12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645 |
- //+vet !using-stmt !using-param
- package main
- import "core:fmt"
- import "core:mem"
- import "core:os"
- import "core:thread"
- import "core:time"
- import "core:reflect"
- import "base:runtime"
- import "base:intrinsics"
- import "core:math/big"
- /*
- Odin is a general-purpose programming language with distinct typing built
- for high performance, modern systems and data-oriented programming.
- Odin is the C alternative for the Joy of Programming.
- # Installing Odin
- Getting Started - https://odin-lang.org/docs/install/
- Instructions for downloading and install the Odin compiler and libraries.
- # Learning Odin
- Getting Started - https://odin-lang.org/docs/install/
- Getting Started with Odin. Downloading, installing, and getting your
- first program to compile and run.
- Overview of Odin - https://odin-lang.org/docs/overview/
- An overview of the Odin programming language and its features.
- Frequently Asked Questions (FAQ) - https://odin-lang.org/docs/faq/
- Answers to common questions about Odin.
- Packages - https://pkg.odin-lang.org/
- Documentation for all the official packages part of the
- core and vendor library collections.
- Nightly Builds - https://odin-lang.org/docs/nightly/
- Get the latest nightly builds of Odin.
- More Odin Examples - https://github.com/odin-lang/examples
- This repository contains examples of how certain things can be accomplished
- in idiomatic Odin, allowing you learn its semantics, as well as how to use
- parts of the core and vendor package collections.
- */
- the_basics :: proc() {
- fmt.println("\n# the basics")
- { // The Basics
- // os.args holds the path to the current executable and any arguments passed to it.
- if len(os.args) == 1 {
- fmt.printf("Hellope from %v.\n", os.args[0])
- } else if len(os.args) > 2 {
- fmt.printf("%v, %v! from %v.\n", os.args[1], os.args[2], os.args[0])
- }
- // Lexical elements and literals
- // A comment
- my_integer_variable: int // A comment for documentaton
- // Multi-line comments begin with /* and end with */. Multi-line comments can
- // also be nested (unlike in C):
- /*
- You can have any text or code here and
- have it be commented.
- /*
- NOTE: comments can be nested!
- */
- */
- // String literals are enclosed in double quotes and character literals in single quotes.
- // Special characters are escaped with a backslash \
- some_string := "This is a string"
- _ = 'A' // unicode codepoint literal
- _ = '\n'
- _ = "C:\\Windows\\notepad.exe"
- // Raw string literals are enclosed with single back ticks
- _ = `C:\Windows\notepad.exe`
- // The length of a string in bytes can be found using the built-in `len` procedure:
- _ = len("Foo")
- _ = len(some_string)
- // Numbers
- // Numerical literals are written similar to most other programming languages.
- // A useful feature in Odin is that underscores are allowed for better
- // readability: 1_000_000_000 (one billion). A number that contains a dot is a
- // floating point literal: 1.0e9 (one billion). If a number literal is suffixed
- // with i, is an imaginary number literal: 2i (2 multiply the square root of -1).
- // Binary literals are prefixed with 0b, octal literals with 0o, and hexadecimal
- // literals 0x. A leading zero does not produce an octal constant (unlike C).
- // In Odin, if a numeric constant can be represented by a type without
- // precision loss, it will automatically convert to that type.
- x: int = 1.0 // A float literal but it can be represented by an integer without precision loss
- // Constant literals are “untyped” which means that they can implicitly convert to a type.
- y: int // `y` is typed of type `int`
- y = 1 // `1` is an untyped integer literal which can implicitly convert to `int`
- z: f64 // `z` is typed of type `f64` (64-bit floating point number)
- z = 1 // `1` is an untyped integer literal which can be implicitly converted to `f64`
- // No need for any suffixes or decimal places like in other languages
- // (with the exception of negative zero, which must be given as `-0.0`)
- // CONSTANTS JUST WORK!!!
- // Assignment statements
- h: int = 123 // declares a new variable `h` with type `int` and assigns a value to it
- h = 637 // assigns a new value to `h`
- // `=` is the assignment operator
- // You can assign multiple variables with it:
- a, b := 1, "hello" // declares `a` and `b` and infers the types from the assignments
- b, a = "byte", 0
- // Note: `:=` is two tokens, `:` and `=`. The following are equivalent,
- /*
- i: int = 123
- i: = 123
- i := 123
- */
- // Constant declarations
- // Constants are entities (symbols) which have an assigned value.
- // The constant’s value cannot be changed.
- // The constant’s value must be able to be evaluated at compile time:
- X :: "what" // constant `X` has the untyped string value "what"
- // Constants can be explicitly typed like a variable declaration:
- Y : int : 123
- Z :: Y + 7 // constant computations are possible
- _ = my_integer_variable
- _ = x
- }
- }
- control_flow :: proc() {
- fmt.println("\n# control flow")
- { // Control flow
- // For loop
- // Odin has only one loop statement, the `for` loop
- // Basic for loop
- for i := 0; i < 10; i += 1 {
- fmt.println(i)
- }
- // NOTE: Unlike other languages like C, there are no parentheses `( )` surrounding the three components.
- // Braces `{ }` or a `do` are always required
- for i := 0; i < 10; i += 1 { }
- // for i := 0; i < 10; i += 1 do fmt.print()
- // The initial and post statements are optional
- i := 0
- for ; i < 10; {
- i += 1
- }
- // These semicolons can be dropped. This `for` loop is equivalent to C's `while` loop
- i = 0
- for i < 10 {
- i += 1
- }
- // If the condition is omitted, an infinite loop is produced:
- for {
- break
- }
- // Range-based for loop
- // The basic for loop
- for j := 0; j < 10; j += 1 {
- fmt.println(j)
- }
- // can also be written
- for j in 0..<10 {
- fmt.println(j)
- }
- for j in 0..=9 {
- fmt.println(j)
- }
- // Certain built-in types can be iterated over
- some_string := "Hello, 世界"
- for character in some_string { // Strings are assumed to be UTF-8
- fmt.println(character)
- }
- some_array := [3]int{1, 4, 9}
- for value in some_array {
- fmt.println(value)
- }
- some_slice := []int{1, 4, 9}
- for value in some_slice {
- fmt.println(value)
- }
- some_dynamic_array := [dynamic]int{1, 4, 9}
- defer delete(some_dynamic_array)
- for value in some_dynamic_array {
- fmt.println(value)
- }
- some_map := map[string]int{"A" = 1, "C" = 9, "B" = 4}
- defer delete(some_map)
- for key in some_map {
- fmt.println(key)
- }
- // Alternatively a second index value can be added
- for character, index in some_string {
- fmt.println(index, character)
- }
- for value, index in some_array {
- fmt.println(index, value)
- }
- for value, index in some_slice {
- fmt.println(index, value)
- }
- for value, index in some_dynamic_array {
- fmt.println(index, value)
- }
- for key, value in some_map {
- fmt.println(key, value)
- }
- // The iterated values are copies and cannot be written to.
- // The following idiom is useful for iterating over a container in a by-reference manner:
- for _, idx in some_slice {
- some_slice[idx] = (idx+1)*(idx+1)
- }
- // If statements
- x := 123
- if x >= 0 {
- fmt.println("x is positive")
- }
- if y := -34; y < 0 {
- fmt.println("y is negative")
- }
- if y := 123; y < 0 {
- fmt.println("y is negative")
- } else if y == 0 {
- fmt.println("y is zero")
- } else {
- fmt.println("y is positive")
- }
- // Switch statement
- // A switch statement is another way to write a sequence of if-else statements.
- // In Odin, the default case is denoted as a case without any expression.
- #partial switch arch := ODIN_ARCH; arch {
- case .i386:
- fmt.println("32-bit")
- case .amd64:
- fmt.println("64-bit")
- case: // default
- fmt.println("Unsupported architecture")
- }
- // Odin’s `switch` is like one in C or C++, except that Odin only runs the selected case.
- // This means that a `break` statement is not needed at the end of each case.
- // Another important difference is that the case values need not be integers nor constants.
- // To achieve a C-like fall through into the next case block, the keyword `fallthrough` can be used.
- one_angry_dwarf :: proc() -> int {
- fmt.println("one_angry_dwarf was called")
- return 1
- }
- switch j := 0; j {
- case 0:
- case one_angry_dwarf():
- }
- // A switch statement without a condition is the same as `switch true`.
- // This can be used to write a clean and long if-else chain and have the
- // ability to break if needed
- switch {
- case x < 0:
- fmt.println("x is negative")
- case x == 0:
- fmt.println("x is zero")
- case:
- fmt.println("x is positive")
- }
- // A `switch` statement can also use ranges like a range-based loop:
- switch c := 'j'; c {
- case 'A'..='Z', 'a'..='z', '0'..='9':
- fmt.println("c is alphanumeric")
- }
- switch x {
- case 0..<10:
- fmt.println("units")
- case 10..<13:
- fmt.println("pre-teens")
- case 13..<20:
- fmt.println("teens")
- case 20..<30:
- fmt.println("twenties")
- }
- }
- { // Defer statement
- // A defer statement defers the execution of a statement until the end of
- // the scope it is in.
- // The following will print 4 then 234:
- {
- x := 123
- defer fmt.println(x)
- {
- defer x = 4
- x = 2
- }
- fmt.println(x)
- x = 234
- }
- // You can defer an entire block too:
- {
- bar :: proc() {}
- defer {
- fmt.println("1")
- fmt.println("2")
- }
- cond := false
- defer if cond {
- bar()
- }
- }
- // Defer statements are executed in the reverse order that they were declared:
- {
- defer fmt.println("1")
- defer fmt.println("2")
- defer fmt.println("3")
- }
- // Will print 3, 2, and then 1.
- if false {
- f, err := os.open("my_file.txt")
- if err != nil {
- // handle error
- }
- defer os.close(f)
- // rest of code
- }
- }
- { // When statement
- /*
- The when statement is almost identical to the if statement but with some differences:
- * Each condition must be a constant expression as a when
- statement is evaluated at compile time.
- * The statements within a branch do not create a new scope
- * The compiler checks the semantics and code only for statements
- that belong to the first condition that is true
- * An initial statement is not allowed in a when statement
- * when statements are allowed at file scope
- */
- // Example
- when ODIN_ARCH == .i386 {
- fmt.println("32 bit")
- } else when ODIN_ARCH == .amd64 {
- fmt.println("64 bit")
- } else {
- fmt.println("Unknown architecture")
- }
- // The when statement is very useful for writing platform specific code.
- // This is akin to the #if construct in C’s preprocessor however, in Odin,
- // it is type checked.
- }
- { // Branch statements
- cond, cond1, cond2 := false, false, false
- one_step :: proc() { fmt.println("one_step") }
- beyond :: proc() { fmt.println("beyond") }
- // Break statement
- for cond {
- switch {
- case:
- if cond {
- break // break out of the `switch` statement
- }
- }
- break // break out of the `for` statement
- }
- loop: for cond1 {
- for cond2 {
- break loop // leaves both loops
- }
- }
- // Continue statement
- for cond {
- if cond2 {
- continue
- }
- fmt.println("Hellope")
- }
- // Fallthrough statement
- // Odin’s switch is like one in C or C++, except that Odin only runs the selected
- // case. This means that a break statement is not needed at the end of each case.
- // Another important difference is that the case values need not be integers nor
- // constants.
- // fallthrough can be used to explicitly fall through into the next case block:
- switch i := 0; i {
- case 0:
- one_step()
- fallthrough
- case 1:
- beyond()
- }
- }
- }
- named_proc_return_parameters :: proc() {
- fmt.println("\n# named proc return parameters")
- foo0 :: proc() -> int {
- return 123
- }
- foo1 :: proc() -> (a: int) {
- a = 123
- return
- }
- foo2 :: proc() -> (a, b: int) {
- // Named return values act like variables within the scope
- a = 321
- b = 567
- return b, a
- }
- fmt.println("foo0 =", foo0()) // 123
- fmt.println("foo1 =", foo1()) // 123
- fmt.println("foo2 =", foo2()) // 567 321
- }
- variadic_procedures :: proc() {
- fmt.println("\n# variadic procedures")
- sum :: proc(nums: ..int, init_value:= 0) -> (result: int) {
- result = init_value
- for n in nums {
- result += n
- }
- return
- }
- fmt.println("sum(()) =", sum())
- fmt.println("sum(1, 2) =", sum(1, 2))
- fmt.println("sum(1, 2, 3, 4, 5) =", sum(1, 2, 3, 4, 5))
- fmt.println("sum(1, 2, 3, 4, 5, init_value = 5) =", sum(1, 2, 3, 4, 5, init_value = 5))
- // pass a slice as varargs
- odds := []int{1, 3, 5}
- fmt.println("odds =", odds)
- fmt.println("sum(..odds) =", sum(..odds))
- fmt.println("sum(..odds, init_value = 5) =", sum(..odds, init_value = 5))
- }
- explicit_procedure_overloading :: proc() {
- fmt.println("\n# explicit procedure overloading")
- add_ints :: proc(a, b: int) -> int {
- x := a + b
- fmt.println("add_ints", x)
- return x
- }
- add_floats :: proc(a, b: f32) -> f32 {
- x := a + b
- fmt.println("add_floats", x)
- return x
- }
- add_numbers :: proc(a: int, b: f32, c: u8) -> int {
- x := int(a) + int(b) + int(c)
- fmt.println("add_numbers", x)
- return x
- }
- add :: proc{add_ints, add_floats, add_numbers}
- add(int(1), int(2))
- add(f32(1), f32(2))
- add(int(1), f32(2), u8(3))
- add(1, 2) // untyped ints coerce to int tighter than f32
- add(1.0, 2.0) // untyped floats coerce to f32 tighter than int
- add(1, 2, 3) // three parameters
- // Ambiguous answers
- // add(1.0, 2)
- // add(1, 2.0)
- }
- struct_type :: proc() {
- fmt.println("\n# struct type")
- // A struct is a record type in Odin. It is a collection of fields.
- // Struct fields are accessed by using a dot:
- {
- Vector2 :: struct {
- x: f32,
- y: f32,
- }
- v := Vector2{1, 2}
- v.x = 4
- fmt.println(v.x)
- // Struct fields can be accessed through a struct pointer:
- v = Vector2{1, 2}
- p := &v
- p.x = 1335
- fmt.println(v)
- // We could write p^.x, however, it is nice to abstract the ability
- // to not explicitly dereference the pointer. This is very useful when
- // refactoring code to use a pointer rather than a value, and vice versa.
- }
- {
- // A struct literal can be denoted by providing the struct’s type
- // followed by {}. A struct literal must either provide all the
- // arguments or none:
- Vector3 :: struct {
- x, y, z: f32,
- }
- v: Vector3
- v = Vector3{} // Zero value
- v = Vector3{1, 4, 9}
- // You can list just a subset of the fields if you specify the
- // field by name (the order of the named fields does not matter):
- v = Vector3{z=1, y=2}
- assert(v.x == 0)
- assert(v.y == 2)
- assert(v.z == 1)
- }
- {
- // Structs can tagged with different memory layout and alignment requirements:
- a :: struct #align(4) {} // align to 4 bytes
- b :: struct #packed {} // remove padding between fields
- c :: struct #raw_union {} // all fields share the same offset (0). This is the same as C's union
- }
- }
- union_type :: proc() {
- fmt.println("\n# union type")
- {
- val: union{int, bool}
- val = 137
- if i, ok := val.(int); ok {
- fmt.println(i)
- }
- val = true
- fmt.println(val)
- val = nil
- switch v in val {
- case int: fmt.println("int", v)
- case bool: fmt.println("bool", v)
- case: fmt.println("nil")
- }
- }
- {
- // There is a duality between `any` and `union`
- // An `any` has a pointer to the data and allows for any type (open)
- // A `union` has as binary blob to store the data and allows only certain types (closed)
- // The following code is with `any` but has the same syntax
- val: any
- val = 137
- if i, ok := val.(int); ok {
- fmt.println(i)
- }
- val = true
- fmt.println(val)
- val = nil
- switch v in val {
- case int: fmt.println("int", v)
- case bool: fmt.println("bool", v)
- case: fmt.println("nil")
- }
- }
- Vector3 :: distinct [3]f32
- Quaternion :: distinct quaternion128
- // More realistic examples
- {
- // NOTE(bill): For the above basic examples, you may not have any
- // particular use for it. However, my main use for them is not for these
- // simple cases. My main use is for hierarchical types. Many prefer
- // subtyping, embedding the base data into the derived types. Below is
- // an example of this for a basic game Entity.
- Entity :: struct {
- id: u64,
- name: string,
- position: Vector3,
- orientation: Quaternion,
- derived: any,
- }
- Frog :: struct {
- using entity: Entity,
- jump_height: f32,
- }
- Monster :: struct {
- using entity: Entity,
- is_robot: bool,
- is_zombie: bool,
- }
- // See `parametric_polymorphism` procedure for details
- new_entity :: proc($T: typeid) -> ^Entity {
- t := new(T)
- t.derived = t^
- return t
- }
- entity := new_entity(Monster)
- switch e in entity.derived {
- case Frog:
- fmt.println("Ribbit")
- case Monster:
- if e.is_robot { fmt.println("Robotic") }
- if e.is_zombie { fmt.println("Grrrr!") }
- fmt.println("I'm a monster")
- }
- }
- {
- // NOTE(bill): A union can be used to achieve something similar. Instead
- // of embedding the base data into the derived types, the derived data
- // in embedded into the base type. Below is the same example of the
- // basic game Entity but using an union.
- Entity :: struct {
- id: u64,
- name: string,
- position: Vector3,
- orientation: Quaternion,
- derived: union {Frog, Monster},
- }
- Frog :: struct {
- using entity: ^Entity,
- jump_height: f32,
- }
- Monster :: struct {
- using entity: ^Entity,
- is_robot: bool,
- is_zombie: bool,
- }
- // See `parametric_polymorphism` procedure for details
- new_entity :: proc($T: typeid) -> ^Entity {
- t := new(Entity)
- t.derived = T{entity = t}
- return t
- }
- entity := new_entity(Monster)
- switch e in entity.derived {
- case Frog:
- fmt.println("Ribbit")
- case Monster:
- if e.is_robot { fmt.println("Robotic") }
- if e.is_zombie { fmt.println("Grrrr!") }
- }
- // NOTE(bill): As you can see, the usage code has not changed, only its
- // memory layout. Both approaches have their own advantages but they can
- // be used together to achieve different results. The subtyping approach
- // can allow for a greater control of the memory layout and memory
- // allocation, e.g. storing the derivatives together. However, this is
- // also its disadvantage. You must either preallocate arrays for each
- // derivative separation (which can be easily missed) or preallocate a
- // bunch of "raw" memory; determining the maximum size of the derived
- // types would require the aid of metaprogramming. Unions solve this
- // particular problem as the data is stored with the base data.
- // Therefore, it is possible to preallocate, e.g. [100]Entity.
- // It should be noted that the union approach can have the same memory
- // layout as the any and with the same type restrictions by using a
- // pointer type for the derivatives.
- /*
- Entity :: struct {
- ...
- derived: union{^Frog, ^Monster},
- }
- Frog :: struct {
- using entity: Entity,
- ...
- }
- Monster :: struct {
- using entity: Entity,
- ...
- }
- new_entity :: proc(T: type) -> ^Entity {
- t := new(T)
- t.derived = t
- return t
- }
- */
- }
- }
- using_statement :: proc() {
- fmt.println("\n# using statement")
- // using can used to bring entities declared in a scope/namespace
- // into the current scope. This can be applied to import names, struct
- // fields, procedure fields, and struct values.
- Vector3 :: struct{x, y, z: f32}
- {
- Entity :: struct {
- position: Vector3,
- orientation: quaternion128,
- }
- // It can used like this:
- foo0 :: proc(entity: ^Entity) {
- fmt.println(entity.position.x, entity.position.y, entity.position.z)
- }
- // The entity members can be brought into the procedure scope by using it:
- foo1 :: proc(entity: ^Entity) {
- using entity
- fmt.println(position.x, position.y, position.z)
- }
- // The using can be applied to the parameter directly:
- foo2 :: proc(using entity: ^Entity) {
- fmt.println(position.x, position.y, position.z)
- }
- // It can also be applied to sub-fields:
- foo3 :: proc(entity: ^Entity) {
- using entity.position
- fmt.println(x, y, z)
- }
- }
- {
- // We can also apply the using statement to the struct fields directly,
- // making all the fields of position appear as if they on Entity itself:
- Entity :: struct {
- using position: Vector3,
- orientation: quaternion128,
- }
- foo :: proc(entity: ^Entity) {
- fmt.println(entity.x, entity.y, entity.z)
- }
- // Subtype polymorphism
- // It is possible to get subtype polymorphism, similar to inheritance-like
- // functionality in C++, but without the requirement of vtables or unknown
- // struct layout:
- Colour :: struct {r, g, b, a: u8}
- Frog :: struct {
- ribbit_volume: f32,
- using entity: Entity,
- colour: Colour,
- }
- frog: Frog
- // Both work
- foo(&frog.entity)
- foo(&frog)
- frog.x = 123
- // Note: using can be applied to arbitrarily many things, which allows
- // the ability to have multiple subtype polymorphism (but also its issues).
- // Note: using’d fields can still be referred by name.
- }
- }
- implicit_context_system :: proc() {
- fmt.println("\n# implicit context system")
- // In each scope, there is an implicit value named context. This
- // context variable is local to each scope and is implicitly passed
- // by pointer to any procedure call in that scope (if the procedure
- // has the Odin calling convention).
- // The main purpose of the implicit context system is for the ability
- // to intercept third-party code and libraries and modify their
- // functionality. One such case is modifying how a library allocates
- // something or logs something. In C, this was usually achieved with
- // the library defining macros which could be overridden so that the
- // user could define what he wanted. However, not many libraries
- // supported this in many languages by default which meant intercepting
- // third-party code to see what it does and to change how it does it is
- // not possible.
- c := context // copy the current scope's context
- context.user_index = 456
- {
- context.allocator = my_custom_allocator()
- context.user_index = 123
- what_a_fool_believes() // the `context` for this scope is implicitly passed to `what_a_fool_believes`
- }
- // `context` value is local to the scope it is in
- assert(context.user_index == 456)
- what_a_fool_believes :: proc() {
- c := context // this `context` is the same as the parent procedure that it was called from
- // From this example, context.user_index == 123
- // An context.allocator is assigned to the return value of `my_custom_allocator()`
- assert(context.user_index == 123)
- // The memory management procedure use the `context.allocator` by
- // default unless explicitly specified otherwise
- china_grove := new(int)
- free(china_grove)
- _ = c
- }
- my_custom_allocator :: mem.nil_allocator
- _ = c
- // By default, the context value has default values for its parameters which is
- // decided in the package runtime. What the defaults are are compiler specific.
- // To see what the implicit context value contains, please see the following
- // definition in package runtime.
- }
- parametric_polymorphism :: proc() {
- fmt.println("\n# parametric polymorphism")
- print_value :: proc(value: $T) {
- fmt.printf("print_value: %T %v\n", value, value)
- }
- v1: int = 1
- v2: f32 = 2.1
- v3: f64 = 3.14
- v4: string = "message"
- print_value(v1)
- print_value(v2)
- print_value(v3)
- print_value(v4)
- fmt.println()
- add :: proc(p, q: $T) -> T {
- x: T = p + q
- return x
- }
- a := add(3, 4)
- fmt.printf("a: %T = %v\n", a, a)
- b := add(3.2, 4.3)
- fmt.printf("b: %T = %v\n", b, b)
- // This is how `new` is implemented
- alloc_type :: proc($T: typeid) -> ^T {
- t := cast(^T)alloc(size_of(T), align_of(T))
- t^ = T{} // Use default initialization value
- return t
- }
- copy_slice :: proc(dst, src: []$T) -> int {
- n := min(len(dst), len(src))
- if n > 0 {
- mem.copy(&dst[0], &src[0], n*size_of(T))
- }
- return n
- }
- double_params :: proc(a: $A, b: $B) -> A {
- return a + A(b)
- }
- fmt.println(double_params(12, 1.345))
- { // Polymorphic Types and Type Specialization
- Table_Slot :: struct($Key, $Value: typeid) {
- occupied: bool,
- hash: u32,
- key: Key,
- value: Value,
- }
- TABLE_SIZE_MIN :: 32
- Table :: struct($Key, $Value: typeid) {
- count: int,
- allocator: mem.Allocator,
- slots: []Table_Slot(Key, Value),
- }
- // Only allow types that are specializations of a (polymorphic) slice
- make_slice :: proc($T: typeid/[]$E, len: int) -> T {
- return make(T, len)
- }
- // Only allow types that are specializations of `Table`
- allocate :: proc(table: ^$T/Table, capacity: int) {
- c := context
- if table.allocator.procedure != nil {
- c.allocator = table.allocator
- }
- context = c
- table.slots = make_slice(type_of(table.slots), max(capacity, TABLE_SIZE_MIN))
- }
- expand :: proc(table: ^$T/Table) {
- c := context
- if table.allocator.procedure != nil {
- c.allocator = table.allocator
- }
- context = c
- old_slots := table.slots
- defer delete(old_slots)
- cap := max(2*len(table.slots), TABLE_SIZE_MIN)
- allocate(table, cap)
- for s in old_slots {
- if s.occupied {
- put(table, s.key, s.value)
- }
- }
- }
- // Polymorphic determination of a polymorphic struct
- // put :: proc(table: ^$T/Table, key: T.Key, value: T.Value) {
- put :: proc(table: ^Table($Key, $Value), key: Key, value: Value) {
- hash := get_hash(key) // Ad-hoc method which would fail in a different scope
- index := find_index(table, key, hash)
- if index < 0 {
- if f64(table.count) >= 0.75*f64(len(table.slots)) {
- expand(table)
- }
- assert(table.count <= len(table.slots))
- index = int(hash % u32(len(table.slots)))
- for table.slots[index].occupied {
- if index += 1; index >= len(table.slots) {
- index = 0
- }
- }
- table.count += 1
- }
- slot := &table.slots[index]
- slot.occupied = true
- slot.hash = hash
- slot.key = key
- slot.value = value
- }
- // find :: proc(table: ^$T/Table, key: T.Key) -> (T.Value, bool) {
- find :: proc(table: ^Table($Key, $Value), key: Key) -> (Value, bool) {
- hash := get_hash(key)
- index := find_index(table, key, hash)
- if index < 0 {
- return Value{}, false
- }
- return table.slots[index].value, true
- }
- find_index :: proc(table: ^Table($Key, $Value), key: Key, hash: u32) -> int {
- if len(table.slots) <= 0 {
- return -1
- }
- index := int(hash % u32(len(table.slots)))
- for table.slots[index].occupied {
- if table.slots[index].hash == hash {
- if table.slots[index].key == key {
- return index
- }
- }
- if index += 1; index >= len(table.slots) {
- index = 0
- }
- }
- return -1
- }
- get_hash :: proc(s: string) -> u32 { // fnv32a
- h: u32 = 0x811c9dc5
- for i in 0..<len(s) {
- h = (h ~ u32(s[i])) * 0x01000193
- }
- return h
- }
- table: Table(string, int)
- for i in 0..=36 { put(&table, "Hellope", i) }
- for i in 0..=42 { put(&table, "World!", i) }
- found, _ := find(&table, "Hellope")
- fmt.printf("`found` is %v\n", found)
- found, _ = find(&table, "World!")
- fmt.printf("`found` is %v\n", found)
- // I would not personally design a hash table like this in production
- // but this is a nice basic example
- // A better approach would either use a `u64` or equivalent for the key
- // and let the user specify the hashing function or make the user store
- // the hashing procedure with the table
- }
- { // Parametric polymorphic union
- Error :: enum {
- Foo0,
- Foo1,
- Foo2,
- Foo3,
- }
- Para_Union :: union($T: typeid) {T, Error}
- r: Para_Union(int)
- fmt.println(typeid_of(type_of(r)))
- fmt.println(r)
- r = 123
- fmt.println(r)
- r = Error.Foo0 // r = .Foo0 is allow too, see implicit selector expressions below
- fmt.println(r)
- }
- { // Polymorphic names
- foo :: proc($N: $I, $T: typeid) -> (res: [N]T) {
- // `N` is the constant value passed
- // `I` is the type of N
- // `T` is the type passed
- fmt.printf("Generating an array of type %v from the value %v of type %v\n",
- typeid_of(type_of(res)), N, typeid_of(I))
- for i in 0..<N {
- res[i] = T(i*i)
- }
- return
- }
- T :: int
- array := foo(4, T)
- for v, i in array {
- assert(v == T(i*i))
- }
- // Matrix multiplication
- mul :: proc(a: [$M][$N]$T, b: [N][$P]T) -> (c: [M][P]T) {
- for i in 0..<M {
- for j in 0..<P {
- for k in 0..<N {
- c[i][j] += a[i][k] * b[k][j]
- }
- }
- }
- return
- }
- x := [2][3]f32{
- {1, 2, 3},
- {3, 2, 1},
- }
- y := [3][2]f32{
- {0, 8},
- {6, 2},
- {8, 4},
- }
- z := mul(x, y)
- assert(z == {{36, 24}, {20, 32}})
- }
- }
- prefix_table := [?]string{
- "White",
- "Red",
- "Green",
- "Blue",
- "Octarine",
- "Black",
- }
- print_mutex := b64(false)
- @(disabled=!thread.IS_SUPPORTED)
- threading_example :: proc() {
- fmt.println("\n# threading_example")
- did_acquire :: proc(m: ^b64) -> (acquired: bool) {
- res, ok := intrinsics.atomic_compare_exchange_strong(m, false, true)
- return ok && res == false
- }
- { // Basic Threads
- fmt.println("\n## Basic Threads")
- worker_proc :: proc(t: ^thread.Thread) {
- for iteration in 1..=5 {
- fmt.printf("Thread %d is on iteration %d\n", t.user_index, iteration)
- fmt.printf("`%s`: iteration %d\n", prefix_table[t.user_index], iteration)
- time.sleep(1 * time.Millisecond)
- }
- }
- threads := make([dynamic]^thread.Thread, 0, len(prefix_table))
- defer delete(threads)
- for _ in prefix_table {
- if t := thread.create(worker_proc); t != nil {
- t.init_context = context
- t.user_index = len(threads)
- append(&threads, t)
- thread.start(t)
- }
- }
- for len(threads) > 0 {
- for i := 0; i < len(threads); /**/ {
- if t := threads[i]; thread.is_done(t) {
- fmt.printf("Thread %d is done\n", t.user_index)
- thread.destroy(t)
- ordered_remove(&threads, i)
- } else {
- i += 1
- }
- }
- }
- }
- { // Thread Pool
- fmt.println("\n## Thread Pool")
- task_proc :: proc(t: thread.Task) {
- index := t.user_index % len(prefix_table)
- for iteration in 1..=5 {
- for !did_acquire(&print_mutex) { thread.yield() } // Allow one thread to print at a time.
- fmt.printf("Worker Task %d is on iteration %d\n", t.user_index, iteration)
- fmt.printf("`%s`: iteration %d\n", prefix_table[index], iteration)
- print_mutex = false
- time.sleep(1 * time.Millisecond)
- }
- }
- N :: 3
- pool: thread.Pool
- thread.pool_init(&pool, allocator=context.allocator, thread_count=N)
- defer thread.pool_destroy(&pool)
- for i in 0..<30 {
- // be mindful of the allocator used for tasks. The allocator needs to be thread safe, or be owned by the task for exclusive use
- thread.pool_add_task(&pool, allocator=context.allocator, procedure=task_proc, data=nil, user_index=i)
- }
- thread.pool_start(&pool)
- {
- // Wait a moment before we cancel a thread
- time.sleep(5 * time.Millisecond)
- // Allow one thread to print at a time.
- for !did_acquire(&print_mutex) { thread.yield() }
- thread.terminate(pool.threads[N - 1], 0)
- fmt.println("Canceled last thread")
- print_mutex = false
- }
- thread.pool_finish(&pool)
- }
- }
- array_programming :: proc() {
- fmt.println("\n# array programming")
- {
- a := [3]f32{1, 2, 3}
- b := [3]f32{5, 6, 7}
- c := a * b
- d := a + b
- e := 1 + (c - d) / 2
- fmt.printf("%.1f\n", e) // [0.5, 3.0, 6.5]
- }
- {
- a := [3]f32{1, 2, 3}
- b := swizzle(a, 2, 1, 0)
- assert(b == [3]f32{3, 2, 1})
- c := swizzle(a, 0, 0)
- assert(c == [2]f32{1, 1})
- assert(c == 1)
- }
- {
- Vector3 :: distinct [3]f32
- a := Vector3{1, 2, 3}
- b := Vector3{5, 6, 7}
- c := (a * b)/2 + 1
- d := c.x + c.y + c.z
- fmt.printf("%.1f\n", d) // 22.0
- cross :: proc(a, b: Vector3) -> Vector3 {
- i := swizzle(a, 1, 2, 0) * swizzle(b, 2, 0, 1)
- j := swizzle(a, 2, 0, 1) * swizzle(b, 1, 2, 0)
- return i - j
- }
- cross_shorter :: proc(a, b: Vector3) -> Vector3 {
- i := a.yzx * b.zxy
- j := a.zxy * b.yzx
- return i - j
- }
- blah :: proc(a: Vector3) -> f32 {
- return a.x + a.y + a.z
- }
- x := cross(a, b)
- fmt.println(x)
- fmt.println(blah(x))
- }
- }
- map_type :: proc() {
- fmt.println("\n# map type")
- m := make(map[string]int)
- defer delete(m)
- m["Bob"] = 2
- m["Ted"] = 5
- fmt.println(m["Bob"])
- delete_key(&m, "Ted")
- // If an element of a key does not exist, the zero value of the
- // element will be returned. To check to see if an element exists
- // can be done in two ways:
- elem, ok := m["Bob"]
- exists := "Bob" in m
- _, _ = elem, ok
- _ = exists
- }
- implicit_selector_expression :: proc() {
- fmt.println("\n# implicit selector expression")
- Foo :: enum {A, B, C}
- f: Foo
- f = Foo.A
- f = .A
- BAR :: bit_set[Foo]{.B, .C}
- switch f {
- case .A:
- fmt.println("HITHER")
- case .B:
- fmt.println("NEVER")
- case .C:
- fmt.println("FOREVER")
- }
- my_map := make(map[Foo]int)
- defer delete(my_map)
- my_map[.A] = 123
- my_map[Foo.B] = 345
- fmt.println(my_map[.A] + my_map[Foo.B] + my_map[.C])
- }
- partial_switch :: proc() {
- fmt.println("\n# partial_switch")
- { // enum
- Foo :: enum {
- A,
- B,
- C,
- D,
- }
- f := Foo.A
- switch f {
- case .A: fmt.println("A")
- case .B: fmt.println("B")
- case .C: fmt.println("C")
- case .D: fmt.println("D")
- case: fmt.println("?")
- }
- #partial switch f {
- case .A: fmt.println("A")
- case .D: fmt.println("D")
- }
- }
- { // union
- Foo :: union {int, bool}
- f: Foo = 123
- switch _ in f {
- case int: fmt.println("int")
- case bool: fmt.println("bool")
- case:
- }
- #partial switch _ in f {
- case bool: fmt.println("bool")
- }
- }
- }
- cstring_example :: proc() {
- fmt.println("\n# cstring_example")
- W :: "Hellope"
- X :: cstring(W)
- Y :: string(X)
- w := W
- _ = w
- x: cstring = X
- y: string = Y
- z := string(x)
- fmt.println(x, y, z)
- fmt.println(len(x), len(y), len(z))
- fmt.println(len(W), len(X), len(Y))
- // IMPORTANT NOTE for cstring variables
- // len(cstring) is O(N)
- // cast(string)cstring is O(N)
- }
- bit_set_type :: proc() {
- fmt.println("\n# bit_set type")
- {
- Day :: enum {
- Sunday,
- Monday,
- Tuesday,
- Wednesday,
- Thursday,
- Friday,
- Saturday,
- }
- Days :: distinct bit_set[Day]
- WEEKEND :: Days{.Sunday, .Saturday}
- d: Days
- d = {.Sunday, .Monday}
- e := d + WEEKEND
- e += {.Monday}
- fmt.println(d, e)
- ok := .Saturday in e // `in` is only allowed for `map` and `bit_set` types
- fmt.println(ok)
- if .Saturday in e {
- fmt.println("Saturday in", e)
- }
- X :: .Saturday in WEEKEND // Constant evaluation
- fmt.println(X)
- fmt.println("Cardinality:", card(e))
- }
- {
- x: bit_set['A'..='Z']
- #assert(size_of(x) == size_of(u32))
- y: bit_set[0..=8; u16]
- fmt.println(typeid_of(type_of(x))) // bit_set[A..=Z]
- fmt.println(typeid_of(type_of(y))) // bit_set[0..=8; u16]
- x += {'F'}
- assert('F' in x)
- x -= {'F'}
- assert('F' not_in x)
- y += {1, 4, 2}
- assert(2 in y)
- }
- {
- Letters :: bit_set['A'..='Z']
- a := Letters{'A', 'B'}
- b := Letters{'A', 'B', 'C', 'D', 'F'}
- c := Letters{'A', 'B'}
- assert(a <= b) // 'a' is a subset of 'b'
- assert(b >= a) // 'b' is a superset of 'a'
- assert(a < b) // 'a' is a strict subset of 'b'
- assert(b > a) // 'b' is a strict superset of 'a'
- assert(!(a < c)) // 'a' is a not strict subset of 'c'
- assert(!(c > a)) // 'c' is a not strict superset of 'a'
- }
- }
- deferred_procedure_associations :: proc() {
- fmt.println("\n# deferred procedure associations")
- @(deferred_out=closure)
- open :: proc(s: string) -> bool {
- fmt.println(s)
- return true
- }
- closure :: proc(ok: bool) {
- fmt.println("Goodbye?", ok)
- }
- if open("Welcome") {
- fmt.println("Something in the middle, mate.")
- }
- }
- reflection :: proc() {
- fmt.println("\n# reflection")
- Foo :: struct {
- x: int `tag1`,
- y: string `json:"y_field"`,
- z: bool, // no tag
- }
- id := typeid_of(Foo)
- names := reflect.struct_field_names(id)
- types := reflect.struct_field_types(id)
- tags := reflect.struct_field_tags(id)
- assert(len(names) == len(types) && len(names) == len(tags))
- fmt.println("Foo :: struct {")
- for tag, i in tags {
- name, type := names[i], types[i]
- if tag != "" {
- fmt.printf("\t%s: %T `%s`,\n", name, type, tag)
- } else {
- fmt.printf("\t%s: %T,\n", name, type)
- }
- }
- fmt.println("}")
- for tag, i in tags {
- if val, ok := reflect.struct_tag_lookup(tag, "json"); ok {
- fmt.printf("json: %s -> %s\n", names[i], val)
- }
- }
- }
- quaternions :: proc() {
- // Not just an April Fool's Joke any more, but a fully working thing!
- fmt.println("\n# quaternions")
- { // Quaternion operations
- q := 1 + 2i + 3j + 4k
- r := quaternion(real=5, imag=6, jmag=7, kmag=8)
- t := q * r
- fmt.printf("(%v) * (%v) = %v\n", q, r, t)
- v := q / r
- fmt.printf("(%v) / (%v) = %v\n", q, r, v)
- u := q + r
- fmt.printf("(%v) + (%v) = %v\n", q, r, u)
- s := q - r
- fmt.printf("(%v) - (%v) = %v\n", q, r, s)
- }
- { // The quaternion types
- q128: quaternion128 // 4xf32
- q256: quaternion256 // 4xf64
- q128 = quaternion(w=1, x=0, y=0, z=0)
- q256 = 1 // quaternion(x=0, y=0, z=0, w=1)
- // NOTE: The internal memory layout of a quaternion is xyzw
- }
- { // Built-in procedures
- q := 1 + 2i + 3j + 4k
- fmt.println("q =", q)
- fmt.println("real(q) =", real(q))
- fmt.println("imag(q) =", imag(q))
- fmt.println("jmag(q) =", jmag(q))
- fmt.println("kmag(q) =", kmag(q))
- fmt.println("conj(q) =", conj(q))
- fmt.println("abs(q) =", abs(q))
- }
- { // Conversion of a complex type to a quaternion type
- c := 1 + 2i
- q := quaternion256(c)
- fmt.println(c)
- fmt.println(q)
- }
- { // Memory layout of Quaternions
- q := 1 + 2i + 3j + 4k
- a := transmute([4]f64)q
- fmt.println("Quaternion memory layout: xyzw/(ijkr)")
- fmt.println(q) // 1.000+2.000i+3.000j+4.000k
- fmt.println(a) // [2.000, 3.000, 4.000, 1.000]
- }
- }
- unroll_for_statement :: proc() {
- fmt.println("\n#'#unroll for' statements")
- // '#unroll for' works the same as if the 'inline' prefix did not
- // exist but these ranged loops are explicitly unrolled which can
- // be very very useful for certain optimizations
- fmt.println("Ranges")
- #unroll for x, i in 1..<4 {
- fmt.println(x, i)
- }
- fmt.println("Strings")
- #unroll for r, i in "Hello, 世界" {
- fmt.println(r, i)
- }
- fmt.println("Arrays")
- #unroll for elem, idx in ([4]int{1, 4, 9, 16}) {
- fmt.println(elem, idx)
- }
- Foo_Enum :: enum {
- A = 1,
- B,
- C = 6,
- D,
- }
- fmt.println("Enum types")
- #unroll for elem, idx in Foo_Enum {
- fmt.println(elem, idx)
- }
- }
- where_clauses :: proc() {
- fmt.println("\n#procedure 'where' clauses")
- { // Sanity checks
- simple_sanity_check :: proc(x: [2]int)
- where len(x) > 1,
- type_of(x) == [2]int {
- fmt.println(x)
- }
- }
- { // Parametric polymorphism checks
- cross_2d :: proc(a, b: $T/[2]$E) -> E
- where intrinsics.type_is_numeric(E) {
- return a.x*b.y - a.y*b.x
- }
- cross_3d :: proc(a, b: $T/[3]$E) -> T
- where intrinsics.type_is_numeric(E) {
- x := a.y*b.z - a.z*b.y
- y := a.z*b.x - a.x*b.z
- z := a.x*b.y - a.y*b.z
- return T{x, y, z}
- }
- a := [2]int{1, 2}
- b := [2]int{5, -3}
- fmt.println(cross_2d(a, b))
- x := [3]f32{1, 4, 9}
- y := [3]f32{-5, 0, 3}
- fmt.println(cross_3d(x, y))
- // Failure case
- // i := [2]bool{true, false}
- // j := [2]bool{false, true}
- // fmt.println(cross_2d(i, j))
- }
- { // Procedure groups usage
- foo :: proc(x: [$N]int) -> bool
- where N > 2 {
- fmt.println(#procedure, "was called with the parameter", x)
- return true
- }
- bar :: proc(x: [$N]int) -> bool
- where 0 < N,
- N <= 2 {
- fmt.println(#procedure, "was called with the parameter", x)
- return false
- }
- baz :: proc{foo, bar}
- x := [3]int{1, 2, 3}
- y := [2]int{4, 9}
- ok_x := baz(x)
- ok_y := baz(y)
- assert(ok_x == true)
- assert(ok_y == false)
- }
- { // Record types
- Foo :: struct($T: typeid, $N: int)
- where intrinsics.type_is_integer(T),
- N > 2 {
- x: [N]T,
- y: [N-2]T,
- }
- T :: i32
- N :: 5
- f: Foo(T, N)
- #assert(size_of(f) == (N+N-2)*size_of(T))
- }
- }
- when ODIN_OS == .Windows {
- foreign import kernel32 "system:kernel32.lib"
- }
- foreign_system :: proc() {
- fmt.println("\n#foreign system")
- when ODIN_OS == .Windows {
- // It is sometimes necessarily to interface with foreign code,
- // such as a C library. In Odin, this is achieved through the
- // foreign system. You can “import” a library into the code
- // using the same semantics as a normal import declaration.
- // This foreign import declaration will create a
- // “foreign import name” which can then be used to associate
- // entities within a foreign block.
- foreign kernel32 {
- ExitProcess :: proc "stdcall" (exit_code: u32) ---
- }
- // Foreign procedure declarations have the cdecl/c calling
- // convention by default unless specified otherwise. Due to
- // foreign procedures do not have a body declared within this
- // code, you need append the --- symbol to the end to distinguish
- // it as a procedure literal without a body and not a procedure type.
- // The attributes system can be used to change specific properties
- // of entities declared within a block:
- @(default_calling_convention = "std")
- foreign kernel32 {
- @(link_name="GetLastError") get_last_error :: proc() -> i32 ---
- }
- // Example using the link_prefix attribute
- @(default_calling_convention = "std")
- @(link_prefix = "Get")
- foreign kernel32 {
- LastError :: proc() -> i32 ---
- }
- }
- }
- ranged_fields_for_array_compound_literals :: proc() {
- fmt.println("\n#ranged fields for array compound literals")
- { // Normal Array Literal
- foo := [?]int{1, 4, 9, 16}
- fmt.println(foo)
- }
- { // Indexed
- foo := [?]int{
- 3 = 16,
- 1 = 4,
- 2 = 9,
- 0 = 1,
- }
- fmt.println(foo)
- }
- { // Ranges
- i := 2
- foo := [?]int {
- 0 = 123,
- 5..=9 = 54,
- 10..<16 = i*3 + (i-1)*2,
- }
- #assert(len(foo) == 16)
- fmt.println(foo) // [123, 0, 0, 0, 0, 54, 54, 54, 54, 54, 8, 8, 8, 8, 8]
- }
- { // Slice and Dynamic Array support
- i := 2
- foo_slice := []int {
- 0 = 123,
- 5..=9 = 54,
- 10..<16 = i*3 + (i-1)*2,
- }
- assert(len(foo_slice) == 16)
- fmt.println(foo_slice) // [123, 0, 0, 0, 0, 54, 54, 54, 54, 54, 8, 8, 8, 8, 8]
- foo_dynamic_array := [dynamic]int {
- 0 = 123,
- 5..=9 = 54,
- 10..<16 = i*3 + (i-1)*2,
- }
- assert(len(foo_dynamic_array) == 16)
- fmt.println(foo_dynamic_array) // [123, 0, 0, 0, 0, 54, 54, 54, 54, 54, 8, 8, 8, 8, 8]
- }
- }
- deprecated_attribute :: proc() {
- @(deprecated="Use foo_v2 instead")
- foo_v1 :: proc(x: int) {
- fmt.println("foo_v1")
- }
- foo_v2 :: proc(x: int) {
- fmt.println("foo_v2")
- }
- // NOTE: Uncomment to see the warning messages
- // foo_v1(1)
- }
- range_statements_with_multiple_return_values :: proc() {
- fmt.println("\n#range statements with multiple return values")
- My_Iterator :: struct {
- index: int,
- data: []i32,
- }
- make_my_iterator :: proc(data: []i32) -> My_Iterator {
- return My_Iterator{data = data}
- }
- my_iterator :: proc(it: ^My_Iterator) -> (val: i32, idx: int, cond: bool) {
- if cond = it.index < len(it.data); cond {
- val = it.data[it.index]
- idx = it.index
- it.index += 1
- }
- return
- }
- data := make([]i32, 6)
- for _, i in data {
- data[i] = i32(i*i)
- }
- { // Manual Style
- it := make_my_iterator(data)
- for {
- val, _, cond := my_iterator(&it)
- if !cond {
- break
- }
- fmt.println(val)
- }
- }
- { // or_break
- it := make_my_iterator(data)
- loop: for {
- val, _ := my_iterator(&it) or_break loop
- fmt.println(val)
- }
- }
- { // first value
- it := make_my_iterator(data)
- for val in my_iterator(&it) {
- fmt.println(val)
- }
- }
- { // first and second value
- it := make_my_iterator(data)
- for val, idx in my_iterator(&it) {
- fmt.println(val, idx)
- }
- }
- }
- soa_struct_layout :: proc() {
- fmt.println("\n#SOA Struct Layout")
- {
- Vector3 :: struct {x, y, z: f32}
- N :: 2
- v_aos: [N]Vector3
- v_aos[0].x = 1
- v_aos[0].y = 4
- v_aos[0].z = 9
- fmt.println(len(v_aos))
- fmt.println(v_aos[0])
- fmt.println(v_aos[0].x)
- fmt.println(&v_aos[0].x)
- v_aos[1] = {0, 3, 4}
- v_aos[1].x = 2
- fmt.println(v_aos[1])
- fmt.println(v_aos)
- v_soa: #soa[N]Vector3
- v_soa[0].x = 1
- v_soa[0].y = 4
- v_soa[0].z = 9
- // Same syntax as AOS and treat as if it was an array
- fmt.println(len(v_soa))
- fmt.println(v_soa[0])
- fmt.println(v_soa[0].x)
- fmt.println(&v_soa[0].x)
- v_soa[1] = {0, 3, 4}
- v_soa[1].x = 2
- fmt.println(v_soa[1])
- // Can use SOA syntax if necessary
- v_soa.x[0] = 1
- v_soa.y[0] = 4
- v_soa.z[0] = 9
- fmt.println(v_soa.x[0])
- // Same pointer addresses with both syntaxes
- assert(&v_soa[0].x == &v_soa.x[0])
- // Same fmt printing
- fmt.println(v_aos)
- fmt.println(v_soa)
- }
- {
- // Works with arrays of length <= 4 which have the implicit fields xyzw/rgba
- Vector3 :: distinct [3]f32
- N :: 2
- v_aos: [N]Vector3
- v_aos[0].x = 1
- v_aos[0].y = 4
- v_aos[0].z = 9
- v_soa: #soa[N]Vector3
- v_soa[0].x = 1
- v_soa[0].y = 4
- v_soa[0].z = 9
- }
- {
- // SOA Slices
- // Vector3 :: struct {x, y, z: f32}
- Vector3 :: struct {x: i8, y: i16, z: f32}
- N :: 3
- v: #soa[N]Vector3
- v[0].x = 1
- v[0].y = 4
- v[0].z = 9
- s: #soa[]Vector3
- s = v[:]
- assert(len(s) == N)
- fmt.println(s)
- fmt.println(s[0].x)
- a := s[1:2]
- assert(len(a) == 1)
- fmt.println(a)
- d: #soa[dynamic]Vector3
- append_soa(&d, Vector3{1, 2, 3}, Vector3{4, 5, 9}, Vector3{-4, -4, 3})
- fmt.println(d)
- fmt.println(len(d))
- fmt.println(cap(d))
- fmt.println(d[:])
- }
- { // soa_zip and soa_unzip
- fmt.println("\nsoa_zip and soa_unzip")
- x := []i32{1, 3, 9}
- y := []f32{2, 4, 16}
- z := []b32{true, false, true}
- // produce an #soa slice the normal slices passed
- s := soa_zip(a=x, b=y, c=z)
- // iterate over the #soa slice
- for v, i in s {
- fmt.println(v, i) // exactly the same as s[i]
- // NOTE: 'v' is NOT a temporary value but has a specialized addressing mode
- // which means that when accessing v.a etc, it does the correct transformation
- // internally:
- // s[i].a === s.a[i]
- fmt.println(v.a, v.b, v.c)
- }
- // Recover the slices from the #soa slice
- a, b, c := soa_unzip(s)
- fmt.println(a, b, c)
- }
- }
- constant_literal_expressions :: proc() {
- fmt.println("\n#constant literal expressions")
- Bar :: struct {x, y: f32}
- Foo :: struct {a, b: int, using c: Bar}
- FOO_CONST :: Foo{b = 2, a = 1, c = {3, 4}}
- fmt.println(FOO_CONST.a)
- fmt.println(FOO_CONST.b)
- fmt.println(FOO_CONST.c)
- fmt.println(FOO_CONST.c.x)
- fmt.println(FOO_CONST.c.y)
- fmt.println(FOO_CONST.x) // using works as expected
- fmt.println(FOO_CONST.y)
- fmt.println("-------")
- ARRAY_CONST :: [3]int{1 = 4, 2 = 9, 0 = 1}
- fmt.println(ARRAY_CONST[0])
- fmt.println(ARRAY_CONST[1])
- fmt.println(ARRAY_CONST[2])
- fmt.println("-------")
- FOO_ARRAY_DEFAULTS :: [3]Foo{{}, {}, {}}
- fmt.println(FOO_ARRAY_DEFAULTS[2].x)
- fmt.println("-------")
- Baz :: enum{A=5, B, C, D}
- ENUM_ARRAY_CONST :: [Baz]int{.A ..= .C = 1, .D = 16}
- fmt.println(ENUM_ARRAY_CONST[.A])
- fmt.println(ENUM_ARRAY_CONST[.B])
- fmt.println(ENUM_ARRAY_CONST[.C])
- fmt.println(ENUM_ARRAY_CONST[.D])
- fmt.println("-------")
- Sparse_Baz :: enum{A=5, B, C, D=16}
- #assert(len(Sparse_Baz) < len(#sparse[Sparse_Baz]int))
- SPARSE_ENUM_ARRAY_CONST :: #sparse[Sparse_Baz]int{.A ..= .C = 1, .D = 16}
- fmt.println(SPARSE_ENUM_ARRAY_CONST[.A])
- fmt.println(SPARSE_ENUM_ARRAY_CONST[.B])
- fmt.println(SPARSE_ENUM_ARRAY_CONST[.C])
- fmt.println(SPARSE_ENUM_ARRAY_CONST[.D])
- fmt.println("-------")
- STRING_CONST :: "Hellope!"
- fmt.println(STRING_CONST[0])
- fmt.println(STRING_CONST[2])
- fmt.println(STRING_CONST[3])
- fmt.println(STRING_CONST[0:5])
- fmt.println(STRING_CONST[3:][:4])
- }
- union_maybe :: proc() {
- fmt.println("\n#union based maybe")
- // NOTE: This is already built-in, and this is just a reimplementation to explain the behaviour
- Maybe :: union($T: typeid) {T}
- i: Maybe(u8)
- p: Maybe(^u8) // No tag is stored for pointers, nil is the sentinel value
- // Tag size will be as small as needed for the number of variants
- #assert(size_of(i) == size_of(u8) + size_of(u8))
- // No need to store a tag here, the `nil` state is shared with the variant's `nil`
- #assert(size_of(p) == size_of(^u8))
- i = 123
- x := i.?
- y, y_ok := p.?
- p = &x
- z, z_ok := p.?
- fmt.println(i, p)
- fmt.println(x, &x)
- fmt.println(y, y_ok)
- fmt.println(z, z_ok)
- }
- dummy_procedure :: proc() {
- fmt.println("dummy_procedure")
- }
- explicit_context_definition :: proc "c" () {
- // Try commenting the following statement out below
- context = runtime.default_context()
- fmt.println("\n#explicit context definition")
- dummy_procedure()
- }
- relative_data_types :: proc() {
- fmt.println("\n#relative data types")
- x: int = 123
- ptr: #relative(i16) ^int
- ptr = &x
- fmt.println(ptr^)
- arr := [3]int{1, 2, 3}
- multi_ptr: #relative(i16) [^]int
- multi_ptr = &arr[0]
- fmt.println(multi_ptr)
- fmt.println(multi_ptr[:3])
- fmt.println(multi_ptr[1])
- }
- or_else_operator :: proc() {
- fmt.println("\n#'or_else'")
- {
- m: map[string]int
- i: int
- ok: bool
- if i, ok = m["hellope"]; !ok {
- i = 123
- }
- // The above can be mapped to 'or_else'
- i = m["hellope"] or_else 123
- assert(i == 123)
- }
- {
- // 'or_else' can be used with type assertions too, as they
- // have optional ok semantics
- v: union{int, f64}
- i: int
- i = v.(int) or_else 123
- i = v.? or_else 123 // Type inference magic
- assert(i == 123)
- m: Maybe(int)
- i = m.? or_else 456
- assert(i == 456)
- }
- }
- or_return_operator :: proc() {
- fmt.println("\n#'or_return'")
- // The concept of 'or_return' will work by popping off the end value in a multiple
- // valued expression and checking whether it was not 'nil' or 'false', and if so,
- // set the end return value to value if possible. If the procedure only has one
- // return value, it will do a simple return. If the procedure had multiple return
- // values, 'or_return' will require that all parameters be named so that the end
- // value could be assigned to by name and then an empty return could be called.
- Error :: enum {
- None,
- Something_Bad,
- Something_Worse,
- The_Worst,
- Your_Mum,
- }
- caller_1 :: proc() -> Error {
- return .None
- }
- caller_2 :: proc() -> (int, Error) {
- return 123, .None
- }
- caller_3 :: proc() -> (int, int, Error) {
- return 123, 345, .None
- }
- foo_1 :: proc() -> Error {
- // This can be a common idiom in many code bases
- n0, err := caller_2()
- if err != nil {
- return err
- }
- // The above idiom can be transformed into the following
- n1 := caller_2() or_return
- // And if the expression is 1-valued, it can be used like this
- caller_1() or_return
- // which is functionally equivalent to
- if err1 := caller_1(); err1 != nil {
- return err1
- }
- // Multiple return values still work with 'or_return' as it only
- // pops off the end value in the multi-valued expression
- n0, n1 = caller_3() or_return
- return .None
- }
- foo_2 :: proc() -> (n: int, err: Error) {
- // It is more common that your procedure turns multiple values
- // If 'or_return' is used within a procedure multiple parameters (2+),
- // then all the parameters must be named so that the remaining parameters
- // so that a bare 'return' statement can be used
- // This can be a common idiom in many code bases
- x: int
- x, err = caller_2()
- if err != nil {
- return
- }
- // The above idiom can be transformed into the following
- y := caller_2() or_return
- _ = y
- // And if the expression is 1-valued, it can be used like this
- caller_1() or_return
- // which is functionally equivalent to
- if err1 := caller_1(); err1 != nil {
- err = err1
- return
- }
- // If using a non-bare 'return' statement is required, setting the return values
- // using the normal idiom is a better choice and clearer to read.
- if z, zerr := caller_2(); zerr != nil {
- return -345 * z, zerr
- }
- defer if err != nil {
- fmt.println("Error in", #procedure, ":" , err)
- }
- n = 123
- return
- }
- foo_1()
- foo_2()
- }
- or_break_and_or_continue_operators :: proc() {
- fmt.println("\n#'or_break' and 'or_continue'")
- // The concept of 'or_break' and 'or_continue' is very similar to that of 'or_return'.
- // The difference is that unlike 'or_return', the value does not get returned from
- // the current procedure but rather discarded if it is 'false' or not 'nil', and then
- // the specified branch (i.e. break or_continue).
- // The or branch expression can be labelled if a specific statement needs to be used.
- Error :: enum {
- None,
- Something_Bad,
- Something_Worse,
- The_Worst,
- Your_Mum,
- }
- caller_1 :: proc() -> Error {
- return .Something_Bad
- }
- caller_2 :: proc() -> (int, Error) {
- return 123, .Something_Worse
- }
- caller_3 :: proc() -> (int, int, Error) {
- return 123, 345, .None
- }
- for { // common approach
- err := caller_1()
- if err != nil {
- break
- }
- }
- for { // or_break approach
- caller_1() or_break
- }
- for { // or_break approach with multiple values
- n := caller_2() or_break
- _ = n
- }
- loop: for { // or_break approach with named label
- n := caller_2() or_break loop
- _ = n
- }
- for { // or_continue
- x, y := caller_3() or_continue
- _, _ = x, y
- break
- }
- continue_loop: for { // or_continue with named label
- x, y := caller_3() or_continue continue_loop
- _, _ = x, y
- break
- }
- }
- arbitrary_precision_mathematics :: proc() {
- fmt.println("\n# core:math/big")
- print_bigint :: proc(name: string, a: ^big.Int, base := i8(10), print_name := true, newline := true, print_extra_info := true) {
- big.assert_if_nil(a)
- as, err := big.itoa(a, base)
- defer delete(as)
- cb := big.internal_count_bits(a)
- if print_name {
- fmt.printf(name)
- }
- if err != nil {
- fmt.printf(" (Error: %v) ", err)
- }
- fmt.printf(as)
- if print_extra_info {
- fmt.printf(" (base: %v, bits: %v, digits: %v)", base, cb, a.used)
- }
- if newline {
- fmt.println()
- }
- }
- a, b, c, d, e, f, res := &big.Int{}, &big.Int{}, &big.Int{}, &big.Int{}, &big.Int{}, &big.Int{}, &big.Int{}
- defer big.destroy(a, b, c, d, e, f, res)
- // How many bits should the random prime be?
- bits := 64
- // Number of Rabin-Miller trials, -1 for automatic.
- trials := -1
- // Default prime generation flags
- flags := big.Primality_Flags{}
- err := big.internal_random_prime(a, bits, trials, flags)
- if err != nil {
- fmt.printf("Error %v while generating random prime.\n", err)
- } else {
- print_bigint("Random Prime A: ", a, 10)
- fmt.printf("Random number iterations until prime found: %v\n", big.RANDOM_PRIME_ITERATIONS_USED)
- }
- // If we want to pack this Int into a buffer of u32, how many do we need?
- count := big.internal_int_pack_count(a, u32)
- buf := make([]u32, count)
- defer delete(buf)
- written: int
- written, err = big.internal_int_pack(a, buf)
- fmt.printf("\nPacked into u32 buf: %v | err: %v | written: %v\n", buf, err, written)
- // If we want to pack this Int into a buffer of bytes of which only the bottom 6 bits are used, how many do we need?
- nails := 2
- count = big.internal_int_pack_count(a, u8, nails)
- byte_buf := make([]u8, count)
- defer delete(byte_buf)
- written, err = big.internal_int_pack(a, byte_buf, nails)
- fmt.printf("\nPacked into buf of 6-bit bytes: %v | err: %v | written: %v\n", byte_buf, err, written)
- // Pick another random big Int, not necesssarily prime.
- err = big.random(b, 2048)
- print_bigint("\n2048 bit random number: ", b)
- // Calculate GCD + LCM in one fell swoop
- big.gcd_lcm(c, d, a, b)
- print_bigint("\nGCD of random prime A and random number B: ", c)
- print_bigint("\nLCM of random prime A and random number B (in base 36): ", d, 36)
- }
- matrix_type :: proc() {
- fmt.println("\n# matrix type")
- // A matrix is a mathematical type built into Odin. It is a regular array of numbers,
- // arranged in rows and columns
- {
- // The following represents a matrix that has 2 rows and 3 columns
- m: matrix[2, 3]f32
- m = matrix[2, 3]f32{
- 1, 9, -13,
- 20, 5, -6,
- }
- // Element types of integers, float, and complex numbers are supported by matrices.
- // There is no support for booleans, quaternions, or any compound type.
- // Indexing a matrix can be used with the matrix indexing syntax
- // This mirrors othe type usages: type on the left, usage on the right
- elem := m[1, 2] // row 1, column 2
- assert(elem == -6)
- // Scalars act as if they are scaled identity matrices
- // and can be assigned to matrices as them
- b := matrix[2, 2]f32{}
- f := f32(3)
- b = f
- fmt.println("b", b)
- fmt.println("b == f", b == f)
- }
- { // Matrices support multiplication between matrices
- a := matrix[2, 3]f32{
- 2, 3, 1,
- 4, 5, 0,
- }
- b := matrix[3, 2]f32{
- 1, 2,
- 3, 4,
- 5, 6,
- }
- fmt.println("a", a)
- fmt.println("b", b)
- c := a * b
- #assert(type_of(c) == matrix[2, 2]f32)
- fmt.println("c = a * b", c)
- }
- { // Matrices support multiplication between matrices and arrays
- m := matrix[4, 4]f32{
- 1, 2, 3, 4,
- 5, 5, 4, 2,
- 0, 1, 3, 0,
- 0, 1, 4, 1,
- }
- v := [4]f32{1, 5, 4, 3}
- // treating 'v' as a column vector
- fmt.println("m * v", m * v)
- // treating 'v' as a row vector
- fmt.println("v * m", v * m)
- // Support with non-square matrices
- s := matrix[2, 4]f32{ // [4][2]f32
- 2, 4, 3, 1,
- 7, 8, 6, 5,
- }
- w := [2]f32{1, 2}
- r: [4]f32 = w * s
- fmt.println("r", r)
- }
- { // Component-wise operations
- // if the element type supports it
- // Not support for '/', '%', or '%%' operations
- a := matrix[2, 2]i32{
- 1, 2,
- 3, 4,
- }
- b := matrix[2, 2]i32{
- -5, 1,
- 9, -7,
- }
- c0 := a + b
- c1 := a - b
- c2 := a & b
- c3 := a | b
- c4 := a ~ b
- c5 := a &~ b
- // component-wise multiplication
- // since a * b would be a standard matrix multiplication
- c6 := intrinsics.hadamard_product(a, b)
- fmt.println("a + b", c0)
- fmt.println("a - b", c1)
- fmt.println("a & b", c2)
- fmt.println("a | b", c3)
- fmt.println("a ~ b", c4)
- fmt.println("a &~ b", c5)
- fmt.println("hadamard_product(a, b)", c6)
- }
- { // Submatrix casting square matrices
- // Casting a square matrix to another square matrix with same element type
- // is supported.
- // If the cast is to a smaller matrix type, the top-left submatrix is taken.
- // If the cast is to a larger matrix type, the matrix is extended with zeros
- // everywhere and ones in the diagonal for the unfilled elements of the
- // extended matrix.
- mat2 :: distinct matrix[2, 2]f32
- mat4 :: distinct matrix[4, 4]f32
- m2 := mat2{
- 1, 3,
- 2, 4,
- }
- m4 := mat4(m2)
- assert(m4[2, 2] == 1)
- assert(m4[3, 3] == 1)
- fmt.printf("m2 %#v\n", m2)
- fmt.println("m4", m4)
- fmt.println("mat2(m4)", mat2(m4))
- assert(mat2(m4) == m2)
- b4 := mat4{
- 1, 2, 0, 0,
- 3, 4, 0, 0,
- 5, 0, 6, 0,
- 0, 7, 0, 8,
- }
- fmt.println("b4", intrinsics.matrix_flatten(b4))
- }
- { // Casting non-square matrices
- // Casting a matrix to another matrix is allowed as long as they share
- // the same element type and the number of elements (rows*columns).
- // Matrices in Odin are stored in column-major order, which means
- // the casts will preserve this element order.
- mat2x4 :: distinct matrix[2, 4]f32
- mat4x2 :: distinct matrix[4, 2]f32
- x := mat2x4{
- 1, 3, 5, 7,
- 2, 4, 6, 8,
- }
- y := mat4x2(x)
- fmt.println("x", x)
- fmt.println("y", y)
- }
- // TECHNICAL INFORMATION: the internal representation of a matrix in Odin is stored
- // in column-major format
- // e.g. matrix[2, 3]f32 is internally [3][2]f32 (with different a alignment requirement)
- // Column-major is used in order to utilize (SIMD) vector instructions effectively on
- // modern hardware, if possible.
- //
- // Unlike normal arrays, matrices try to maximize alignment to allow for the (SIMD) vectorization
- // properties whilst keeping zero padding (either between columns or at the end of the type).
- //
- // Zero padding is a compromise for use with third-party libraries, instead of optimizing for performance.
- // Padding between columns was not taken even if that would have allowed each column to be loaded
- // individually into a SIMD register with the correct alignment properties.
- //
- // Currently, matrices are limited to a maximum of 16 elements (rows*columns), and a minimum of 1 element.
- // This is because matrices are stored as values (not a reference type), and thus operations on them will
- // be stored on the stack. Restricting the maximum element count minimizing the possibility of stack overflows.
- // 'intrinsics' Procedures (Compiler Level)
- // transpose(m)
- // transposes a matrix
- // outer_product(a, b)
- // takes two array-like data types and returns the outer product
- // of the values in a matrix
- // hadamard_product(a, b)
- // component-wise multiplication of two matrices of the same type
- // matrix_flatten(m)
- // converts the matrix into a flatten array of elements
- // in column-major order
- // Example:
- // m := matrix[2, 2]f32{
- // x0, x1,
- // y0, y1,
- // }
- // array: [4]f32 = matrix_flatten(m)
- // assert(array == {x0, y0, x1, y1})
- // conj(x)
- // conjugates the elements of a matrix for complex element types only
- // Procedures in "core:math/linalg" and related (Runtime Level) (all square matrix procedures)
- // determinant(m)
- // adjugate(m)
- // inverse(m)
- // inverse_transpose(m)
- // hermitian_adjoint(m)
- // trace(m)
- // matrix_minor(m)
- }
- bit_field_type :: proc() {
- fmt.println("\n# bit_field type")
- // A `bit_field` is a record type in Odin that is akin to a bit-packed struct.
- // IMPORTNAT NOTE: `bit_field` is NOT equivalent to `bit_set` as it has different sematics and use cases.
- {
- // `bit_field` fields are accessed by using a dot:
- Foo :: bit_field u16 { // backing type must be an integer or array of integers
- x: i32 | 3, // signed integers will be signed extended on use
- y: u16 | 2 + 3, // general expressions
- z: My_Enum | SOME_CONSTANT, // ability to define the bit-width elsewhere
- w: bool | 2 when SOME_CONSTANT > 10 else 1,
- }
- v := Foo{}
- v.x = 3 // truncates the value to fit into 3 bits
- fmt.println(v.x) // accessing will convert `v.x` to an `i32` and do an appropriate sign extension
- My_Enum :: enum u8 {A, B, C, D}
- SOME_CONSTANT :: 7
- }
- {
- // A `bit_field` is different from a struct in that you must specify the backing type.
- // This backing type must be an integer or a fixed-length array of integers.
- // This is useful if there needs to be a specific alignment or access pattern for the record.
- Bar :: bit_field u32 {}
- Baz :: bit_field [4]u8 {}
- }
- // IMPORTANT NOTES:
- // * If _all_ of the fields in a bit_field are 1-bit in size and they are all booleans,
- // please consider using a `bit_set` instead.
- // * Odin's `bit_field` and C's bit-fields might not be compatible
- // * Odin's `bit_field`s have a well defined layout (Least-Significant-Bit)
- // * C's bit-fields on `struct`s are undefined and are not portable across targets and compilers
- // * A `bit_field`'s field type can only be one of the following:
- // * Integer
- // * Boolean
- // * Enum
- }
- main :: proc() {
- /*
- For More Odin Examples - https://github.com/odin-lang/examples
- This repository contains examples of how certain things can be accomplished
- in idiomatic Odin, allowing you learn its semantics, as well as how to use
- parts of the core and vendor package collections.
- */
- when true {
- the_basics()
- control_flow()
- named_proc_return_parameters()
- variadic_procedures()
- explicit_procedure_overloading()
- struct_type()
- union_type()
- using_statement()
- implicit_context_system()
- parametric_polymorphism()
- array_programming()
- map_type()
- implicit_selector_expression()
- partial_switch()
- cstring_example()
- bit_set_type()
- deferred_procedure_associations()
- reflection()
- quaternions()
- unroll_for_statement()
- where_clauses()
- foreign_system()
- ranged_fields_for_array_compound_literals()
- deprecated_attribute()
- range_statements_with_multiple_return_values()
- threading_example()
- soa_struct_layout()
- constant_literal_expressions()
- union_maybe()
- explicit_context_definition()
- relative_data_types()
- or_else_operator()
- or_return_operator()
- or_break_and_or_continue_operators()
- arbitrary_precision_mathematics()
- matrix_type()
- bit_field_type()
- }
- }
|