after_example :: proc() {
- a := "a\nb\nc\nd\ne"
- b := strings.split_lines_after(a)
- fmt.println(b)
- }
- Output:
- ["a\n", "b\n", "c\n", "d\n", "e"]
- */
- split_lines_after :: proc(s: string, allocator := context.allocator) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error {
- sep :: "\n"
- lines := _split(s, sep, len(sep), -1, allocator) or_return
- for &line in lines {
- line = _trim_cr(line)
- }
- return lines, nil
- }
- /*
- Splits the input string at every line break `\n` leaving the `\n` in the resulting strings.
- Only runs for n parts.
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The input string to split.
- - n: The number of parts to split into.
- - allocator: (default is context.allocator)
- Returns:
- - res: The slice (allocated) of the split string (slices into original string), with `\n` included
- - err: An optional allocator error if one occured, `nil` otherwise
- NOTE: Allocation occurs for the array, the splits are all views of the original string.
- Example:
- import "core:fmt"
- import "core:strings"
- split_lines_after_n_example :: proc() {
- a := "a\nb\nc\nd\ne"
- b := strings.split_lines_after_n(a, 3)
- fmt.println(b)
- }
- Output:
- ["a\n", "b\n", "c\nd\ne"]
- */
- split_lines_after_n :: proc(s: string, n: int, allocator := context.allocator) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error {
- sep :: "\n"
- lines := _split(s, sep, len(sep), n, allocator) or_return
- for &line in lines {
- line = _trim_cr(line)
- }
- return lines, nil
- }
- /*
- Splits the input string at every line break `\n`.
- Returns the current split string every iteration until the string is consumed.
- Inputs:
- - s: Pointer to the input string, which is modified during the search.
- Returns:
- - line: The resulting substring
- - ok: `true` if an iteration result was returned, `false` if the iterator has reached the end
- Example:
- import "core:fmt"
- import "core:strings"
- split_lines_iterator_example :: proc() {
- text := "a\nb\nc\nd\ne"
- for str in strings.split_lines_iterator(&text) {
- fmt.print(str) // every loop -> a b c d e
- }
- fmt.print("\n")
- }
- Output:
- abcde
- */
- split_lines_iterator :: proc(s: ^string) -> (line: string, ok: bool) {
- sep :: "\n"
- line = _split_iterator(s, sep, 0) or_return
- return _trim_cr(line), true
- }
- /*
- Splits the input string at every line break `\n`.
- Returns the current split string with line breaks included every iteration until the string is consumed.
- Inputs:
- - s: Pointer to the input string, which is modified during the search.
- Returns:
- - line: The resulting substring with line breaks included
- - ok: `true` if an iteration result was returned, `false` if the iterator has reached the end
- Example:
- import "core:fmt"
- import "core:strings"
- split_lines_after_iterator_example :: proc() {
- text := "a\nb\nc\nd\ne\n"
- for str in strings.split_lines_after_iterator(&text) {
- fmt.print(str) // every loop -> a\n b\n c\n d\n e\n
- }
- }
- Output:
- a
- b
- c
- d
- e
- */
- split_lines_after_iterator :: proc(s: ^string) -> (line: string, ok: bool) {
- sep :: "\n"
- line = _split_iterator(s, sep, len(sep)) or_return
- return _trim_cr(line), true
- }
- /*
- Returns the byte offset of the first byte `c` in the string s it finds, -1 when not found.
- NOTE: Can't find UTF-8 based runes.
- Inputs:
- - s: The input string to search in.
- - c: The byte to search for.
- Returns:
- - res: The byte offset of the first occurrence of `c` in `s`, or -1 if not found.
- Example:
- import "core:fmt"
- import "core:strings"
- index_byte_example :: proc() {
- fmt.println(strings.index_byte("test", 't'))
- fmt.println(strings.index_byte("test", 'e'))
- fmt.println(strings.index_byte("test", 'x'))
- fmt.println(strings.index_byte("teäst", 'ä'))
- }
- Output:
- 0
- 1
- -1
- -1
- */
- index_byte :: proc(s: string, c: byte) -> (res: int) {
- return #force_inline bytes.index_byte(transmute([]u8)s, c)
- }
- /*
- Returns the byte offset of the last byte `c` in the string `s`, -1 when not found.
- Inputs:
- - s: The input string to search in.
- - c: The byte to search for.
- Returns:
- - res: The byte offset of the last occurrence of `c` in `s`, or -1 if not found.
- NOTE: Can't find UTF-8 based runes.
- Example:
- import "core:fmt"
- import "core:strings"
- last_index_byte_example :: proc() {
- fmt.println(strings.last_index_byte("test", 't'))
- fmt.println(strings.last_index_byte("test", 'e'))
- fmt.println(strings.last_index_byte("test", 'x'))
- fmt.println(strings.last_index_byte("teäst", 'ä'))
- }
- Output:
- 3
- 1
- -1
- -1
- */
- last_index_byte :: proc(s: string, c: byte) -> (res: int) {
- return #force_inline bytes.last_index_byte(transmute([]u8)s, c)
- }
- /*
- Returns the byte offset of the first rune `r` in the string `s` it finds, -1 when not found.
- Invalid runes return -1
- Inputs:
- - s: The input string to search in.
- - r: The rune to search for.
- Returns:
- - res: The byte offset of the first occurrence of `r` in `s`, or -1 if not found.
- Example:
- import "core:fmt"
- import "core:strings"
- index_rune_example :: proc() {
- fmt.println(strings.index_rune("abcädef", 'x'))
- fmt.println(strings.index_rune("abcädef", 'a'))
- fmt.println(strings.index_rune("abcädef", 'b'))
- fmt.println(strings.index_rune("abcädef", 'c'))
- fmt.println(strings.index_rune("abcädef", 'ä'))
- fmt.println(strings.index_rune("abcädef", 'd'))
- fmt.println(strings.index_rune("abcädef", 'e'))
- fmt.println(strings.index_rune("abcädef", 'f'))
- }
- Output:
- -1
- 0
- 1
- 2
- 3
- 5
- 6
- 7
- */
- index_rune :: proc(s: string, r: rune) -> (res: int) {
- switch {
- case u32(r) < utf8.RUNE_SELF:
- return index_byte(s, byte(r))
- case r == utf8.RUNE_ERROR:
- for c, i in s {
- if c == utf8.RUNE_ERROR {
- return i
- }
- }
- return -1
- case !utf8.valid_rune(r):
- return -1
- }
- b, w := utf8.encode_rune(r)
- return index(s, string(b[:w]))
- }
- @private PRIME_RABIN_KARP :: 16777619
- /*
- Returns the byte offset of the string `substr` in the string `s`, -1 when not found.
- Inputs:
- - s: The input string to search in.
- - substr: The substring to search for.
- Returns:
- - res: The byte offset of the first occurrence of `substr` in `s`, or -1 if not found.
- Example:
- import "core:fmt"
- import "core:strings"
- index_example :: proc() {
- fmt.println(strings.index("test", "t"))
- fmt.println(strings.index("test", "te"))
- fmt.println(strings.index("test", "st"))
- fmt.println(strings.index("test", "tt"))
- }
- Output:
- 0
- 0
- 2
- -1
- */
- index :: proc(s, substr: string) -> (res: int) {
- hash_str_rabin_karp :: proc(s: string) -> (hash: u32 = 0, pow: u32 = 1) {
- for i := 0; i < len(s); i += 1 {
- hash = hash*PRIME_RABIN_KARP + u32(s[i])
- }
- sq := u32(PRIME_RABIN_KARP)
- for i := len(s); i > 0; i >>= 1 {
- if (i & 1) != 0 {
- pow *= sq
- }
- sq *= sq
- }
- return
- }
- n := len(substr)
- switch {
- case n == 0:
- return 0
- case n == 1:
- return index_byte(s, substr[0])
- case n == len(s):
- if s == substr {
- return 0
- }
- return -1
- case n > len(s):
- return -1
- }
- hash, pow := hash_str_rabin_karp(substr)
- h: u32
- for i := 0; i < n; i += 1 {
- h = h*PRIME_RABIN_KARP + u32(s[i])
- }
- if h == hash && s[:n] == substr {
- return 0
- }
- for i := n; i < len(s); /**/ {
- h *= PRIME_RABIN_KARP
- h += u32(s[i])
- h -= pow * u32(s[i-n])
- i += 1
- if h == hash && s[i-n:i] == substr {
- return i - n
- }
- }
- return -1
- }
- /*
- Returns the last byte offset of the string `substr` in the string `s`, -1 when not found.
- Inputs:
- - s: The input string to search in.
- - substr: The substring to search for.
- Returns:
- - res: The byte offset of the last occurrence of `substr` in `s`, or -1 if not found.
- Example:
- import "core:fmt"
- import "core:strings"
- last_index_example :: proc() {
- fmt.println(strings.last_index("test", "t"))
- fmt.println(strings.last_index("test", "te"))
- fmt.println(strings.last_index("test", "st"))
- fmt.println(strings.last_index("test", "tt"))
- }
- Output:
- 3
- 0
- 2
- -1
- */
- last_index :: proc(s, substr: string) -> (res: int) {
- hash_str_rabin_karp_reverse :: proc(s: string) -> (hash: u32 = 0, pow: u32 = 1) {
- for i := len(s) - 1; i >= 0; i -= 1 {
- hash = hash*PRIME_RABIN_KARP + u32(s[i])
- }
- sq := u32(PRIME_RABIN_KARP)
- for i := len(s); i > 0; i >>= 1 {
- if (i & 1) != 0 {
- pow *= sq
- }
- sq *= sq
- }
- return
- }
- n := len(substr)
- switch {
- case n == 0:
- return len(s)
- case n == 1:
- return last_index_byte(s, substr[0])
- case n == len(s):
- return 0 if substr == s else -1
- case n > len(s):
- return -1
- }
- hash, pow := hash_str_rabin_karp_reverse(substr)
- last := len(s) - n
- h: u32
- for i := len(s)-1; i >= last; i -= 1 {
- h = h*PRIME_RABIN_KARP + u32(s[i])
- }
- if h == hash && s[last:] == substr {
- return last
- }
- for i := last-1; i >= 0; i -= 1 {
- h *= PRIME_RABIN_KARP
- h += u32(s[i])
- h -= pow * u32(s[i+n])
- if h == hash && s[i:i+n] == substr {
- return i
- }
- }
- return -1
- }
- /*
- Returns the index of any first char of `chars` found in `s`, -1 if not found.
- Inputs:
- - s: The input string to search in.
- - chars: The characters to look for
- Returns:
- - res: The index of the first character of `chars` found in `s`, or -1 if not found.
- Example:
- import "core:fmt"
- import "core:strings"
- index_any_example :: proc() {
- fmt.println(strings.index_any("test", "s"))
- fmt.println(strings.index_any("test", "se"))
- fmt.println(strings.index_any("test", "et"))
- fmt.println(strings.index_any("test", "set"))
- fmt.println(strings.index_any("test", "x"))
- }
- Output:
- 2
- 1
- 0
- 0
- -1
- */
- index_any :: proc(s, chars: string) -> (res: int) {
- if chars == "" {
- return -1
- }
-
- if len(chars) == 1 {
- r := rune(chars[0])
- if r >= utf8.RUNE_SELF {
- r = utf8.RUNE_ERROR
- }
- return index_rune(s, r)
- }
-
- if len(s) > 8 {
- if as, ok := ascii_set_make(chars); ok {
- for i in 0..<len(s) {
- if ascii_set_contains(as, s[i]) {
- return i
- }
- }
- return -1
- }
- }
- for c, i in s {
- if index_rune(chars, c) >= 0 {
- return i
- }
- }
- return -1
- }
- /*
- Finds the last occurrence of any character in `chars` within `s`. Iterates in reverse.
- Inputs:
- - s: The string to search in
- - chars: The characters to look for
- Returns:
- - res: The index of the last matching character, or -1 if not found
- Example:
- import "core:fmt"
- import "core:strings"
- last_index_any_example :: proc() {
- fmt.println(strings.last_index_any("test", "s"))
- fmt.println(strings.last_index_any("test", "se"))
- fmt.println(strings.last_index_any("test", "et"))
- fmt.println(strings.last_index_any("test", "set"))
- fmt.println(strings.last_index_any("test", "x"))
- }
- Output:
- 2
- 2
- 3
- 3
- -1
- */
- last_index_any :: proc(s, chars: string) -> (res: int) {
- if chars == "" {
- return -1
- }
-
- if len(s) == 1 {
- r := rune(s[0])
- if r >= utf8.RUNE_SELF {
- r = utf8.RUNE_ERROR
- }
- i := index_rune(chars, r)
- return i if i < 0 else 0
- }
-
- if len(s) > 8 {
- if as, ok := ascii_set_make(chars); ok {
- for i := len(s)-1; i >= 0; i -= 1 {
- if ascii_set_contains(as, s[i]) {
- return i
- }
- }
- return -1
- }
- }
-
- if len(chars) == 1 {
- r := rune(chars[0])
- if r >= utf8.RUNE_SELF {
- r = utf8.RUNE_ERROR
- }
- for i := len(s); i > 0; /**/ {
- c, w := utf8.decode_last_rune_in_string(s[:i])
- i -= w
- if c == r {
- return i
- }
- }
- return -1
- }
- for i := len(s); i > 0; /**/ {
- r, w := utf8.decode_last_rune_in_string(s[:i])
- i -= w
- if index_rune(chars, r) >= 0 {
- return i
- }
- }
- return -1
- }
- /*
- Finds the first occurrence of any substring in `substrs` within `s`
- Inputs:
- - s: The string to search in
- - substrs: The substrings to look for
- Returns:
- - idx: the index of the first matching substring
- - width: the length of the found substring
- */
- index_multi :: proc(s: string, substrs: []string) -> (idx: int, width: int) {
- idx = -1
- if s == "" || len(substrs) <= 0 {
- return
- }
- // disallow "" substr
- for substr in substrs {
- if len(substr) == 0 {
- return
- }
- }
- lowest_index := len(s)
- found := false
- for substr in substrs {
- if i := index(s, substr); i >= 0 {
- if i < lowest_index {
- lowest_index = i
- width = len(substr)
- found = true
- }
- }
- }
- if found {
- idx = lowest_index
- }
- return
- }
- /*
- Counts the number of non-overlapping occurrences of `substr` in `s`
- Inputs:
- - s: The string to search in
- - substr: The substring to count
- Returns:
- - res: The number of occurrences of `substr` in `s`, returns the rune_count + 1 of the string `s` on empty `substr`
- Example:
- import "core:fmt"
- import "core:strings"
- count_example :: proc() {
- fmt.println(strings.count("abbccc", "a"))
- fmt.println(strings.count("abbccc", "b"))
- fmt.println(strings.count("abbccc", "c"))
- fmt.println(strings.count("abbccc", "ab"))
- fmt.println(strings.count("abbccc", " "))
- }
- Output:
- 1
- 2
- 3
- 1
- 0
- */
- count :: proc(s, substr: string) -> (res: int) {
- if len(substr) == 0 { // special case
- return rune_count(s) + 1
- }
- if len(substr) == 1 {
- c := substr[0]
- switch len(s) {
- case 0:
- return 0
- case 1:
- return int(s[0] == c)
- }
- n := 0
- for i := 0; i < len(s); i += 1 {
- if s[i] == c {
- n += 1
- }
- }
- return n
- }
- // TODO(bill): Use a non-brute for approach
- n := 0
- str := s
- for {
- i := index(str, substr)
- if i == -1 {
- return n
- }
- n += 1
- str = str[i+len(substr):]
- }
- return n
- }
- /*
- Repeats the string `s` `count` times, concatenating the result
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The string to repeat
- - count: The number of times to repeat `s`
- - allocator: (default is context.allocator)
- Returns:
- - res: The concatenated repeated string
- - err: An optional allocator error if one occured, `nil` otherwise
- WARNING: Panics if count < 0
- Example:
- import "core:fmt"
- import "core:strings"
- repeat_example :: proc() {
- fmt.println(strings.repeat("abc", 2))
- }
- Output:
- abcabc
- */
- repeat :: proc(s: string, count: int, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error {
- if count < 0 {
- panic("strings: negative repeat count")
- } else if count > 0 && (len(s)*count)/count != len(s) {
- panic("strings: repeat count will cause an overflow")
- }
- b := make([]byte, len(s)*count, allocator, loc) or_return
- i := copy(b, s)
- for i < len(b) { // 2^N trick to reduce the need to copy
- copy(b[i:], b[:i])
- i *= 2
- }
- return string(b), nil
- }
- /*
- Replaces all occurrences of `old` in `s` with `new`
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The string to modify
- - old: The substring to replace
- - new: The substring to replace `old` with
- - allocator: The allocator to use for the new string (default is context.allocator)
- Returns:
- - output: The modified string
- - was_allocation: `true` if an allocation occurred during the replacement, `false` otherwise
- Example:
- import "core:fmt"
- import "core:strings"
- replace_all_example :: proc() {
- fmt.println(strings.replace_all("xyzxyz", "xyz", "abc"))
- fmt.println(strings.replace_all("xyzxyz", "abc", "xyz"))
- fmt.println(strings.replace_all("xyzxyz", "xy", "z"))
- }
- Output:
- abcabc true
- xyzxyz false
- zzzz true
- */
- replace_all :: proc(s, old, new: string, allocator := context.allocator) -> (output: string, was_allocation: bool) {
- return replace(s, old, new, -1, allocator)
- }
- /*
- Replaces n instances of old in the string s with the new string
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The input string
- - old: The substring to be replaced
- - new: The replacement string
- - n: The number of instances to replace (if `n < 0`, no limit on the number of replacements)
- - allocator: (default: context.allocator)
- Returns:
- - output: The modified string
- - was_allocation: `true` if an allocation occurred during the replacement, `false` otherwise
- Example:
- import "core:fmt"
- import "core:strings"
- replace_example :: proc() {
- fmt.println(strings.replace("xyzxyz", "xyz", "abc", 2))
- fmt.println(strings.replace("xyzxyz", "xyz", "abc", 1))
- fmt.println(strings.replace("xyzxyz", "abc", "xyz", -1))
- fmt.println(strings.replace("xyzxyz", "xy", "z", -1))
- }
- Output:
- abcabc true
- abcxyz true
- xyzxyz false
- zzzz true
- */
- replace :: proc(s, old, new: string, n: int, allocator := context.allocator, loc := #caller_location) -> (output: string, was_allocation: bool) {
- if old == new || n == 0 {
- was_allocation = false
- output = s
- return
- }
- byte_count := n
- if m := count(s, old); m == 0 {
- was_allocation = false
- output = s
- return
- } else if n < 0 || m < n {
- byte_count = m
- }
- t, err := make([]byte, len(s) + byte_count*(len(new) - len(old)), allocator, loc)
- if err != nil {
- return
- }
- was_allocation = true
- w := 0
- start := 0
- for i := 0; i < byte_count; i += 1 {
- j := start
- if len(old) == 0 {
- if i > 0 {
- _, width := utf8.decode_rune_in_string(s[start:])
- j += width
- }
- } else {
- j += index(s[start:], old)
- }
- w += copy(t[w:], s[start:j])
- w += copy(t[w:], new)
- start = j + len(old)
- }
- w += copy(t[w:], s[start:])
- output = string(t[0:w])
- return
- }
- /*
- Removes the key string `n` times from the `s` string
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The input string
- - key: The substring to be removed
- - n: The number of instances to remove (if `n < 0`, no limit on the number of removes)
- - allocator: (default: context.allocator)
- Returns:
- - output: The modified string
- - was_allocation: `true` if an allocation occurred during the replacement, `false` otherwise
- Example:
- import "core:fmt"
- import "core:strings"
- remove_example :: proc() {
- fmt.println(strings.remove("abcabc", "abc", 1))
- fmt.println(strings.remove("abcabc", "abc", -1))
- fmt.println(strings.remove("abcabc", "a", -1))
- fmt.println(strings.remove("abcabc", "x", -1))
- }
- Output:
- abc true
- true
- bcbc true
- abcabc false
- */
- remove :: proc(s, key: string, n: int, allocator := context.allocator) -> (output: string, was_allocation: bool) {
- return replace(s, key, "", n, allocator)
- }
- /*
- Removes all the `key` string instances from the `s` string
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The input string
- - key: The substring to be removed
- - allocator: (default: context.allocator)
- Returns:
- - output: The modified string
- - was_allocation: `true` if an allocation occurred during the replacement, `false` otherwise
- Example:
- import "core:fmt"
- import "core:strings"
- remove_all_example :: proc() {
- fmt.println(strings.remove_all("abcabc", "abc"))
- fmt.println(strings.remove_all("abcabc", "a"))
- fmt.println(strings.remove_all("abcabc", "x"))
- }
- Output:
- true
- bcbc true
- abcabc false
- */
- remove_all :: proc(s, key: string, allocator := context.allocator) -> (output: string, was_allocation: bool) {
- return remove(s, key, -1, allocator)
- }
- // Returns true if is an ASCII space character ('\t', '\n', '\v', '\f', '\r', ' ')
- @(private) _ascii_space := [256]bool{'\t' = true, '\n' = true, '\v' = true, '\f' = true, '\r' = true, ' ' = true}
- /*
- Returns true when the `r` rune is an ASCII whitespace character.
- Inputs:
- - r: the rune to test
- Returns:
- -res: `true` if `r` is a whitespace character, `false` if otherwise
- */
- is_ascii_space :: proc(r: rune) -> (res: bool) {
- if r < utf8.RUNE_SELF {
- return _ascii_space[u8(r)]
- }
- return false
- }
- /*
- Returns true when the `r` rune is an ASCII or UTF-8 whitespace character.
- Inputs:
- - r: the rune to test
- Returns:
- -res: `true` if `r` is a whitespace character, `false` if otherwise
- */
- is_space :: proc(r: rune) -> (res: bool) {
- if r < 0x2000 {
- switch r {
- case '\t', '\n', '\v', '\f', '\r', ' ', 0x85, 0xa0, 0x1680:
- return true
- }
- } else {
- if r <= 0x200a {
- return true
- }
- switch r {
- case 0x2028, 0x2029, 0x202f, 0x205f, 0x3000:
- return true
- }
- }
- return false
- }
- /*
- Returns true when the `r` rune is `0x0`
- Inputs:
- - r: the rune to test
- Returns:
- -res: `true` if `r` is `0x0`, `false` if otherwise
- */
- is_null :: proc(r: rune) -> (res: bool) {
- return r == 0x0000
- }
- /*
- Find the index of the first rune `r` in string `s` for which procedure `p` returns the same as truth, or -1 if no such rune appears.
- Inputs:
- - s: The input string
- - p: A procedure that takes a rune and returns a boolean
- - truth: The boolean value to be matched (default: `true`)
- Returns:
- - res: The index of the first matching rune, or -1 if no match was found
- Example:
- import "core:fmt"
- import "core:strings"
- index_proc_example :: proc() {
- call :: proc(r: rune) -> bool {
- return r == 'a'
- }
- fmt.println(strings.index_proc("abcabc", call))
- fmt.println(strings.index_proc("cbacba", call))
- fmt.println(strings.index_proc("cbacba", call, false))
- fmt.println(strings.index_proc("abcabc", call, false))
- fmt.println(strings.index_proc("xyz", call))
- }
- Output:
- 0
- 2
- 0
- 1
- -1
- */
- index_proc :: proc(s: string, p: proc(rune) -> bool, truth := true) -> (res: int) {
- for r, i in s {
- if p(r) == truth {
- return i
- }
- }
- return -1
- }
- // Same as `index_proc`, but the procedure p takes a raw pointer for state
- index_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> (res: int) {
- for r, i in s {
- if p(state, r) == truth {
- return i
- }
- }
- return -1
- }
- // Finds the index of the *last* rune in the string s for which the procedure p returns the same value as truth
- last_index_proc :: proc(s: string, p: proc(rune) -> bool, truth := true) -> (res: int) {
- // TODO(bill): Probably use Rabin-Karp Search
- for i := len(s); i > 0; {
- r, size := utf8.decode_last_rune_in_string(s[:i])
- i -= size
- if p(r) == truth {
- return i
- }
- }
- return -1
- }
- // Same as `index_proc_with_state`, runs through the string in reverse
- last_index_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> (res: int) {
- // TODO(bill): Probably use Rabin-Karp Search
- for i := len(s); i > 0; {
- r, size := utf8.decode_last_rune_in_string(s[:i])
- i -= size
- if p(state, r) == truth {
- return i
- }
- }
- return -1
- }
- /*
- Trims the input string `s` from the left until the procedure `p` returns false
- Inputs:
- - s: The input string
- - p: A procedure that takes a rune and returns a boolean
- Returns:
- - res: The trimmed string as a slice of the original
- Example:
- import "core:fmt"
- import "core:strings"
- trim_left_proc_example :: proc() {
- find :: proc(r: rune) -> bool {
- return r == 'x'
- }
- fmt.println(strings.trim_left_proc("xxxxxxtesting", find))
- }
- Output:
- testing
- */
- trim_left_proc :: proc(s: string, p: proc(rune) -> bool) -> (res: string) {
- i := index_proc(s, p, false)
- if i == -1 {
- return ""
- }
- return s[i:]
- }
- /*
- Trims the input string `s` from the left until the procedure `p` with state returns false
- Inputs:
- - s: The input string
- - p: A procedure that takes a raw pointer and a rune and returns a boolean
- - state: The raw pointer to be passed to the procedure `p`
- Returns:
- - res: The trimmed string as a slice of the original
- */
- trim_left_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr) -> (res: string) {
- i := index_proc_with_state(s, p, state, false)
- if i == -1 {
- return ""
- }
- return s[i:]
- }
- /*
- Trims the input string `s` from the right until the procedure `p` returns `false`
- Inputs:
- - s: The input string
- - p: A procedure that takes a rune and returns a boolean
- Returns:
- - res: The trimmed string as a slice of the original
- Example:
- import "core:fmt"
- import "core:strings"
- trim_right_proc_example :: proc() {
- find :: proc(r: rune) -> bool {
- return r != 't'
- }
- fmt.println(strings.trim_right_proc("testing", find))
- }
- Output:
- test
- */
- trim_right_proc :: proc(s: string, p: proc(rune) -> bool) -> (res: string) {
- i := last_index_proc(s, p, false)
- if i >= 0 && s[i] >= utf8.RUNE_SELF {
- _, w := utf8.decode_rune_in_string(s[i:])
- i += w
- } else {
- i += 1
- }
- return s[0:i]
- }
- /*
- Trims the input string `s` from the right until the procedure `p` with state returns `false`
- Inputs:
- - s: The input string
- - p: A procedure that takes a raw pointer and a rune and returns a boolean
- - state: The raw pointer to be passed to the procedure `p`
- Returns:
- - res: The trimmed string as a slice of the original, empty when no match
- */
- trim_right_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr) -> (res: string) {
- i := last_index_proc_with_state(s, p, state, false)
- if i >= 0 && s[i] >= utf8.RUNE_SELF {
- _, w := utf8.decode_rune_in_string(s[i:])
- i += w
- } else {
- i += 1
- }
- return s[0:i]
- }
- // Procedure for `trim_*_proc` variants, which has a string rawptr cast + rune comparison
- is_in_cutset :: proc(state: rawptr, r: rune) -> (res: bool) {
- cutset := (^string)(state)^
- for c in cutset {
- if r == c {
- return true
- }
- }
- return false
- }
- /*
- Trims the cutset string from the `s` string
- Inputs:
- - s: The input string
- - cutset: The set of characters to be trimmed from the left of the input string
- Returns:
- - res: The trimmed string as a slice of the original
- */
- trim_left :: proc(s: string, cutset: string) -> (res: string) {
- if s == "" || cutset == "" {
- return s
- }
- state := cutset
- return trim_left_proc_with_state(s, is_in_cutset, &state)
- }
- /*
- Trims the cutset string from the `s` string from the right
- Inputs:
- - s: The input string
- - cutset: The set of characters to be trimmed from the right of the input string
- Returns:
- - res: The trimmed string as a slice of the original
- */
- trim_right :: proc(s: string, cutset: string) -> (res: string) {
- if s == "" || cutset == "" {
- return s
- }
- state := cutset
- return trim_right_proc_with_state(s, is_in_cutset, &state)
- }
- /*
- Trims the cutset string from the `s` string, both from left and right
- Inputs:
- - s: The input string
- - cutset: The set of characters to be trimmed from both sides of the input string
- Returns:
- - res: The trimmed string as a slice of the original
- */
- trim :: proc(s: string, cutset: string) -> (res: string) {
- return trim_right(trim_left(s, cutset), cutset)
- }
- /*
- Trims until a valid non-space rune from the left, "\t\txyz\t\t" -> "xyz\t\t"
- Inputs:
- - s: The input string
- Returns:
- - res: The trimmed string as a slice of the original
- */
- trim_left_space :: proc(s: string) -> (res: string) {
- return trim_left_proc(s, is_space)
- }
- /*
- Trims from the right until a valid non-space rune, "\t\txyz\t\t" -> "\t\txyz"
- Inputs:
- - s: The input string
- Returns:
- - res: The trimmed string as a slice of the original
- */
- trim_right_space :: proc(s: string) -> (res: string) {
- return trim_right_proc(s, is_space)
- }
- /*
- Trims from both sides until a valid non-space rune, "\t\txyz\t\t" -> "xyz"
- Inputs:
- - s: The input string
- Returns:
- - res: The trimmed string as a slice of the original
- */
- trim_space :: proc(s: string) -> (res: string) {
- return trim_right_space(trim_left_space(s))
- }
- /*
- Trims null runes from the left, "\x00\x00testing\x00\x00" -> "testing\x00\x00"
- Inputs:
- - s: The input string
- Returns:
- - res: The trimmed string as a slice of the original
- */
- trim_left_null :: proc(s: string) -> (res: string) {
- return trim_left_proc(s, is_null)
- }
- /*
- Trims null runes from the right, "\x00\x00testing\x00\x00" -> "\x00\x00testing"
- Inputs:
- - s: The input string
- Returns:
- - res: The trimmed string as a slice of the original
- */
- trim_right_null :: proc(s: string) -> (res: string) {
- return trim_right_proc(s, is_null)
- }
- /*
- Trims null runes from both sides, "\x00\x00testing\x00\x00" -> "testing"
- Inputs:
- - s: The input string
- Returns:
- - res: The trimmed string as a slice of the original
- */
- trim_null :: proc(s: string) -> (res: string) {
- return trim_right_null(trim_left_null(s))
- }
- /*
- Trims a `prefix` string from the start of the `s` string and returns the trimmed string
- Inputs:
- - s: The input string
- - prefix: The prefix string to be removed
- Returns:
- - res: The trimmed string as a slice of original, or the input string if no prefix was found
- Example:
- import "core:fmt"
- import "core:strings"
- trim_prefix_example :: proc() {
- fmt.println(strings.trim_prefix("testing", "test"))
- fmt.println(strings.trim_prefix("testing", "abc"))
- }
- Output:
- ing
- testing
- */
- trim_prefix :: proc(s, prefix: string) -> (res: string) {
- if has_prefix(s, prefix) {
- return s[len(prefix):]
- }
- return s
- }
- /*
- Trims a `suffix` string from the end of the `s` string and returns the trimmed string
- Inputs:
- - s: The input string
- - suffix: The suffix string to be removed
- Returns:
- - res: The trimmed string as a slice of original, or the input string if no suffix was found
- Example:
- import "core:fmt"
- import "core:strings"
- trim_suffix_example :: proc() {
- fmt.println(strings.trim_suffix("todo.txt", ".txt"))
- fmt.println(strings.trim_suffix("todo.doc", ".txt"))
- }
- Output:
- todo
- todo.doc
- */
- trim_suffix :: proc(s, suffix: string) -> (res: string) {
- if has_suffix(s, suffix) {
- return s[:len(s)-len(suffix)]
- }
- return s
- }
- /*
- Splits the input string `s` by all possible `substrs` and returns an allocated array of strings
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The input string
- - substrs: An array of substrings used for splitting
- - allocator: (default is context.allocator)
- Returns:
- - res: An array of strings, or nil on empty substring or no matches
- - err: An optional allocator error if one occured, `nil` otherwise
- NOTE: Allocation occurs for the array, the splits are all views of the original string.
- Example:
- import "core:fmt"
- import "core:strings"
- split_multi_example :: proc() {
- splits := [?]string { "---", "~~~", ".", "_", "," }
- res := strings.split_multi("testing,this.out_nice---done~~~last", splits[:])
- fmt.println(res) // -> [testing, this, out, nice, done, last]
- }
- Output:
- ["testing", "this", "out", "nice", "done", "last"]
- */
- split_multi :: proc(s: string, substrs: []string, allocator := context.allocator, loc := #caller_location) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error #no_bounds_check {
- if s == "" || len(substrs) <= 0 {
- return nil, nil
- }
- // disallow "" substr
- for substr in substrs {
- if len(substr) == 0 {
- return nil, nil
- }
- }
- // calculate the needed len of `results`
- n := 1
- for it := s; len(it) > 0; {
- i, w := index_multi(it, substrs)
- if i < 0 {
- break
- }
- n += 1
- it = it[i+w:]
- }
- results := make([dynamic]string, 0, n, allocator, loc) or_return
- {
- it := s
- for len(it) > 0 {
- i, w := index_multi(it, substrs)
- if i < 0 {
- break
- }
- part := it[:i]
- append(&results, part)
- it = it[i+w:]
- }
- append(&results, it)
- }
- assert(len(results) == n)
- return results[:], nil
- }
- /*
- Splits the input string `s` by all possible `substrs` in an iterator fashion. The full string is returned if no match.
- Inputs:
- - it: A pointer to the input string
- - substrs: An array of substrings used for splitting
- Returns:
- - res: The split string
- - ok: `true` if an iteration result was returned, `false` if the iterator has reached the end
- Example:
- import "core:fmt"
- import "core:strings"
- split_multi_iterate_example :: proc() {
- it := "testing,this.out_nice---done~~~last"
- splits := [?]string { "---", "~~~", ".", "_", "," }
- for str in strings.split_multi_iterate(&it, splits[:]) {
- fmt.println(str)
- }
- }
- Output:
- testing
- this
- out
- nice
- done
- last
- */
- split_multi_iterate :: proc(it: ^string, substrs: []string) -> (res: string, ok: bool) #no_bounds_check {
- if len(it) == 0 || len(substrs) <= 0 {
- return
- }
- // disallow "" substr
- for substr in substrs {
- if len(substr) == 0 {
- return
- }
- }
- // calculate the needed len of `results`
- i, w := index_multi(it^, substrs)
- if i >= 0 {
- res = it[:i]
- it^ = it[i+w:]
- } else {
- // last value
- res = it^
- it^ = it[len(it):]
- }
- ok = true
- return
- }
- /*
- Replaces invalid UTF-8 characters in the input string with a specified replacement string. Adjacent invalid bytes are only replaced once.
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The input string
- - replacement: The string used to replace invalid UTF-8 characters
- - allocator: (default is context.allocator)
- Returns:
- - res: A new string with invalid UTF-8 characters replaced
- - err: An optional allocator error if one occured, `nil` otherwise
- Example:
- import "core:fmt"
- import "core:strings"
- scrub_example :: proc() {
- text := "Hello\xC0\x80World"
- fmt.println(strings.scrub(text, "?")) // -> "Hello?World"
- }
- Output:
- Hello?
- */
- scrub :: proc(s: string, replacement: string, allocator := context.allocator) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error {
- str := s
- b: Builder
- builder_init(&b, 0, len(s), allocator) or_return
- has_error := false
- cursor := 0
- origin := str
- for len(str) > 0 {
- r, w := utf8.decode_rune_in_string(str)
- if r == utf8.RUNE_ERROR {
- if !has_error {
- has_error = true
- write_string(&b, origin[:cursor])
- }
- } else if has_error {
- has_error = false
- write_string(&b, replacement)
- origin = origin[cursor:]
- cursor = 0
- }
- cursor += w
- str = str[w:]
- }
- return to_string(b), nil
- }
- /*
- Reverses the input string `s`
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The input string
- - allocator: (default is context.allocator)
- Returns:
- - res: A reversed version of the input string
- - err: An optional allocator error if one occured, `nil` otherwise
- Example:
- import "core:fmt"
- import "core:strings"
- reverse_example :: proc() {
- a := "abcxyz"
- b := strings.reverse(a)
- fmt.println(a, b)
- }
- Output:
- abcxyz zyxcba
- */
- reverse :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error {
- str := s
- n := len(str)
- buf := make([]byte, n, allocator, loc) or_return
- i := n
- for len(str) > 0 {
- _, w := utf8.decode_rune_in_string(str)
- i -= w
- copy(buf[i:], str[:w])
- str = str[w:]
- }
- return string(buf), nil
- }
- /*
- Expands the input string by replacing tab characters with spaces to align to a specified tab size
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The input string
- - tab_size: The number of spaces to use for each tab character
- - allocator: (default is context.allocator)
- Returns:
- - res: A new string with tab characters expanded to the specified tab size
- - err: An optional allocator error if one occured, `nil` otherwise
- WARNING: Panics if tab_size <= 0
- Example:
- import "core:fmt"
- import "core:strings"
- expand_tabs_example :: proc() {
- text := "abc1\tabc2\tabc3"
- fmt.println(strings.expand_tabs(text, 4))
- }
- Output:
- abc1 abc2 abc3
- */
- expand_tabs :: proc(s: string, tab_size: int, allocator := context.allocator) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error {
- if tab_size <= 0 {
- panic("tab size must be positive")
- }
- if s == "" {
- return "", nil
- }
- b: Builder
- builder_init(&b, allocator) or_return
- writer := to_writer(&b)
- str := s
- column: int
- for len(str) > 0 {
- r, w := utf8.decode_rune_in_string(str)
- if r == '\t' {
- expand := tab_size - column%tab_size
- for i := 0; i < expand; i += 1 {
- io.write_byte(writer, ' ')
- }
- column += expand
- } else {
- if r == '\n' {
- column = 0
- } else {
- column += w
- }
- io.write_rune(writer, r)
- }
- str = str[w:]
- }
- return to_string(b), nil
- }
- /*
- Splits the input string `str` by the separator `sep` string and returns 3 parts. The values are slices of the original string.
- Inputs:
- - str: The input string
- - sep: The separator string
- Returns:
- - head: the string before the split
- - match: the seperator string
- - tail: the string after the split
- Example:
- import "core:fmt"
- import "core:strings"
- partition_example :: proc() {
- text := "testing this out"
- head, match, tail := strings.partition(text, " this ") // -> head: "testing", match: " this ", tail: "out"
- fmt.println(head, match, tail)
- head, match, tail = strings.partition(text, "hi") // -> head: "testing t", match: "hi", tail: "s out"
- fmt.println(head, match, tail)
- head, match, tail = strings.partition(text, "xyz") // -> head: "testing this out", match: "", tail: ""
- fmt.println(head)
- fmt.println(match == "")
- fmt.println(tail == "")
- }
- Output:
- testing this out
- testing t hi s out
- testing this out
- true
- true
- */
- partition :: proc(str, sep: string) -> (head, match, tail: string) {
- i := index(str, sep)
- if i == -1 {
- head = str
- return
- }
- head = str[:i]
- match = str[i:i+len(sep)]
- tail = str[i+len(sep):]
- return
- }
- // Alias for centre_justify
- center_justify :: centre_justify // NOTE(bill): Because Americans exist
- /*
- Centers the input string within a field of specified length by adding pad string on both sides, if its length is less than the target length.
- *Allocates Using Provided Allocator*
- Inputs:
- - str: The input string
- - length: The desired length of the centered string, in runes
- - pad: The string used for padding on both sides
- - allocator: (default is context.allocator)
- Returns:
- - res: A new string centered within a field of the specified length
- - err: An optional allocator error if one occured, `nil` otherwise
- */
- centre_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error {
- n := rune_count(str)
- if n >= length || pad == "" {
- return clone(str, allocator)
- }
- remains := length-n
- pad_len := rune_count(pad)
- b: Builder
- builder_init(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator) or_return
- w := to_writer(&b)
- write_pad_string(w, pad, pad_len, remains/2)
- io.write_string(w, str)
- write_pad_string(w, pad, pad_len, (remains+1)/2)
- return to_string(b), nil
- }
- /*
- Left-justifies the input string within a field of specified length by adding pad string on the right side, if its length is less than the target length.
- *Allocates Using Provided Allocator*
- Inputs:
- - str: The input string
- - length: The desired length of the left-justified string
- - pad: The string used for padding on the right side
- - allocator: (default is context.allocator)
- Returns:
- - res: A new string left-justified within a field of the specified length
- - err: An optional allocator error if one occured, `nil` otherwise
- */
- left_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error {
- n := rune_count(str)
- if n >= length || pad == "" {
- return clone(str, allocator)
- }
- remains := length-n
- pad_len := rune_count(pad)
- b: Builder
- builder_init(&b, allocator)
- builder_init(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator) or_return
- w := to_writer(&b)
- io.write_string(w, str)
- write_pad_string(w, pad, pad_len, remains)
- return to_string(b), nil
- }
- /*
- Right-justifies the input string within a field of specified length by adding pad string on the left side, if its length is less than the target length.
- *Allocates Using Provided Allocator*
- Inputs:
- - str: The input string
- - length: The desired length of the right-justified string
- - pad: The string used for padding on the left side
- - allocator: (default is context.allocator)
- Returns:
- - res: A new string right-justified within a field of the specified length
- - err: An optional allocator error if one occured, `nil` otherwise
- */
- right_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> (res: string, err: mem.Allocator_Error) #optional_allocator_error {
- n := rune_count(str)
- if n >= length || pad == "" {
- return clone(str, allocator)
- }
- remains := length-n
- pad_len := rune_count(pad)
- b: Builder
- builder_init(&b, allocator)
- builder_init(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator) or_return
- w := to_writer(&b)
- write_pad_string(w, pad, pad_len, remains)
- io.write_string(w, str)
- return to_string(b), nil
- }
- /*
- Writes a given pad string a specified number of times to an `io.Writer`
- Inputs:
- - w: The io.Writer to write the pad string to
- - pad: The pad string to be written
- - pad_len: The length of the pad string, in runes
- - remains: The number of times to write the pad string, in runes
- */
- @private
- write_pad_string :: proc(w: io.Writer, pad: string, pad_len, remains: int) {
- repeats := remains / pad_len
- for i := 0; i < repeats; i += 1 {
- io.write_string(w, pad)
- }
- n := remains % pad_len
- p := pad
- for i := 0; i < n; i += 1 {
- r, width := utf8.decode_rune_in_string(p)
- io.write_rune(w, r)
- p = p[width:]
- }
- }
- /*
- Splits a string into a slice of substrings at each instance of one or more consecutive white space characters, as defined by `unicode.is_space`
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The input string
- - allocator: (default is context.allocator)
- Returns:
- - res: A slice of substrings of the input string, or an empty slice if the input string only contains white space
- - err: An optional allocator error if one occured, `nil` otherwise
- */
- fields :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error #no_bounds_check {
- n := 0
- was_space := 1
- set_bits := u8(0)
- // check to see
- for i in 0..<len(s) {
- r := s[i]
- set_bits |= r
- is_space := int(_ascii_space[r])
- n += was_space & ~is_space
- was_space = is_space
- }
- if set_bits >= utf8.RUNE_SELF {
- return fields_proc(s, unicode.is_space, allocator)
- }
- if n == 0 {
- return nil, nil
- }
- a := make([]string, n, allocator, loc) or_return
- na := 0
- field_start := 0
- i := 0
- for i < len(s) && _ascii_space[s[i]] {
- i += 1
- }
- field_start = i
- for i < len(s) {
- if !_ascii_space[s[i]] {
- i += 1
- continue
- }
- a[na] = s[field_start : i]
- na += 1
- i += 1
- for i < len(s) && _ascii_space[s[i]] {
- i += 1
- }
- field_start = i
- }
- if field_start < len(s) {
- a[na] = s[field_start:]
- }
- return a, nil
- }
- /*
- Splits a string into a slice of substrings at each run of unicode code points `r` satisfying the predicate `f(r)`
- *Allocates Using Provided Allocator*
- Inputs:
- - s: The input string
- - f: A predicate function to determine the split points
- - allocator: (default is context.allocator)
- NOTE: fields_proc makes no guarantee about the order in which it calls `f(r)`, it assumes that `f` always returns the same value for a given `r`
- Returns:
- - res: A slice of substrings of the input string, or an empty slice if all code points in the input string satisfy the predicate or if the input string is empty
- - err: An optional allocator error if one occured, `nil` otherwise
- */
- fields_proc :: proc(s: string, f: proc(rune) -> bool, allocator := context.allocator, loc := #caller_location) -> (res: []string, err: mem.Allocator_Error) #optional_allocator_error #no_bounds_check {
- substrings := make([dynamic]string, 0, 32, allocator, loc) or_return
- start, end := -1, -1
- for r, offset in s {
- end = offset
- if f(r) {
- if start >= 0 {
- append(&substrings, s[start : end])
- // -1 could be used, but just speed it up through bitwise not
- // gotta love 2's complement
- start = ~start
- }
- } else {
- if start < 0 {
- start = end
- }
- }
- }
- if start >= 0 {
- append(&substrings, s[start : len(s)])
- }
- return substrings[:], nil
- }
- /*
- Retrieves the first non-space substring from a mutable string reference and advances the reference. `s` is advanced from any space after the substring, or be an empty string if the substring was the remaining characters
- Inputs:
- - s: A mutable string reference to be iterated
- Returns:
- - field: The first non-space substring found
- - ok: A boolean indicating if a non-space substring was found
- */
- fields_iterator :: proc(s: ^string) -> (field: string, ok: bool) {
- start, end := -1, -1
- for r, offset in s {
- end = offset
- if unicode.is_space(r) {
- if start >= 0 {
- field = s[start : end]
- ok = true
- s^ = s[end:]
- return
- }
- } else {
- if start < 0 {
- start = end
- }
- }
- }
- // if either of these are true, the string did not contain any characters
- if end < 0 || start < 0 {
- return "", false
- }
- field = s[start:]
- ok = true
- s^ = s[len(s):]
- return
- }
- /*
- Computes the Levenshtein edit distance between two strings
- *Allocates Using Provided Allocator (deletion occurs internal to proc)*
- NOTE: Does not perform internal allocation if length of string `b`, in runes, is smaller than 64
- Inputs:
- - a, b: The two strings to compare
- - allocator: (default is context.allocator)
- Returns:
- - res: The Levenshtein edit distance between the two strings
- - err: An optional allocator error if one occured, `nil` otherwise
- NOTE: This implementation is a single-row-version of the Wagner–Fischer algorithm, based on C code by Martin Ettl.
- */
- levenshtein_distance :: proc(a, b: string, allocator := context.allocator, loc := #caller_location) -> (res: int, err: mem.Allocator_Error) #optional_allocator_error {
- LEVENSHTEIN_DEFAULT_COSTS: []int : {
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
- 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
- 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
- 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
- 60, 61, 62, 63,
- }
- m, n := utf8.rune_count_in_string(a), utf8.rune_count_in_string(b)
- if m == 0 {
- return n, nil
- }
- if n == 0 {
- return m, nil
- }
- costs: []int
- if n + 1 > len(LEVENSHTEIN_DEFAULT_COSTS) {
- costs = make([]int, n + 1, allocator, loc) or_return
- for k in 0..=n {
- costs[k] = k
- }
- } else {
- costs = LEVENSHTEIN_DEFAULT_COSTS
- }
- defer if n + 1 > len(LEVENSHTEIN_DEFAULT_COSTS) {
- delete(costs, allocator)
- }
- i: int
- for c1 in a {
- costs[0] = i + 1
- corner := i
- j: int
- for c2 in b {
- upper := costs[j + 1]
- if c1 == c2 {
- costs[j + 1] = corner
- } else {
- t := upper if upper < corner else corner
- costs[j + 1] = (costs[j] if costs[j] < t else t) + 1
- }
- corner = upper
- j += 1
- }
- i += 1
- }
- return costs[n], nil
- }
|