strconv.odin 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506
  1. package strconv
  2. using import "core:decimal"
  3. Int_Flag :: enum {
  4. Prefix,
  5. Plus,
  6. Space,
  7. }
  8. Int_Flags :: bit_set[Int_Flag];
  9. parse_bool :: proc(s: string) -> (result: bool = false, ok: bool) {
  10. switch s {
  11. case "1", "t", "T", "true", "TRUE", "True":
  12. return true, true;
  13. case "0", "f", "F", "false", "FALSE", "False":
  14. return false, true;
  15. }
  16. return;
  17. }
  18. _digit_value :: proc(r: rune) -> int {
  19. ri := int(r);
  20. v: int = 16;
  21. switch r {
  22. case '0'..'9': v = ri-'0';
  23. case 'a'..'z': v = ri-'a'+10;
  24. case 'A'..'Z': v = ri-'A'+10;
  25. }
  26. return v;
  27. }
  28. parse_i64 :: proc(s: string) -> i64 {
  29. neg := false;
  30. if len(s) > 1 {
  31. switch s[0] {
  32. case '-':
  33. neg = true;
  34. s = s[1:];
  35. case '+':
  36. s = s[1:];
  37. }
  38. }
  39. base: i64 = 10;
  40. if len(s) > 2 && s[0] == '0' {
  41. switch s[1] {
  42. case 'b': base = 2; s = s[2:];
  43. case 'o': base = 8; s = s[2:];
  44. case 'd': base = 10; s = s[2:];
  45. case 'z': base = 12; s = s[2:];
  46. case 'x': base = 16; s = s[2:];
  47. }
  48. }
  49. value: i64;
  50. for r in s {
  51. if r == '_' {
  52. continue;
  53. }
  54. v := i64(_digit_value(r));
  55. if v >= base {
  56. break;
  57. }
  58. value *= base;
  59. value += v;
  60. }
  61. if neg do return -value;
  62. return value;
  63. }
  64. parse_u64 :: proc(s: string) -> u64 {
  65. neg := false;
  66. if len(s) > 1 && s[0] == '+' {
  67. s = s[1:];
  68. }
  69. base := u64(10);
  70. if len(s) > 2 && s[0] == '0' {
  71. switch s[1] {
  72. case 'b': base = 2; s = s[2:];
  73. case 'o': base = 8; s = s[2:];
  74. case 'd': base = 10; s = s[2:];
  75. case 'z': base = 12; s = s[2:];
  76. case 'x': base = 16; s = s[2:];
  77. }
  78. }
  79. value: u64;
  80. for r in s {
  81. if r == '_' do continue;
  82. v := u64(_digit_value(r));
  83. if v >= base do break;
  84. value *= base;
  85. value += u64(v);
  86. }
  87. if neg do return -value;
  88. return value;
  89. }
  90. parse_int :: proc(s: string) -> int {
  91. return int(parse_i64(s));
  92. }
  93. parse_uint :: proc(s: string, base: int) -> uint {
  94. return uint(parse_u64(s));
  95. }
  96. parse_f32 :: proc(s: string) -> f32 {
  97. return f32(parse_f64(s));
  98. }
  99. parse_f64 :: proc(s: string) -> f64 {
  100. if s == "" {
  101. return 0;
  102. }
  103. i := 0;
  104. sign: f64 = 1;
  105. switch s[i] {
  106. case '-': i += 1; sign = -1;
  107. case '+': i += 1;
  108. }
  109. value: f64 = 0;
  110. for ; i < len(s); i += 1 {
  111. r := rune(s[i]);
  112. if r == '_' do continue;
  113. v := _digit_value(r);
  114. if v >= 10 do break;
  115. value *= 10;
  116. value += f64(v);
  117. }
  118. if i < len(s) && s[i] == '.' {
  119. pow10: f64 = 10;
  120. i += 1;
  121. for ; i < len(s); i += 1 {
  122. r := rune(s[i]);
  123. if r == '_' do continue;
  124. v := _digit_value(r);
  125. if v >= 10 do break;
  126. value += f64(v)/pow10;
  127. pow10 *= 10;
  128. }
  129. }
  130. frac := false;
  131. scale: f64 = 1;
  132. if i < len(s) && (s[i] == 'e' || s[i] == 'E') {
  133. i += 1;
  134. if i < len(s) {
  135. switch s[i] {
  136. case '-': i += 1; frac = true;
  137. case '+': i += 1;
  138. }
  139. exp: u32 = 0;
  140. for ; i < len(s); i += 1 {
  141. r := rune(s[i]);
  142. if r == '_' do continue;
  143. d := u32(_digit_value(r));
  144. if d >= 10 do break;
  145. exp = exp * 10 + d;
  146. }
  147. if exp > 308 { exp = 308; }
  148. for exp >= 50 { scale *= 1e50; exp -= 50; }
  149. for exp >= 8 { scale *= 1e8; exp -= 8; }
  150. for exp > 0 { scale *= 10; exp -= 1; }
  151. }
  152. }
  153. if frac do return sign * (value/scale);
  154. return sign * (value*scale);
  155. }
  156. append_bool :: proc(buf: []byte, b: bool) -> string {
  157. n := 0;
  158. if b do n = copy(buf, cast([]byte)"true");
  159. else do n = copy(buf, cast([]byte)"false");
  160. return string(buf[:n]);
  161. }
  162. append_uint :: proc(buf: []byte, u: u64, base: int) -> string {
  163. return append_bits(buf, u64(u), base, false, 8*size_of(uint), digits, nil);
  164. }
  165. append_int :: proc(buf: []byte, i: i64, base: int) -> string {
  166. return append_bits(buf, u64(i), base, true, 8*size_of(int), digits, nil);
  167. }
  168. itoa :: proc(buf: []byte, i: int) -> string do return append_int(buf, i64(i), 10);
  169. append_float :: proc(buf: []byte, f: f64, fmt: byte, prec, bit_size: int) -> string {
  170. return string(generic_ftoa(buf, f, fmt, prec, bit_size));
  171. }
  172. DecimalSlice :: struct {
  173. digits: []byte,
  174. count: int,
  175. decimal_point: int,
  176. neg: bool,
  177. }
  178. FloatInfo :: struct {
  179. mantbits: uint,
  180. expbits: uint,
  181. bias: int,
  182. }
  183. _f16_info := FloatInfo{10, 5, -15};
  184. _f32_info := FloatInfo{23, 8, -127};
  185. _f64_info := FloatInfo{52, 11, -1023};
  186. generic_ftoa :: proc(buf: []byte, val: f64, fmt: byte, prec, bit_size: int) -> []byte {
  187. bits: u64;
  188. flt: ^FloatInfo;
  189. switch bit_size {
  190. case 32:
  191. bits = u64(transmute(u32)f32(val));
  192. flt = &_f32_info;
  193. case 64:
  194. bits = transmute(u64)val;
  195. flt = &_f64_info;
  196. case:
  197. panic("strconv: invalid bit_size");
  198. }
  199. neg := bits>>(flt.expbits+flt.mantbits) != 0;
  200. exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1);
  201. mant := bits & (u64(1) << flt.mantbits - 1);
  202. switch exp {
  203. case 1<<flt.expbits - 1:
  204. s: string;
  205. if mant != 0 {
  206. s = "NaN";
  207. } else if neg {
  208. s = "-Inf";
  209. } else {
  210. s = "+Inf";
  211. }
  212. n := copy(buf, cast([]byte)s);
  213. return buf[:n];
  214. case 0: // denormalized
  215. exp += 1;
  216. case:
  217. mant |= u64(1) << flt.mantbits;
  218. }
  219. exp += flt.bias;
  220. d_: Decimal;
  221. d := &d_;
  222. assign(d, mant);
  223. shift(d, exp - int(flt.mantbits));
  224. digs: DecimalSlice;
  225. shortest := prec < 0;
  226. if shortest {
  227. round_shortest(d, mant, exp, flt);
  228. digs = DecimalSlice{digits = d.digits[:], count = d.count, decimal_point = d.decimal_point};
  229. switch fmt {
  230. case 'e', 'E': prec = digs.count-1;
  231. case 'f', 'F': prec = max(digs.count-digs.decimal_point, 0);
  232. case 'g', 'G': prec = digs.count;
  233. }
  234. } else {
  235. switch fmt {
  236. case 'e', 'E': round(d, prec+1);
  237. case 'f', 'F': round(d, d.decimal_point+prec);
  238. case 'g', 'G':
  239. if prec == 0 {
  240. prec = 1;
  241. }
  242. round(d, prec);
  243. }
  244. digs = DecimalSlice{digits = d.digits[:], count = d.count, decimal_point = d.decimal_point};
  245. }
  246. return format_digits(buf, shortest, neg, digs, prec, fmt);
  247. }
  248. format_digits :: proc(buf: []byte, shortest: bool, neg: bool, digs: DecimalSlice, prec: int, fmt: byte) -> []byte {
  249. Buffer :: struct {
  250. b: []byte,
  251. n: int,
  252. }
  253. to_bytes :: proc(b: Buffer) -> []byte do return b.b[:b.n];
  254. add_bytes :: proc(buf: ^Buffer, bytes: ..byte) {
  255. buf.n += copy(buf.b[buf.n:], bytes);
  256. }
  257. b := Buffer{b = buf};
  258. switch fmt {
  259. case 'f', 'F':
  260. add_bytes(&b, neg ? '-' : '+');
  261. // integer, padded with zeros when needed
  262. if digs.decimal_point > 0 {
  263. m := min(digs.count, digs.decimal_point);
  264. add_bytes(&b, ..digs.digits[0:m]);
  265. for ; m < digs.decimal_point; m += 1 {
  266. add_bytes(&b, '0');
  267. }
  268. } else {
  269. add_bytes(&b, '0');
  270. }
  271. // fractional part
  272. if prec > 0 {
  273. add_bytes(&b, '.');
  274. for i in 0..prec-1 {
  275. c: byte = '0';
  276. if j := digs.decimal_point + i; 0 <= j && j < digs.count {
  277. c = digs.digits[j];
  278. }
  279. add_bytes(&b, c);
  280. }
  281. }
  282. return to_bytes(b);
  283. case 'e', 'E':
  284. panic("strconv: e/E float printing is not yet supported");
  285. return to_bytes(b); // TODO
  286. case 'g', 'G':
  287. panic("strconv: g/G float printing is not yet supported");
  288. return to_bytes(b); // TODO
  289. case:
  290. add_bytes(&b, '%', fmt);
  291. return to_bytes(b);
  292. }
  293. }
  294. round_shortest :: proc(d: ^Decimal, mant: u64, exp: int, flt: ^FloatInfo) {
  295. if mant == 0 { // If mantissa is zero, the number is zero
  296. d.count = 0;
  297. return;
  298. }
  299. /*
  300. 10^(dp-nd) > 2^(exp-mantbits)
  301. log2(10) * (dp-nd) > exp-mantbits
  302. log(2) >~ 0.332
  303. 332*(dp-nd) >= 100*(exp-mantbits)
  304. */
  305. minexp := flt.bias+1;
  306. if exp > minexp && 332*(d.decimal_point-d.count) >= 100*(exp - int(flt.mantbits)) {
  307. // Number is already its shortest
  308. return;
  309. }
  310. upper_: Decimal; upper := &upper_;
  311. assign(upper, 2*mant - 1);
  312. shift(upper, exp - int(flt.mantbits) - 1);
  313. mantlo: u64;
  314. explo: int;
  315. if mant > 1<<flt.mantbits || exp == minexp {
  316. mantlo = mant-1;
  317. explo = exp;
  318. } else {
  319. mantlo = 2*mant - 1;
  320. explo = exp-1;
  321. }
  322. lower_: Decimal; lower := &lower_;
  323. assign(lower, 2*mantlo + 1);
  324. shift(lower, explo - int(flt.mantbits) - 1);
  325. inclusive := mant%2 == 0;
  326. for i in 0..d.count-1 {
  327. l: byte = '0'; // lower digit
  328. if i < lower.count {
  329. l = lower.digits[i];
  330. }
  331. m := d.digits[i]; // middle digit
  332. u: byte = '0'; // upper digit
  333. if i < upper.count {
  334. u = upper.digits[i];
  335. }
  336. ok_round_down := l != m || inclusive && i+1 == lower.count;
  337. ok_round_up := m != u && (inclusive || m+1 < u || i+1 < upper.count);
  338. if ok_round_down && ok_round_up {
  339. round(d, i+1);
  340. return;
  341. }
  342. if ok_round_down {
  343. round_down(d, i+1);
  344. return;
  345. }
  346. if ok_round_up {
  347. round_up(d, i+1);
  348. return;
  349. }
  350. }
  351. }
  352. MAX_BASE :: 32;
  353. digits := "0123456789abcdefghijklmnopqrstuvwxyz";
  354. is_integer_negative :: proc(u: u64, is_signed: bool, bit_size: int) -> (unsigned: u64, neg: bool) {
  355. if is_signed {
  356. switch bit_size {
  357. case 8:
  358. i := i8(u);
  359. neg = i < 0;
  360. u = u64(abs(i));
  361. case 16:
  362. i := i16(u);
  363. neg = i < 0;
  364. u = u64(abs(i));
  365. case 32:
  366. i := i32(u);
  367. neg = i < 0;
  368. u = u64(abs(i));
  369. case 64:
  370. i := i64(u);
  371. neg = i < 0;
  372. u = u64(abs(i));
  373. case:
  374. panic("is_integer_negative: Unknown integer size");
  375. }
  376. }
  377. return u, neg;
  378. }
  379. append_bits :: proc(buf: []byte, u: u64, base: int, is_signed: bool, bit_size: int, digits: string, flags: Int_Flags) -> string {
  380. if base < 2 || base > MAX_BASE {
  381. panic("strconv: illegal base passed to append_bits");
  382. }
  383. neg: bool;
  384. a: [129]byte;
  385. i := len(a);
  386. u, neg = is_integer_negative(u, is_signed, bit_size);
  387. b := u64(base);
  388. for u >= b {
  389. i-=1; a[i] = digits[u % b];
  390. u /= b;
  391. }
  392. i-=1; a[i] = digits[u % b];
  393. if Int_Flag.Prefix in flags {
  394. ok := true;
  395. switch base {
  396. case 2: i-=1; a[i] = 'b';
  397. case 8: i-=1; a[i] = 'o';
  398. case 10: i-=1; a[i] = 'd';
  399. case 12: i-=1; a[i] = 'z';
  400. case 16: i-=1; a[i] = 'x';
  401. case: ok = false;
  402. }
  403. if ok {
  404. i-=1; a[i] = '0';
  405. }
  406. }
  407. switch {
  408. case neg:
  409. i-=1; a[i] = '-';
  410. case Int_Flag.Plus in flags:
  411. i-=1; a[i] = '+';
  412. case Int_Flag.Space in flags:
  413. i-=1; a[i] = ' ';
  414. }
  415. out := a[i:];
  416. copy(buf, out);
  417. return string(buf[0:len(out)]);
  418. }