socket_linux.odin 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413
  1. #+build linux
  2. package net
  3. /*
  4. Package net implements cross-platform Berkeley Sockets, DNS resolution and associated procedures.
  5. For other protocols and their features, see subdirectories of this package.
  6. */
  7. /*
  8. Copyright 2022 Tetralux <[email protected]>
  9. Copyright 2022 Colin Davidson <[email protected]>
  10. Copyright 2022 Jeroen van Rijn <[email protected]>.
  11. Copyright 2024 Feoramund <[email protected]>.
  12. Made available under Odin's BSD-3 license.
  13. List of contributors:
  14. Tetralux: Initial implementation
  15. Colin Davidson: Linux platform code, OSX platform code, Odin-native DNS resolver
  16. Jeroen van Rijn: Cross platform unification, code style, documentation
  17. flysand: Move dependency from core:os to core:sys/linux
  18. Feoramund: FreeBSD platform code
  19. */
  20. import "core:c"
  21. import "core:time"
  22. import "core:sys/linux"
  23. Socket_Option :: enum c.int {
  24. Reuse_Address = c.int(linux.Socket_Option.REUSEADDR),
  25. Keep_Alive = c.int(linux.Socket_Option.KEEPALIVE),
  26. Out_Of_Bounds_Data_Inline = c.int(linux.Socket_Option.OOBINLINE),
  27. TCP_Nodelay = c.int(linux.Socket_TCP_Option.NODELAY),
  28. Linger = c.int(linux.Socket_Option.LINGER),
  29. Receive_Buffer_Size = c.int(linux.Socket_Option.RCVBUF),
  30. Send_Buffer_Size = c.int(linux.Socket_Option.SNDBUF),
  31. Receive_Timeout = c.int(linux.Socket_Option.RCVTIMEO),
  32. Send_Timeout = c.int(linux.Socket_Option.SNDTIMEO),
  33. }
  34. // Wrappers and unwrappers for system-native types
  35. @(private="file")
  36. _unwrap_os_socket :: proc "contextless" (sock: Any_Socket)->linux.Fd {
  37. return linux.Fd(any_socket_to_socket(sock))
  38. }
  39. @(private="file")
  40. _wrap_os_socket :: proc "contextless" (sock: linux.Fd, protocol: Socket_Protocol)->Any_Socket {
  41. switch protocol {
  42. case .TCP: return TCP_Socket(Socket(sock))
  43. case .UDP: return UDP_Socket(Socket(sock))
  44. case:
  45. unreachable()
  46. }
  47. }
  48. @(private="file")
  49. _unwrap_os_family :: proc "contextless" (family: Address_Family)->linux.Address_Family {
  50. switch family {
  51. case .IP4: return .INET
  52. case .IP6: return .INET6
  53. case:
  54. unreachable()
  55. }
  56. }
  57. @(private="file")
  58. _unwrap_os_proto_socktype :: proc "contextless" (protocol: Socket_Protocol)->(linux.Protocol, linux.Socket_Type) {
  59. switch protocol {
  60. case .TCP: return .TCP, .STREAM
  61. case .UDP: return .UDP, .DGRAM
  62. case:
  63. unreachable()
  64. }
  65. }
  66. @(private="file")
  67. _unwrap_os_addr :: proc "contextless" (endpoint: Endpoint)->(linux.Sock_Addr_Any) {
  68. switch address in endpoint.address {
  69. case IP4_Address:
  70. return {
  71. ipv4 = {
  72. sin_family = .INET,
  73. sin_port = u16be(endpoint.port),
  74. sin_addr = ([4]u8)(endpoint.address.(IP4_Address)),
  75. },
  76. }
  77. case IP6_Address:
  78. return {
  79. ipv6 = {
  80. sin6_port = u16be(endpoint.port),
  81. sin6_addr = transmute([16]u8)endpoint.address.(IP6_Address),
  82. sin6_family = .INET6,
  83. },
  84. }
  85. case:
  86. unreachable()
  87. }
  88. }
  89. @(private="file")
  90. _wrap_os_addr :: proc "contextless" (addr: linux.Sock_Addr_Any)->(Endpoint) {
  91. #partial switch addr.family {
  92. case .INET:
  93. return {
  94. address = cast(IP4_Address) addr.sin_addr,
  95. port = cast(int) addr.sin_port,
  96. }
  97. case .INET6:
  98. return {
  99. port = cast(int) addr.sin6_port,
  100. address = transmute(IP6_Address) addr.sin6_addr,
  101. }
  102. case:
  103. unreachable()
  104. }
  105. }
  106. _create_socket :: proc(family: Address_Family, protocol: Socket_Protocol) -> (Any_Socket, Network_Error) {
  107. family := _unwrap_os_family(family)
  108. proto, socktype := _unwrap_os_proto_socktype(protocol)
  109. sock, errno := linux.socket(family, socktype, {.CLOEXEC}, proto)
  110. if errno != .NONE {
  111. return {}, Create_Socket_Error(errno)
  112. }
  113. return _wrap_os_socket(sock, protocol), nil
  114. }
  115. @(private)
  116. _dial_tcp_from_endpoint :: proc(endpoint: Endpoint, options := default_tcp_options) -> (TCP_Socket, Network_Error) {
  117. errno: linux.Errno
  118. if endpoint.port == 0 {
  119. return 0, .Port_Required
  120. }
  121. // Create new TCP socket
  122. os_sock: linux.Fd
  123. os_sock, errno = linux.socket(_unwrap_os_family(family_from_endpoint(endpoint)), .STREAM, {.CLOEXEC}, .TCP)
  124. if errno != .NONE {
  125. // TODO(flysand): should return invalid file descriptor here casted as TCP_Socket
  126. return {}, Create_Socket_Error(errno)
  127. }
  128. // NOTE(tetra): This is so that if we crash while the socket is open, we can
  129. // bypass the cooldown period, and allow the next run of the program to
  130. // use the same address immediately.
  131. reuse_addr: b32 = true
  132. _ = linux.setsockopt(os_sock, linux.SOL_SOCKET, linux.Socket_Option.REUSEADDR, &reuse_addr)
  133. addr := _unwrap_os_addr(endpoint)
  134. errno = linux.connect(linux.Fd(os_sock), &addr)
  135. if errno != .NONE {
  136. close(cast(TCP_Socket) os_sock)
  137. return {}, Dial_Error(errno)
  138. }
  139. // NOTE(tetra): Not vital to succeed; error ignored
  140. no_delay: b32 = cast(b32) options.no_delay
  141. _ = linux.setsockopt(os_sock, linux.SOL_TCP, linux.Socket_TCP_Option.NODELAY, &no_delay)
  142. return cast(TCP_Socket) os_sock, nil
  143. }
  144. @(private)
  145. _bind :: proc(sock: Any_Socket, endpoint: Endpoint) -> (Network_Error) {
  146. addr := _unwrap_os_addr(endpoint)
  147. errno := linux.bind(_unwrap_os_socket(sock), &addr)
  148. if errno != .NONE {
  149. return Bind_Error(errno)
  150. }
  151. return nil
  152. }
  153. @(private)
  154. _listen_tcp :: proc(endpoint: Endpoint, backlog := 1000) -> (socket: TCP_Socket, err: Network_Error) {
  155. errno: linux.Errno
  156. assert(backlog > 0 && i32(backlog) < max(i32))
  157. // Figure out the address family and address of the endpoint
  158. ep_family := _unwrap_os_family(family_from_endpoint(endpoint))
  159. ep_address := _unwrap_os_addr(endpoint)
  160. // Create TCP socket
  161. os_sock: linux.Fd
  162. os_sock, errno = linux.socket(ep_family, .STREAM, {.CLOEXEC}, .TCP)
  163. if errno != .NONE {
  164. err = Create_Socket_Error(errno)
  165. return
  166. }
  167. socket = cast(TCP_Socket)os_sock
  168. defer if err != nil { close(socket) }
  169. // NOTE(tetra): This is so that if we crash while the socket is open, we can
  170. // bypass the cooldown period, and allow the next run of the program to
  171. // use the same address immediately.
  172. //
  173. // TODO(tetra, 2022-02-15): Confirm that this doesn't mean other processes can hijack the address!
  174. do_reuse_addr: b32 = true
  175. if errno = linux.setsockopt(os_sock, linux.SOL_SOCKET, linux.Socket_Option.REUSEADDR, &do_reuse_addr); errno != .NONE {
  176. err = Listen_Error(errno)
  177. return
  178. }
  179. // Bind the socket to endpoint address
  180. if errno = linux.bind(os_sock, &ep_address); errno != .NONE {
  181. err = Bind_Error(errno)
  182. return
  183. }
  184. // Listen on bound socket
  185. if errno = linux.listen(os_sock, cast(i32) backlog); errno != .NONE {
  186. err = Listen_Error(errno)
  187. return
  188. }
  189. return
  190. }
  191. @(private)
  192. _bound_endpoint :: proc(sock: Any_Socket) -> (ep: Endpoint, err: Network_Error) {
  193. addr: linux.Sock_Addr_Any
  194. errno := linux.getsockname(_unwrap_os_socket(sock), &addr)
  195. if errno != .NONE {
  196. err = Listen_Error(errno)
  197. return
  198. }
  199. ep = _wrap_os_addr(addr)
  200. return
  201. }
  202. @(private)
  203. _accept_tcp :: proc(sock: TCP_Socket, options := default_tcp_options) -> (tcp_client: TCP_Socket, endpoint: Endpoint, err: Network_Error) {
  204. addr: linux.Sock_Addr_Any
  205. client_sock, errno := linux.accept(linux.Fd(sock), &addr)
  206. if errno != .NONE {
  207. return {}, {}, Accept_Error(errno)
  208. }
  209. // NOTE(tetra): Not vital to succeed; error ignored
  210. val: b32 = cast(b32) options.no_delay
  211. _ = linux.setsockopt(client_sock, linux.SOL_TCP, linux.Socket_TCP_Option.NODELAY, &val)
  212. return TCP_Socket(client_sock), _wrap_os_addr(addr), nil
  213. }
  214. @(private)
  215. _close :: proc(sock: Any_Socket) {
  216. linux.close(_unwrap_os_socket(sock))
  217. }
  218. @(private)
  219. _recv_tcp :: proc(tcp_sock: TCP_Socket, buf: []byte) -> (int, Network_Error) {
  220. if len(buf) <= 0 {
  221. return 0, nil
  222. }
  223. bytes_read, errno := linux.recv(linux.Fd(tcp_sock), buf, {})
  224. if errno != .NONE {
  225. return 0, TCP_Recv_Error(errno)
  226. }
  227. return int(bytes_read), nil
  228. }
  229. @(private)
  230. _recv_udp :: proc(udp_sock: UDP_Socket, buf: []byte) -> (int, Endpoint, Network_Error) {
  231. if len(buf) <= 0 {
  232. // NOTE(flysand): It was returning no error, I didn't change anything
  233. return 0, {}, {}
  234. }
  235. // NOTE(tetra): On Linux, if the buffer is too small to fit the entire datagram payload, the rest is silently discarded,
  236. // and no error is returned.
  237. // However, if you pass MSG_TRUNC here, 'res' will be the size of the incoming message, rather than how much was read.
  238. // We can use this fact to detect this condition and return .Buffer_Too_Small.
  239. from_addr: linux.Sock_Addr_Any
  240. bytes_read, errno := linux.recvfrom(linux.Fd(udp_sock), buf, {.TRUNC}, &from_addr)
  241. if errno != .NONE {
  242. return 0, {}, UDP_Recv_Error(errno)
  243. }
  244. if bytes_read > len(buf) {
  245. // NOTE(tetra): The buffer has been filled, with a partial message.
  246. return len(buf), {}, .Buffer_Too_Small
  247. }
  248. return bytes_read, _wrap_os_addr(from_addr), nil
  249. }
  250. @(private)
  251. _send_tcp :: proc(tcp_sock: TCP_Socket, buf: []byte) -> (int, Network_Error) {
  252. total_written := 0
  253. for total_written < len(buf) {
  254. limit := min(int(max(i32)), len(buf) - total_written)
  255. remaining := buf[total_written:][:limit]
  256. res, errno := linux.send(linux.Fd(tcp_sock), remaining, {.NOSIGNAL})
  257. if errno == .EPIPE {
  258. // If the peer is disconnected when we are trying to send we will get an `EPIPE` error,
  259. // so we turn that into a clearer error
  260. return total_written, TCP_Send_Error.Connection_Closed
  261. } else if errno != .NONE {
  262. return total_written, TCP_Send_Error(errno)
  263. }
  264. total_written += int(res)
  265. }
  266. return total_written, nil
  267. }
  268. @(private)
  269. _send_udp :: proc(udp_sock: UDP_Socket, buf: []byte, to: Endpoint) -> (int, Network_Error) {
  270. to_addr := _unwrap_os_addr(to)
  271. bytes_written, errno := linux.sendto(linux.Fd(udp_sock), buf, {}, &to_addr)
  272. if errno != .NONE {
  273. return bytes_written, UDP_Send_Error(errno)
  274. }
  275. return int(bytes_written), nil
  276. }
  277. @(private)
  278. _shutdown :: proc(sock: Any_Socket, manner: Shutdown_Manner) -> (err: Network_Error) {
  279. os_sock := _unwrap_os_socket(sock)
  280. errno := linux.shutdown(os_sock, cast(linux.Shutdown_How) manner)
  281. if errno != .NONE {
  282. return Shutdown_Error(errno)
  283. }
  284. return nil
  285. }
  286. // TODO(flysand): Figure out what we want to do with this on core:sys/ level.
  287. @(private)
  288. _set_option :: proc(sock: Any_Socket, option: Socket_Option, value: any, loc := #caller_location) -> Network_Error {
  289. level: int
  290. if option == .TCP_Nodelay {
  291. level = int(linux.SOL_TCP)
  292. } else {
  293. level = int(linux.SOL_SOCKET)
  294. }
  295. os_sock := _unwrap_os_socket(sock)
  296. // NOTE(tetra, 2022-02-15): On Linux, you cannot merely give a single byte for a bool;
  297. // it _has_ to be a b32.
  298. // I haven't tested if you can give more than that. <-- (flysand) probably not, posix explicitly specifies an int
  299. bool_value: b32
  300. int_value: i32
  301. timeval_value: linux.Time_Val
  302. errno: linux.Errno
  303. switch option {
  304. case
  305. .Reuse_Address,
  306. .Keep_Alive,
  307. .Out_Of_Bounds_Data_Inline,
  308. .TCP_Nodelay:
  309. // TODO: verify whether these are options or not on Linux
  310. // .Broadcast, <-- yes
  311. // .Conditional_Accept,
  312. // .Dont_Linger:
  313. switch x in value {
  314. case bool, b8:
  315. x2 := x
  316. bool_value = b32((^bool)(&x2)^)
  317. case b16:
  318. bool_value = b32(x)
  319. case b32:
  320. bool_value = b32(x)
  321. case b64:
  322. bool_value = b32(x)
  323. case:
  324. panic("set_option() value must be a boolean here", loc)
  325. }
  326. errno = linux.setsockopt(os_sock, level, int(option), &bool_value)
  327. case
  328. .Linger,
  329. .Send_Timeout,
  330. .Receive_Timeout:
  331. t, ok := value.(time.Duration)
  332. if !ok {
  333. panic("set_option() value must be a time.Duration here", loc)
  334. }
  335. micros := cast(i64) (time.duration_microseconds(t))
  336. timeval_value.microseconds = cast(int) (micros % 1e6)
  337. timeval_value.seconds = cast(int) ((micros - i64(timeval_value.microseconds)) / 1e6)
  338. errno = linux.setsockopt(os_sock, level, int(option), &timeval_value)
  339. case
  340. .Receive_Buffer_Size,
  341. .Send_Buffer_Size:
  342. // TODO: check for out of range values and return .Value_Out_Of_Range?
  343. switch i in value {
  344. case i8, u8: i2 := i; int_value = i32((^u8)(&i2)^)
  345. case i16, u16: i2 := i; int_value = i32((^u16)(&i2)^)
  346. case i32, u32: i2 := i; int_value = i32((^u32)(&i2)^)
  347. case i64, u64: i2 := i; int_value = i32((^u64)(&i2)^)
  348. case i128, u128: i2 := i; int_value = i32((^u128)(&i2)^)
  349. case int, uint: i2 := i; int_value = i32((^uint)(&i2)^)
  350. case:
  351. panic("set_option() value must be an integer here", loc)
  352. }
  353. errno = linux.setsockopt(os_sock, level, int(option), &int_value)
  354. }
  355. if errno != .NONE {
  356. return Socket_Option_Error(errno)
  357. }
  358. return nil
  359. }
  360. @(private)
  361. _set_blocking :: proc(sock: Any_Socket, should_block: bool) -> (err: Network_Error) {
  362. errno: linux.Errno
  363. flags: linux.Open_Flags
  364. os_sock := _unwrap_os_socket(sock)
  365. flags, errno = linux.fcntl(os_sock, linux.F_GETFL)
  366. if errno != .NONE {
  367. return Set_Blocking_Error(errno)
  368. }
  369. if should_block {
  370. flags -= {.NONBLOCK}
  371. } else {
  372. flags += {.NONBLOCK}
  373. }
  374. errno = linux.fcntl(os_sock, linux.F_SETFL, flags)
  375. if errno != .NONE {
  376. return Set_Blocking_Error(errno)
  377. }
  378. return nil
  379. }