socket_darwin.odin 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427
  1. #+build darwin
  2. package net
  3. /*
  4. Package net implements cross-platform Berkeley Sockets, DNS resolution and associated procedures.
  5. For other protocols and their features, see subdirectories of this package.
  6. */
  7. /*
  8. Copyright 2022 Tetralux <[email protected]>
  9. Copyright 2022 Colin Davidson <[email protected]>
  10. Copyright 2022 Jeroen van Rijn <[email protected]>.
  11. Copyright 2024 Feoramund <[email protected]>.
  12. Made available under Odin's BSD-3 license.
  13. List of contributors:
  14. Tetralux: Initial implementation
  15. Colin Davidson: Linux platform code, OSX platform code, Odin-native DNS resolver
  16. Jeroen van Rijn: Cross platform unification, code style, documentation
  17. Feoramund: FreeBSD platform code
  18. */
  19. import "core:c"
  20. import "core:os"
  21. import "core:sys/posix"
  22. import "core:time"
  23. Socket_Option :: enum c.int {
  24. Broadcast = c.int(os.SO_BROADCAST),
  25. Reuse_Address = c.int(os.SO_REUSEADDR),
  26. Keep_Alive = c.int(os.SO_KEEPALIVE),
  27. Out_Of_Bounds_Data_Inline = c.int(os.SO_OOBINLINE),
  28. TCP_Nodelay = c.int(os.TCP_NODELAY),
  29. Linger = c.int(os.SO_LINGER),
  30. Receive_Buffer_Size = c.int(os.SO_RCVBUF),
  31. Send_Buffer_Size = c.int(os.SO_SNDBUF),
  32. Receive_Timeout = c.int(os.SO_RCVTIMEO),
  33. Send_Timeout = c.int(os.SO_SNDTIMEO),
  34. }
  35. @(private)
  36. _create_socket :: proc(family: Address_Family, protocol: Socket_Protocol) -> (socket: Any_Socket, err: Network_Error) {
  37. c_type, c_protocol, c_family: int
  38. switch family {
  39. case .IP4: c_family = os.AF_INET
  40. case .IP6: c_family = os.AF_INET6
  41. case:
  42. unreachable()
  43. }
  44. switch protocol {
  45. case .TCP: c_type = os.SOCK_STREAM; c_protocol = os.IPPROTO_TCP
  46. case .UDP: c_type = os.SOCK_DGRAM; c_protocol = os.IPPROTO_UDP
  47. case:
  48. unreachable()
  49. }
  50. sock, sock_err := os.socket(c_family, c_type, c_protocol)
  51. if sock_err != nil {
  52. err = Create_Socket_Error(os.is_platform_error(sock_err) or_else -1)
  53. return
  54. }
  55. switch protocol {
  56. case .TCP: return TCP_Socket(sock), nil
  57. case .UDP: return UDP_Socket(sock), nil
  58. case:
  59. unreachable()
  60. }
  61. }
  62. @(private)
  63. _dial_tcp_from_endpoint :: proc(endpoint: Endpoint, options := default_tcp_options) -> (skt: TCP_Socket, err: Network_Error) {
  64. if endpoint.port == 0 {
  65. return 0, .Port_Required
  66. }
  67. family := family_from_endpoint(endpoint)
  68. sock := create_socket(family, .TCP) or_return
  69. skt = sock.(TCP_Socket)
  70. // NOTE(tetra): This is so that if we crash while the socket is open, we can
  71. // bypass the cooldown period, and allow the next run of the program to
  72. // use the same address immediately.
  73. _ = set_option(skt, .Reuse_Address, true)
  74. sockaddr := _endpoint_to_sockaddr(endpoint)
  75. res := os.connect(os.Socket(skt), (^os.SOCKADDR)(&sockaddr), i32(sockaddr.len))
  76. if res != nil {
  77. close(skt)
  78. return {}, Dial_Error(os.is_platform_error(res) or_else -1)
  79. }
  80. return
  81. }
  82. // On Darwin, any port below 1024 is 'privileged' - which means that you need root access in order to use it.
  83. MAX_PRIVILEGED_PORT :: 1023
  84. @(private)
  85. _bind :: proc(skt: Any_Socket, ep: Endpoint) -> (err: Network_Error) {
  86. sockaddr := _endpoint_to_sockaddr(ep)
  87. s := any_socket_to_socket(skt)
  88. res := os.bind(os.Socket(s), (^os.SOCKADDR)(&sockaddr), i32(sockaddr.len))
  89. if res != nil {
  90. if res == os.EACCES && ep.port <= MAX_PRIVILEGED_PORT {
  91. err = .Privileged_Port_Without_Root
  92. } else {
  93. err = Bind_Error(os.is_platform_error(res) or_else -1)
  94. }
  95. }
  96. return
  97. }
  98. @(private)
  99. _listen_tcp :: proc(interface_endpoint: Endpoint, backlog := 1000) -> (skt: TCP_Socket, err: Network_Error) {
  100. assert(backlog > 0 && i32(backlog) < max(i32))
  101. family := family_from_endpoint(interface_endpoint)
  102. sock := create_socket(family, .TCP) or_return
  103. skt = sock.(TCP_Socket)
  104. defer if err != nil { close(skt) }
  105. // NOTE(tetra): This is so that if we crash while the socket is open, we can
  106. // bypass the cooldown period, and allow the next run of the program to
  107. // use the same address immediately.
  108. //
  109. // TODO(tetra, 2022-02-15): Confirm that this doesn't mean other processes can hijack the address!
  110. set_option(sock, .Reuse_Address, true) or_return
  111. bind(sock, interface_endpoint) or_return
  112. res := os.listen(os.Socket(skt), backlog)
  113. if res != nil {
  114. err = Listen_Error(os.is_platform_error(res) or_else -1)
  115. return
  116. }
  117. return
  118. }
  119. @(private)
  120. _bound_endpoint :: proc(sock: Any_Socket) -> (ep: Endpoint, err: Network_Error) {
  121. addr: posix.sockaddr_storage
  122. addr_len := posix.socklen_t(size_of(addr))
  123. res := posix.getsockname(posix.FD(any_socket_to_socket(sock)), (^posix.sockaddr)(&addr), &addr_len)
  124. if res != .OK {
  125. err = Listen_Error(posix.errno())
  126. return
  127. }
  128. ep = _sockaddr_to_endpoint((^os.SOCKADDR_STORAGE_LH)(&addr))
  129. return
  130. }
  131. @(private)
  132. _accept_tcp :: proc(sock: TCP_Socket, options := default_tcp_options) -> (client: TCP_Socket, source: Endpoint, err: Network_Error) {
  133. sockaddr: os.SOCKADDR_STORAGE_LH
  134. sockaddrlen := c.int(size_of(sockaddr))
  135. client_sock, client_sock_err := os.accept(os.Socket(sock), cast(^os.SOCKADDR) &sockaddr, &sockaddrlen)
  136. if client_sock_err != nil {
  137. err = Accept_Error(os.is_platform_error(client_sock_err) or_else -1)
  138. return
  139. }
  140. client = TCP_Socket(client_sock)
  141. source = _sockaddr_to_endpoint(&sockaddr)
  142. return
  143. }
  144. @(private)
  145. _close :: proc(skt: Any_Socket) {
  146. s := any_socket_to_socket(skt)
  147. os.close(os.Handle(os.Socket(s)))
  148. }
  149. @(private)
  150. _recv_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_read: int, err: Network_Error) {
  151. if len(buf) <= 0 {
  152. return
  153. }
  154. res, res_err := os.recv(os.Socket(skt), buf, 0)
  155. if res_err != nil {
  156. err = TCP_Recv_Error(os.is_platform_error(res_err) or_else -1)
  157. return
  158. }
  159. return int(res), nil
  160. }
  161. @(private)
  162. _recv_udp :: proc(skt: UDP_Socket, buf: []byte) -> (bytes_read: int, remote_endpoint: Endpoint, err: Network_Error) {
  163. if len(buf) <= 0 {
  164. return
  165. }
  166. from: os.SOCKADDR_STORAGE_LH
  167. fromsize := c.int(size_of(from))
  168. res, res_err := os.recvfrom(os.Socket(skt), buf, 0, cast(^os.SOCKADDR) &from, &fromsize)
  169. if res_err != nil {
  170. err = UDP_Recv_Error(os.is_platform_error(res_err) or_else -1)
  171. return
  172. }
  173. bytes_read = int(res)
  174. remote_endpoint = _sockaddr_to_endpoint(&from)
  175. return
  176. }
  177. @(private)
  178. _send_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_written: int, err: Network_Error) {
  179. for bytes_written < len(buf) {
  180. limit := min(int(max(i32)), len(buf) - bytes_written)
  181. remaining := buf[bytes_written:][:limit]
  182. res, res_err := os.send(os.Socket(skt), remaining, os.MSG_NOSIGNAL)
  183. if res_err == os.EPIPE {
  184. // EPIPE arises if the socket has been closed remotely.
  185. err = TCP_Send_Error.Connection_Closed
  186. return
  187. } else if res_err != nil {
  188. err = TCP_Send_Error(os.is_platform_error(res_err) or_else -1)
  189. return
  190. }
  191. bytes_written += int(res)
  192. }
  193. return
  194. }
  195. @(private)
  196. _send_udp :: proc(skt: UDP_Socket, buf: []byte, to: Endpoint) -> (bytes_written: int, err: Network_Error) {
  197. toaddr := _endpoint_to_sockaddr(to)
  198. for bytes_written < len(buf) {
  199. limit := min(1<<31, len(buf) - bytes_written)
  200. remaining := buf[bytes_written:][:limit]
  201. res, res_err := os.sendto(os.Socket(skt), remaining, os.MSG_NOSIGNAL, cast(^os.SOCKADDR)&toaddr, i32(toaddr.len))
  202. if res_err == os.EPIPE {
  203. // EPIPE arises if the socket has been closed remotely.
  204. err = UDP_Send_Error.Not_Socket
  205. return
  206. } else if res_err != nil {
  207. err = UDP_Send_Error(os.is_platform_error(res_err) or_else -1)
  208. return
  209. }
  210. bytes_written += int(res)
  211. }
  212. return
  213. }
  214. @(private)
  215. _shutdown :: proc(skt: Any_Socket, manner: Shutdown_Manner) -> (err: Network_Error) {
  216. s := any_socket_to_socket(skt)
  217. res := os.shutdown(os.Socket(s), int(manner))
  218. if res != nil {
  219. return Shutdown_Error(os.is_platform_error(res) or_else -1)
  220. }
  221. return
  222. }
  223. @(private)
  224. _set_option :: proc(s: Any_Socket, option: Socket_Option, value: any, loc := #caller_location) -> Network_Error {
  225. level := os.SOL_SOCKET if option != .TCP_Nodelay else os.IPPROTO_TCP
  226. // NOTE(tetra, 2022-02-15): On Linux, you cannot merely give a single byte for a bool;
  227. // it _has_ to be a b32.
  228. // I haven't tested if you can give more than that.
  229. bool_value: b32
  230. int_value: i32
  231. timeval_value: os.Timeval
  232. ptr: rawptr
  233. len: os.socklen_t
  234. switch option {
  235. case
  236. .Broadcast,
  237. .Reuse_Address,
  238. .Keep_Alive,
  239. .Out_Of_Bounds_Data_Inline,
  240. .TCP_Nodelay:
  241. // TODO: verify whether these are options or not on Linux
  242. // .Broadcast,
  243. // .Conditional_Accept,
  244. // .Dont_Linger:
  245. switch x in value {
  246. case bool, b8:
  247. x2 := x
  248. bool_value = b32((^bool)(&x2)^)
  249. case b16:
  250. bool_value = b32(x)
  251. case b32:
  252. bool_value = b32(x)
  253. case b64:
  254. bool_value = b32(x)
  255. case:
  256. panic("set_option() value must be a boolean here", loc)
  257. }
  258. ptr = &bool_value
  259. len = size_of(bool_value)
  260. case
  261. .Linger,
  262. .Send_Timeout,
  263. .Receive_Timeout:
  264. t := value.(time.Duration) or_else panic("set_option() value must be a time.Duration here", loc)
  265. micros := i64(time.duration_microseconds(t))
  266. timeval_value.microseconds = int(micros % 1e6)
  267. timeval_value.seconds = (micros - i64(timeval_value.microseconds)) / 1e6
  268. ptr = &timeval_value
  269. len = size_of(timeval_value)
  270. case
  271. .Receive_Buffer_Size,
  272. .Send_Buffer_Size:
  273. // TODO: check for out of range values and return .Value_Out_Of_Range?
  274. switch i in value {
  275. case i8, u8: i2 := i; int_value = os.socklen_t((^u8)(&i2)^)
  276. case i16, u16: i2 := i; int_value = os.socklen_t((^u16)(&i2)^)
  277. case i32, u32: i2 := i; int_value = os.socklen_t((^u32)(&i2)^)
  278. case i64, u64: i2 := i; int_value = os.socklen_t((^u64)(&i2)^)
  279. case i128, u128: i2 := i; int_value = os.socklen_t((^u128)(&i2)^)
  280. case int, uint: i2 := i; int_value = os.socklen_t((^uint)(&i2)^)
  281. case:
  282. panic("set_option() value must be an integer here", loc)
  283. }
  284. ptr = &int_value
  285. len = size_of(int_value)
  286. }
  287. skt := any_socket_to_socket(s)
  288. res := os.setsockopt(os.Socket(skt), int(level), int(option), ptr, len)
  289. if res != nil {
  290. return Socket_Option_Error(os.is_platform_error(res) or_else -1)
  291. }
  292. return nil
  293. }
  294. @(private)
  295. _set_blocking :: proc(socket: Any_Socket, should_block: bool) -> (err: Network_Error) {
  296. socket := any_socket_to_socket(socket)
  297. flags, getfl_err := os.fcntl(int(socket), os.F_GETFL, 0)
  298. if getfl_err != nil {
  299. return Set_Blocking_Error(os.is_platform_error(getfl_err) or_else -1)
  300. }
  301. if should_block {
  302. flags &~= int(os.O_NONBLOCK)
  303. } else {
  304. flags |= int(os.O_NONBLOCK)
  305. }
  306. _, setfl_err := os.fcntl(int(socket), os.F_SETFL, flags)
  307. if setfl_err != nil {
  308. return Set_Blocking_Error(os.is_platform_error(setfl_err) or_else -1)
  309. }
  310. return nil
  311. }
  312. @private
  313. _endpoint_to_sockaddr :: proc(ep: Endpoint) -> (sockaddr: os.SOCKADDR_STORAGE_LH) {
  314. switch a in ep.address {
  315. case IP4_Address:
  316. (^os.sockaddr_in)(&sockaddr)^ = os.sockaddr_in {
  317. sin_port = u16be(ep.port),
  318. sin_addr = transmute(os.in_addr) a,
  319. sin_family = u8(os.AF_INET),
  320. sin_len = size_of(os.sockaddr_in),
  321. }
  322. return
  323. case IP6_Address:
  324. (^os.sockaddr_in6)(&sockaddr)^ = os.sockaddr_in6 {
  325. sin6_port = u16be(ep.port),
  326. sin6_addr = transmute(os.in6_addr) a,
  327. sin6_family = u8(os.AF_INET6),
  328. sin6_len = size_of(os.sockaddr_in6),
  329. }
  330. return
  331. }
  332. unreachable()
  333. }
  334. @private
  335. _sockaddr_to_endpoint :: proc(native_addr: ^os.SOCKADDR_STORAGE_LH) -> (ep: Endpoint) {
  336. switch native_addr.family {
  337. case u8(os.AF_INET):
  338. addr := cast(^os.sockaddr_in) native_addr
  339. port := int(addr.sin_port)
  340. ep = Endpoint {
  341. address = IP4_Address(transmute([4]byte) addr.sin_addr),
  342. port = port,
  343. }
  344. case u8(os.AF_INET6):
  345. addr := cast(^os.sockaddr_in6) native_addr
  346. port := int(addr.sin6_port)
  347. ep = Endpoint {
  348. address = IP6_Address(transmute([8]u16be) addr.sin6_addr),
  349. port = port,
  350. }
  351. case:
  352. panic("native_addr is neither IP4 or IP6 address")
  353. }
  354. return
  355. }
  356. @(private)
  357. _sockaddr_basic_to_endpoint :: proc(native_addr: ^os.SOCKADDR) -> (ep: Endpoint) {
  358. switch u16(native_addr.family) {
  359. case u16(os.AF_INET):
  360. addr := cast(^os.sockaddr_in) native_addr
  361. port := int(addr.sin_port)
  362. ep = Endpoint {
  363. address = IP4_Address(transmute([4]byte) addr.sin_addr),
  364. port = port,
  365. }
  366. case u16(os.AF_INET6):
  367. addr := cast(^os.sockaddr_in6) native_addr
  368. port := int(addr.sin6_port)
  369. ep = Endpoint {
  370. address = IP6_Address(transmute([8]u16be) addr.sin6_addr),
  371. port = port,
  372. }
  373. case:
  374. panic("native_addr is neither IP4 or IP6 address")
  375. }
  376. return
  377. }