12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010 |
- package runtime
- import "base:intrinsics"
- @builtin
- Maybe :: union($T: typeid) {T}
- /*
- Recovers the containing/parent struct from a pointer to one of its fields.
- Works by "walking back" to the struct's starting address using the offset between the field and the struct.
- Inputs:
- - ptr: Pointer to the field of a container struct
- - T: The type of the container struct
- - field_name: The name of the field in the `T` struct
- Returns:
- - A pointer to the container struct based on a pointer to a field in it
- Example:
- package container_of
- import "base:runtime"
- Node :: struct {
- value: int,
- prev: ^Node,
- next: ^Node,
- }
- main :: proc() {
- node: Node
- field_ptr := &node.next
- container_struct_ptr: ^Node = runtime.container_of(field_ptr, Node, "next")
- assert(container_struct_ptr == &node)
- assert(uintptr(field_ptr) - uintptr(container_struct_ptr) == size_of(node.value) + size_of(node.prev))
- }
- Output:
- ^Node
- */
- @(builtin, require_results)
- container_of :: #force_inline proc "contextless" (ptr: $P/^$Field_Type, $T: typeid, $field_name: string) -> ^T
- where intrinsics.type_has_field(T, field_name),
- intrinsics.type_field_type(T, field_name) == Field_Type {
- offset :: offset_of_by_string(T, field_name)
- return (^T)(uintptr(ptr) - offset) if ptr != nil else nil
- }
- when !NO_DEFAULT_TEMP_ALLOCATOR {
- @thread_local global_default_temp_allocator_data: Default_Temp_Allocator
- }
- @(builtin, disabled=NO_DEFAULT_TEMP_ALLOCATOR)
- init_global_temporary_allocator :: proc(size: int, backup_allocator := context.allocator) {
- when !NO_DEFAULT_TEMP_ALLOCATOR {
- default_temp_allocator_init(&global_default_temp_allocator_data, size, backup_allocator)
- }
- }
- // `copy_slice` is a built-in procedure that copies elements from a source slice `src` to a destination slice `dst`.
- // The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum
- // of len(src) and len(dst).
- //
- // Prefer the procedure group `copy`.
- @builtin
- copy_slice :: proc "contextless" (dst, src: $T/[]$E) -> int {
- n := max(0, min(len(dst), len(src)))
- if n > 0 {
- intrinsics.mem_copy(raw_data(dst), raw_data(src), n*size_of(E))
- }
- return n
- }
- // `copy_from_string` is a built-in procedure that copies elements from a source string `src` to a destination slice `dst`.
- // The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum
- // of len(src) and len(dst).
- //
- // Prefer the procedure group `copy`.
- @builtin
- copy_from_string :: proc "contextless" (dst: $T/[]$E/u8, src: $S/string) -> int {
- n := max(0, min(len(dst), len(src)))
- if n > 0 {
- intrinsics.mem_copy(raw_data(dst), raw_data(src), n)
- }
- return n
- }
- // `copy` is a built-in procedure that copies elements from a source slice/string `src` to a destination slice `dst`.
- // The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum
- // of len(src) and len(dst).
- @builtin
- copy :: proc{copy_slice, copy_from_string}
- // `unordered_remove` removed the element at the specified `index`. It does so by replacing the current end value
- // with the old value, and reducing the length of the dynamic array by 1.
- //
- // Note: This is an O(1) operation.
- // Note: If you want the elements to remain in their order, use `ordered_remove`.
- // Note: If the index is out of bounds, this procedure will panic.
- @builtin
- unordered_remove :: proc(array: ^$D/[dynamic]$T, #any_int index: int, loc := #caller_location) #no_bounds_check {
- bounds_check_error_loc(loc, index, len(array))
- n := len(array)-1
- if index != n {
- array[index] = array[n]
- }
- (^Raw_Dynamic_Array)(array).len -= 1
- }
- // `ordered_remove` removed the element at the specified `index` whilst keeping the order of the other elements.
- //
- // Note: This is an O(N) operation.
- // Note: If the elements do not have to remain in their order, prefer `unordered_remove`.
- // Note: If the index is out of bounds, this procedure will panic.
- @builtin
- ordered_remove :: proc(array: ^$D/[dynamic]$T, #any_int index: int, loc := #caller_location) #no_bounds_check {
- bounds_check_error_loc(loc, index, len(array))
- if index+1 < len(array) {
- copy(array[index:], array[index+1:])
- }
- (^Raw_Dynamic_Array)(array).len -= 1
- }
- // `remove_range` removes a range of elements specified by the range `lo` and `hi`, whilst keeping the order of the other elements.
- //
- // Note: This is an O(N) operation.
- // Note: If the range is out of bounds, this procedure will panic.
- @builtin
- remove_range :: proc(array: ^$D/[dynamic]$T, #any_int lo, hi: int, loc := #caller_location) #no_bounds_check {
- slice_expr_error_lo_hi_loc(loc, lo, hi, len(array))
- n := max(hi-lo, 0)
- if n > 0 {
- if hi != len(array) {
- copy(array[lo:], array[hi:])
- }
- (^Raw_Dynamic_Array)(array).len -= n
- }
- }
- // `pop` will remove and return the end value of dynamic array `array` and reduces the length of `array` by 1.
- //
- // Note: If the dynamic array has no elements (`len(array) == 0`), this procedure will panic.
- @builtin
- pop :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check {
- assert(len(array) > 0, loc=loc)
- res = array[len(array)-1]
- (^Raw_Dynamic_Array)(array).len -= 1
- return res
- }
- // `pop_safe` trys to remove and return the end value of dynamic array `array` and reduces the length of `array` by 1.
- // If the operation is not possible, it will return false.
- @builtin
- pop_safe :: proc "contextless" (array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check {
- if len(array) == 0 {
- return
- }
- res, ok = array[len(array)-1], true
- (^Raw_Dynamic_Array)(array).len -= 1
- return
- }
- // `pop_front` will remove and return the first value of dynamic array `array` and reduces the length of `array` by 1.
- //
- // Note: If the dynamic array as no elements (`len(array) == 0`), this procedure will panic.
- @builtin
- pop_front :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check {
- assert(len(array) > 0, loc=loc)
- res = array[0]
- if len(array) > 1 {
- copy(array[0:], array[1:])
- }
- (^Raw_Dynamic_Array)(array).len -= 1
- return res
- }
- // `pop_front_safe` trys to return and remove the first value of dynamic array `array` and reduces the length of `array` by 1.
- // If the operation is not possible, it will return false.
- @builtin
- pop_front_safe :: proc "contextless" (array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check {
- if len(array) == 0 {
- return
- }
- res, ok = array[0], true
- if len(array) > 1 {
- copy(array[0:], array[1:])
- }
- (^Raw_Dynamic_Array)(array).len -= 1
- return
- }
- // `clear` will set the length of a passed dynamic array or map to `0`
- @builtin
- clear :: proc{
- clear_dynamic_array,
- clear_map,
- clear_soa_dynamic_array,
- }
- // `reserve` will try to reserve memory of a passed dynamic array or map to the requested element count (setting the `cap`).
- @builtin
- reserve :: proc{
- reserve_dynamic_array,
- reserve_map,
- reserve_soa,
- }
- @builtin
- non_zero_reserve :: proc{
- non_zero_reserve_dynamic_array,
- non_zero_reserve_soa,
- }
- // `resize` will try to resize memory of a passed dynamic array to the requested element count (setting the `len`, and possibly `cap`).
- @builtin
- resize :: proc{
- resize_dynamic_array,
- resize_soa,
- }
- @builtin
- non_zero_resize :: proc{
- non_zero_resize_dynamic_array,
- non_zero_resize_soa,
- }
- // Shrinks the capacity of a dynamic array or map down to the current length, or the given capacity.
- @builtin
- shrink :: proc{shrink_dynamic_array, shrink_map}
- // `free` will try to free the passed pointer, with the given `allocator` if the allocator supports this operation.
- @builtin
- free :: proc{mem_free}
- // `free_all` will try to free/reset all of the memory of the given `allocator` if the allocator supports this operation.
- @builtin
- free_all :: proc{mem_free_all}
- // `delete_string` will try to free the underlying data of the passed string, with the given `allocator` if the allocator supports this operation.
- //
- // Note: Prefer the procedure group `delete`.
- @builtin
- delete_string :: proc(str: string, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
- return mem_free_with_size(raw_data(str), len(str), allocator, loc)
- }
- // `delete_cstring` will try to free the underlying data of the passed string, with the given `allocator` if the allocator supports this operation.
- //
- // Note: Prefer the procedure group `delete`.
- @builtin
- delete_cstring :: proc(str: cstring, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
- return mem_free((^byte)(str), allocator, loc)
- }
- // `delete_dynamic_array` will try to free the underlying data of the passed dynamic array, with the given `allocator` if the allocator supports this operation.
- //
- // Note: Prefer the procedure group `delete`.
- @builtin
- delete_dynamic_array :: proc(array: $T/[dynamic]$E, loc := #caller_location) -> Allocator_Error {
- return mem_free_with_size(raw_data(array), cap(array)*size_of(E), array.allocator, loc)
- }
- // `delete_slice` will try to free the underlying data of the passed sliced, with the given `allocator` if the allocator supports this operation.
- //
- // Note: Prefer the procedure group `delete`.
- @builtin
- delete_slice :: proc(array: $T/[]$E, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
- return mem_free_with_size(raw_data(array), len(array)*size_of(E), allocator, loc)
- }
- // `delete_map` will try to free the underlying data of the passed map, with the given `allocator` if the allocator supports this operation.
- //
- // Note: Prefer the procedure group `delete`.
- @builtin
- delete_map :: proc(m: $T/map[$K]$V, loc := #caller_location) -> Allocator_Error {
- return map_free_dynamic(transmute(Raw_Map)m, map_info(T), loc)
- }
- // `delete` will try to free the underlying data of the passed built-in data structure (string, cstring, dynamic array, slice, or map), with the given `allocator` if the allocator supports this operation.
- //
- // Note: Prefer `delete` over the specific `delete_*` procedures where possible.
- @builtin
- delete :: proc{
- delete_string,
- delete_cstring,
- delete_dynamic_array,
- delete_slice,
- delete_map,
- delete_soa_slice,
- delete_soa_dynamic_array,
- }
- // The new built-in procedure allocates memory. The first argument is a type, not a value, and the value
- // return is a pointer to a newly allocated value of that type using the specified allocator, default is context.allocator
- @(builtin, require_results)
- new :: proc($T: typeid, allocator := context.allocator, loc := #caller_location) -> (^T, Allocator_Error) #optional_allocator_error {
- return new_aligned(T, align_of(T), allocator, loc)
- }
- @(require_results)
- new_aligned :: proc($T: typeid, alignment: int, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) {
- data := mem_alloc_bytes(size_of(T), alignment, allocator, loc) or_return
- t = (^T)(raw_data(data))
- return
- }
- @(builtin, require_results)
- new_clone :: proc(data: $T, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) #optional_allocator_error {
- t_data := mem_alloc_bytes(size_of(T), align_of(T), allocator, loc) or_return
- t = (^T)(raw_data(t_data))
- if t != nil {
- t^ = data
- }
- return
- }
- DEFAULT_DYNAMIC_ARRAY_CAPACITY :: 8
- @(require_results)
- make_aligned :: proc($T: typeid/[]$E, #any_int len: int, alignment: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
- make_slice_error_loc(loc, len)
- data, err := mem_alloc_bytes(size_of(E)*len, alignment, allocator, loc)
- if data == nil && size_of(E) != 0 {
- return nil, err
- }
- s := Raw_Slice{raw_data(data), len}
- return transmute(T)s, err
- }
- // `make_slice` allocates and initializes a slice. Like `new`, the first argument is a type, not a value.
- // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
- //
- // Note: Prefer using the procedure group `make`.
- @(builtin, require_results)
- make_slice :: proc($T: typeid/[]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
- return make_aligned(T, len, align_of(E), allocator, loc)
- }
- // `make_dynamic_array` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
- // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
- //
- // Note: Prefer using the procedure group `make`.
- @(builtin, require_results)
- make_dynamic_array :: proc($T: typeid/[dynamic]$E, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
- return make_dynamic_array_len_cap(T, 0, 0, allocator, loc)
- }
- // `make_dynamic_array_len` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
- // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
- //
- // Note: Prefer using the procedure group `make`.
- @(builtin, require_results)
- make_dynamic_array_len :: proc($T: typeid/[dynamic]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
- return make_dynamic_array_len_cap(T, len, len, allocator, loc)
- }
- // `make_dynamic_array_len_cap` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
- // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
- //
- // Note: Prefer using the procedure group `make`.
- @(builtin, require_results)
- make_dynamic_array_len_cap :: proc($T: typeid/[dynamic]$E, #any_int len: int, #any_int cap: int, allocator := context.allocator, loc := #caller_location) -> (array: T, err: Allocator_Error) #optional_allocator_error {
- err = _make_dynamic_array_len_cap((^Raw_Dynamic_Array)(&array), size_of(E), align_of(E), len, cap, allocator, loc)
- return
- }
- @(require_results)
- _make_dynamic_array_len_cap :: proc(array: ^Raw_Dynamic_Array, size_of_elem, align_of_elem: int, #any_int len: int, #any_int cap: int, allocator := context.allocator, loc := #caller_location) -> (err: Allocator_Error) {
- make_dynamic_array_error_loc(loc, len, cap)
- array.allocator = allocator // initialize allocator before just in case it fails to allocate any memory
- data := mem_alloc_bytes(size_of_elem*cap, align_of_elem, allocator, loc) or_return
- use_zero := data == nil && size_of_elem != 0
- array.data = raw_data(data)
- array.len = 0 if use_zero else len
- array.cap = 0 if use_zero else cap
- array.allocator = allocator
- return
- }
- // `make_map` allocates and initializes a map. Like `new`, the first argument is a type, not a value.
- // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
- //
- // Note: Prefer using the procedure group `make`.
- @(builtin, require_results)
- make_map :: proc($T: typeid/map[$K]$E, #any_int capacity: int = 1<<MAP_MIN_LOG2_CAPACITY, allocator := context.allocator, loc := #caller_location) -> (m: T, err: Allocator_Error) #optional_allocator_error {
- make_map_expr_error_loc(loc, capacity)
- context.allocator = allocator
- err = reserve_map(&m, capacity, loc)
- return
- }
- // `make_multi_pointer` allocates and initializes a multi-pointer. Like `new`, the first argument is a type, not a value.
- // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
- //
- // This is "similar" to doing `raw_data(make([]E, len, allocator))`.
- //
- // Note: Prefer using the procedure group `make`.
- @(builtin, require_results)
- make_multi_pointer :: proc($T: typeid/[^]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (mp: T, err: Allocator_Error) #optional_allocator_error {
- make_slice_error_loc(loc, len)
- data := mem_alloc_bytes(size_of(E)*len, align_of(E), allocator, loc) or_return
- if data == nil && size_of(E) != 0 {
- return
- }
- mp = cast(T)raw_data(data)
- return
- }
- // `make` built-in procedure allocates and initializes a value of type slice, dynamic array, map, or multi-pointer (only).
- //
- // Similar to `new`, the first argument is a type, not a value. Unlike new, make's return type is the same as the
- // type of its argument, not a pointer to it.
- // Make uses the specified allocator, default is context.allocator.
- @builtin
- make :: proc{
- make_slice,
- make_dynamic_array,
- make_dynamic_array_len,
- make_dynamic_array_len_cap,
- make_map,
- make_multi_pointer,
- make_soa_slice,
- make_soa_dynamic_array,
- make_soa_dynamic_array_len,
- make_soa_dynamic_array_len_cap,
- }
- // `clear_map` will set the length of a passed map to `0`
- //
- // Note: Prefer the procedure group `clear`
- @builtin
- clear_map :: proc "contextless" (m: ^$T/map[$K]$V) {
- if m == nil {
- return
- }
- map_clear_dynamic((^Raw_Map)(m), map_info(T))
- }
- // `reserve_map` will try to reserve memory of a passed map to the requested element count (setting the `cap`).
- //
- // Note: Prefer the procedure group `reserve`
- @builtin
- reserve_map :: proc(m: ^$T/map[$K]$V, #any_int capacity: int, loc := #caller_location) -> Allocator_Error {
- return __dynamic_map_reserve((^Raw_Map)(m), map_info(T), uint(capacity), loc) if m != nil else nil
- }
- // Shrinks the capacity of a map down to the current length.
- //
- // Note: Prefer the procedure group `shrink`
- @builtin
- shrink_map :: proc(m: ^$T/map[$K]$V, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) {
- if m != nil {
- return map_shrink_dynamic((^Raw_Map)(m), map_info(T), loc)
- }
- return
- }
- // The delete_key built-in procedure deletes the element with the specified key (m[key]) from the map.
- // If m is nil, or there is no such element, this procedure is a no-op
- @builtin
- delete_key :: proc(m: ^$T/map[$K]$V, key: K) -> (deleted_key: K, deleted_value: V) {
- if m != nil {
- key := key
- old_k, old_v, ok := map_erase_dynamic((^Raw_Map)(m), map_info(T), uintptr(&key))
- if ok {
- deleted_key = (^K)(old_k)^
- deleted_value = (^V)(old_v)^
- }
- }
- return
- }
- _append_elem :: #force_inline proc(array: ^Raw_Dynamic_Array, size_of_elem, align_of_elem: int, arg_ptr: rawptr, should_zero: bool, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- if array == nil {
- return
- }
- if array.cap < array.len+1 {
- // Same behavior as _append_elems but there's only one arg, so we always just add DEFAULT_DYNAMIC_ARRAY_CAPACITY.
- cap := 2 * array.cap + DEFAULT_DYNAMIC_ARRAY_CAPACITY
- // do not 'or_return' here as it could be a partial success
- err = _reserve_dynamic_array(array, size_of_elem, align_of_elem, cap, should_zero, loc)
- }
- if array.cap-array.len > 0 {
- data := ([^]byte)(array.data)
- assert(data != nil, loc=loc)
- data = data[array.len*size_of_elem:]
- intrinsics.mem_copy_non_overlapping(data, arg_ptr, size_of_elem)
- array.len += 1
- n = 1
- }
- return
- }
- @builtin
- append_elem :: proc(array: ^$T/[dynamic]$E, #no_broadcast arg: E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- when size_of(E) == 0 {
- (^Raw_Dynamic_Array)(array).len += 1
- return 1, nil
- } else {
- arg := arg
- return _append_elem((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), &arg, true, loc=loc)
- }
- }
- @builtin
- non_zero_append_elem :: proc(array: ^$T/[dynamic]$E, #no_broadcast arg: E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- when size_of(E) == 0 {
- (^Raw_Dynamic_Array)(array).len += 1
- return 1, nil
- } else {
- arg := arg
- return _append_elem((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), &arg, false, loc=loc)
- }
- }
- _append_elems :: #force_inline proc(array: ^Raw_Dynamic_Array, size_of_elem, align_of_elem: int, should_zero: bool, loc := #caller_location, args: rawptr, arg_len: int) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- if array == nil {
- return 0, nil
- }
- if arg_len <= 0 {
- return 0, nil
- }
- if array.cap < array.len+arg_len {
- cap := 2 * array.cap + max(DEFAULT_DYNAMIC_ARRAY_CAPACITY, arg_len)
- // do not 'or_return' here as it could be a partial success
- err = _reserve_dynamic_array(array, size_of_elem, align_of_elem, cap, should_zero, loc)
- }
- arg_len := arg_len
- arg_len = min(array.cap-array.len, arg_len)
- if arg_len > 0 {
- data := ([^]byte)(array.data)
- assert(data != nil, loc=loc)
- data = data[array.len*size_of_elem:]
- intrinsics.mem_copy(data, args, size_of_elem * arg_len) // must be mem_copy (overlapping)
- array.len += arg_len
- }
- return arg_len, err
- }
- @builtin
- append_elems :: proc(array: ^$T/[dynamic]$E, #no_broadcast args: ..E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- when size_of(E) == 0 {
- a := (^Raw_Dynamic_Array)(array)
- a.len += len(args)
- return len(args), nil
- } else {
- return _append_elems((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), true, loc, raw_data(args), len(args))
- }
- }
- @builtin
- non_zero_append_elems :: proc(array: ^$T/[dynamic]$E, #no_broadcast args: ..E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- when size_of(E) == 0 {
- a := (^Raw_Dynamic_Array)(array)
- a.len += len(args)
- return len(args), nil
- } else {
- return _append_elems((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), false, loc, raw_data(args), len(args))
- }
- }
- // The append_string built-in procedure appends a string to the end of a [dynamic]u8 like type
- _append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, should_zero: bool, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- return _append_elems((^Raw_Dynamic_Array)(array), 1, 1, should_zero, loc, raw_data(arg), len(arg))
- }
- @builtin
- append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- return _append_elem_string(array, arg, true, loc)
- }
- @builtin
- non_zero_append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- return _append_elem_string(array, arg, false, loc)
- }
- // The append_string built-in procedure appends multiple strings to the end of a [dynamic]u8 like type
- @builtin
- append_string :: proc(array: ^$T/[dynamic]$E/u8, args: ..string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- n_arg: int
- for arg in args {
- n_arg, err = append(array, ..transmute([]E)(arg), loc=loc)
- n += n_arg
- if err != nil {
- return
- }
- }
- return
- }
- // The append built-in procedure appends elements to the end of a dynamic array
- @builtin append :: proc{
- append_elem,
- append_elems,
- append_elem_string,
- append_soa_elem,
- append_soa_elems,
- }
- @builtin non_zero_append :: proc{
- non_zero_append_elem,
- non_zero_append_elems,
- non_zero_append_elem_string,
- non_zero_append_soa_elem,
- non_zero_append_soa_elems,
- }
- @builtin
- append_nothing :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- if array == nil {
- return 0, nil
- }
- prev_len := len(array)
- resize(array, len(array)+1, loc) or_return
- return len(array)-prev_len, nil
- }
- @builtin
- inject_at_elem :: proc(array: ^$T/[dynamic]$E, #any_int index: int, #no_broadcast arg: E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
- if array == nil {
- return
- }
- n := max(len(array), index)
- m :: 1
- new_size := n + m
- resize(array, new_size, loc) or_return
- when size_of(E) != 0 {
- copy(array[index + m:], array[index:])
- array[index] = arg
- }
- ok = true
- return
- }
- @builtin
- inject_at_elems :: proc(array: ^$T/[dynamic]$E, #any_int index: int, #no_broadcast args: ..E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
- if array == nil {
- return
- }
- if len(args) == 0 {
- ok = true
- return
- }
- n := max(len(array), index)
- m := len(args)
- new_size := n + m
- resize(array, new_size, loc) or_return
- when size_of(E) != 0 {
- copy(array[index + m:], array[index:])
- copy(array[index:], args)
- }
- ok = true
- return
- }
- @builtin
- inject_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, #any_int index: int, arg: string, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
- if array == nil {
- return
- }
- if len(arg) == 0 {
- ok = true
- return
- }
- n := max(len(array), index)
- m := len(arg)
- new_size := n + m
- resize(array, new_size, loc) or_return
- copy(array[index+m:], array[index:])
- copy(array[index:], arg)
- ok = true
- return
- }
- @builtin inject_at :: proc{inject_at_elem, inject_at_elems, inject_at_elem_string}
- @builtin
- assign_at_elem :: proc(array: ^$T/[dynamic]$E, #any_int index: int, arg: E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
- if index < len(array) {
- array[index] = arg
- ok = true
- } else {
- resize(array, index+1, loc) or_return
- array[index] = arg
- ok = true
- }
- return
- }
- @builtin
- assign_at_elems :: proc(array: ^$T/[dynamic]$E, #any_int index: int, #no_broadcast args: ..E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
- new_size := index + len(args)
- if len(args) == 0 {
- ok = true
- } else if new_size < len(array) {
- copy(array[index:], args)
- ok = true
- } else {
- resize(array, new_size, loc) or_return
- copy(array[index:], args)
- ok = true
- }
- return
- }
- @builtin
- assign_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, #any_int index: int, arg: string, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
- new_size := index + len(arg)
- if len(arg) == 0 {
- ok = true
- } else if new_size < len(array) {
- copy(array[index:], arg)
- ok = true
- } else {
- resize(array, new_size, loc) or_return
- copy(array[index:], arg)
- ok = true
- }
- return
- }
- @builtin assign_at :: proc{assign_at_elem, assign_at_elems, assign_at_elem_string}
- // `clear_dynamic_array` will set the length of a passed dynamic array to `0`
- //
- // Note: Prefer the procedure group `clear`.
- @builtin
- clear_dynamic_array :: proc "contextless" (array: ^$T/[dynamic]$E) {
- if array != nil {
- (^Raw_Dynamic_Array)(array).len = 0
- }
- }
- // `reserve_dynamic_array` will try to reserve memory of a passed dynamic array or map to the requested element count (setting the `cap`).
- //
- // Note: Prefer the procedure group `reserve`.
- _reserve_dynamic_array :: #force_inline proc(a: ^Raw_Dynamic_Array, size_of_elem, align_of_elem: int, capacity: int, should_zero: bool, loc := #caller_location) -> Allocator_Error {
- if a == nil {
- return nil
- }
- if capacity <= a.cap {
- return nil
- }
- if a.allocator.procedure == nil {
- a.allocator = context.allocator
- }
- assert(a.allocator.procedure != nil)
- old_size := a.cap * size_of_elem
- new_size := capacity * size_of_elem
- allocator := a.allocator
- new_data: []byte
- if should_zero {
- new_data = mem_resize(a.data, old_size, new_size, align_of_elem, allocator, loc) or_return
- } else {
- new_data = non_zero_mem_resize(a.data, old_size, new_size, align_of_elem, allocator, loc) or_return
- }
- if new_data == nil && new_size > 0 {
- return .Out_Of_Memory
- }
- a.data = raw_data(new_data)
- a.cap = capacity
- return nil
- }
- @builtin
- reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, #any_int capacity: int, loc := #caller_location) -> Allocator_Error {
- return _reserve_dynamic_array((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), capacity, true, loc)
- }
- @builtin
- non_zero_reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, #any_int capacity: int, loc := #caller_location) -> Allocator_Error {
- return _reserve_dynamic_array((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), capacity, false, loc)
- }
- _resize_dynamic_array :: #force_inline proc(a: ^Raw_Dynamic_Array, size_of_elem, align_of_elem: int, length: int, should_zero: bool, loc := #caller_location) -> Allocator_Error {
- if a == nil {
- return nil
- }
- if length <= a.cap {
- if should_zero && a.len < length {
- intrinsics.mem_zero(([^]byte)(a.data)[a.len*size_of_elem:], (length-a.len)*size_of_elem)
- }
- a.len = max(length, 0)
- return nil
- }
- if a.allocator.procedure == nil {
- a.allocator = context.allocator
- }
- assert(a.allocator.procedure != nil)
- old_size := a.cap * size_of_elem
- new_size := length * size_of_elem
- allocator := a.allocator
- new_data : []byte
- if should_zero {
- new_data = mem_resize(a.data, old_size, new_size, align_of_elem, allocator, loc) or_return
- } else {
- new_data = non_zero_mem_resize(a.data, old_size, new_size, align_of_elem, allocator, loc) or_return
- }
- if new_data == nil && new_size > 0 {
- return .Out_Of_Memory
- }
- a.data = raw_data(new_data)
- a.len = length
- a.cap = length
- return nil
- }
- // `resize_dynamic_array` will try to resize memory of a passed dynamic array or map to the requested element count (setting the `len`, and possibly `cap`).
- //
- // Note: Prefer the procedure group `resize`
- @builtin
- resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, #any_int length: int, loc := #caller_location) -> Allocator_Error {
- return _resize_dynamic_array((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), length, true, loc=loc)
- }
- @builtin
- non_zero_resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, #any_int length: int, loc := #caller_location) -> Allocator_Error {
- return _resize_dynamic_array((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), length, false, loc=loc)
- }
- /*
- Shrinks the capacity of a dynamic array down to the current length, or the given capacity.
- If `new_cap` is negative, then `len(array)` is used.
- Returns false if `cap(array) < new_cap`, or the allocator report failure.
- If `len(array) < new_cap`, then `len(array)` will be left unchanged.
- Note: Prefer the procedure group `shrink`
- */
- shrink_dynamic_array :: proc(array: ^$T/[dynamic]$E, #any_int new_cap := -1, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) {
- return _shrink_dynamic_array((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), new_cap, loc)
- }
- _shrink_dynamic_array :: proc(a: ^Raw_Dynamic_Array, size_of_elem, align_of_elem: int, new_cap := -1, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) {
- if a == nil {
- return
- }
- new_cap := new_cap if new_cap >= 0 else a.len
- if new_cap > a.cap {
- return
- }
- if a.allocator.procedure == nil {
- a.allocator = context.allocator
- }
- assert(a.allocator.procedure != nil)
- old_size := a.cap * size_of_elem
- new_size := new_cap * size_of_elem
- new_data := mem_resize(a.data, old_size, new_size, align_of_elem, a.allocator, loc) or_return
- a.data = raw_data(new_data)
- a.len = min(new_cap, a.len)
- a.cap = new_cap
- return true, nil
- }
- @builtin
- map_insert :: proc(m: ^$T/map[$K]$V, key: K, value: V, loc := #caller_location) -> (ptr: ^V) {
- key, value := key, value
- return (^V)(__dynamic_map_set_without_hash((^Raw_Map)(m), map_info(T), rawptr(&key), rawptr(&value), loc))
- }
- // Explicitly inserts a key and value into a map `m`, the same as `map_insert`, but the return values differ.
- // - `prev_key` will return the previous pointer of a key if it exists, check `found_previous` if was previously found
- // - `value_ptr` will return the pointer of the memory where the insertion happens, and `nil` if the map failed to resize
- // - `found_previous` will be true a previous key was found
- @(builtin, require_results)
- map_upsert :: proc(m: ^$T/map[$K]$V, key: K, value: V, loc := #caller_location) -> (prev_key: K, value_ptr: ^V, found_previous: bool) {
- key, value := key, value
- kp, vp := __dynamic_map_set_extra_without_hash((^Raw_Map)(m), map_info(T), rawptr(&key), rawptr(&value), loc)
- if kp != nil {
- prev_key = (^K)(kp)^
- found_previous = true
- }
- value_ptr = (^V)(vp)
- return
- }
- @builtin
- card :: proc "contextless" (s: $S/bit_set[$E; $U]) -> int {
- when size_of(S) == 1 {
- return int(intrinsics.count_ones(transmute(u8)s))
- } else when size_of(S) == 2 {
- return int(intrinsics.count_ones(transmute(u16)s))
- } else when size_of(S) == 4 {
- return int(intrinsics.count_ones(transmute(u32)s))
- } else when size_of(S) == 8 {
- return int(intrinsics.count_ones(transmute(u64)s))
- } else when size_of(S) == 16 {
- return int(intrinsics.count_ones(transmute(u128)s))
- } else {
- #panic("Unhandled card bit_set size")
- }
- }
- @builtin
- @(disabled=ODIN_DISABLE_ASSERT)
- assert :: proc(condition: bool, message := #caller_expression(condition), loc := #caller_location) {
- if !condition {
- // NOTE(bill): This is wrapped in a procedure call
- // to improve performance to make the CPU not
- // execute speculatively, making it about an order of
- // magnitude faster
- @(cold)
- internal :: proc(message: string, loc: Source_Code_Location) {
- p := context.assertion_failure_proc
- if p == nil {
- p = default_assertion_failure_proc
- }
- p("runtime assertion", message, loc)
- }
- internal(message, loc)
- }
- }
- @builtin
- panic :: proc(message: string, loc := #caller_location) -> ! {
- p := context.assertion_failure_proc
- if p == nil {
- p = default_assertion_failure_proc
- }
- p("panic", message, loc)
- }
- @builtin
- unimplemented :: proc(message := "", loc := #caller_location) -> ! {
- p := context.assertion_failure_proc
- if p == nil {
- p = default_assertion_failure_proc
- }
- p("not yet implemented", message, loc)
- }
- @builtin
- @(disabled=ODIN_DISABLE_ASSERT)
- assert_contextless :: proc "contextless" (condition: bool, message := #caller_expression(condition), loc := #caller_location) {
- if !condition {
- // NOTE(bill): This is wrapped in a procedure call
- // to improve performance to make the CPU not
- // execute speculatively, making it about an order of
- // magnitude faster
- @(cold)
- internal :: proc "contextless" (message: string, loc: Source_Code_Location) {
- default_assertion_contextless_failure_proc("runtime assertion", message, loc)
- }
- internal(message, loc)
- }
- }
- @builtin
- panic_contextless :: proc "contextless" (message: string, loc := #caller_location) -> ! {
- default_assertion_contextless_failure_proc("panic", message, loc)
- }
- @builtin
- unimplemented_contextless :: proc "contextless" (message := "", loc := #caller_location) -> ! {
- default_assertion_contextless_failure_proc("not yet implemented", message, loc)
- }
|