123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200 |
- package runtime
- import "base:intrinsics"
- @builtin
- Maybe :: union($T: typeid) {T}
- /*
- Represents an Objective-C block with a given procedure signature T
- */
- @builtin
- Objc_Block :: struct($T: typeid) where intrinsics.type_is_proc(T) { using _: intrinsics.objc_object }
- /*
- Recovers the containing/parent struct from a pointer to one of its fields.
- Works by "walking back" to the struct's starting address using the offset between the field and the struct.
- Inputs:
- - ptr: Pointer to the field of a container struct
- - T: The type of the container struct
- - field_name: The name of the field in the `T` struct
- Returns:
- - A pointer to the container struct based on a pointer to a field in it
- Example:
- package container_of
- import "base:runtime"
- Node :: struct {
- value: int,
- prev: ^Node,
- next: ^Node,
- }
- main :: proc() {
- node: Node
- field_ptr := &node.next
- container_struct_ptr: ^Node = runtime.container_of(field_ptr, Node, "next")
- assert(container_struct_ptr == &node)
- assert(uintptr(field_ptr) - uintptr(container_struct_ptr) == size_of(node.value) + size_of(node.prev))
- }
- Output:
- ^Node
- */
- @(builtin, require_results)
- container_of :: #force_inline proc "contextless" (ptr: $P/^$Field_Type, $T: typeid, $field_name: string) -> ^T
- where intrinsics.type_has_field(T, field_name),
- intrinsics.type_field_type(T, field_name) == Field_Type {
- offset :: offset_of_by_string(T, field_name)
- return (^T)(uintptr(ptr) - offset) if ptr != nil else nil
- }
- when !NO_DEFAULT_TEMP_ALLOCATOR {
- when ODIN_ARCH == .i386 && ODIN_OS == .Windows {
- // Thread-local storage is problematic on Windows i386
- global_default_temp_allocator_data: Default_Temp_Allocator
- } else {
- @thread_local global_default_temp_allocator_data: Default_Temp_Allocator
- }
- }
- // Initializes the global temporary allocator used as the default `context.temp_allocator`.
- // This is ignored when `NO_DEFAULT_TEMP_ALLOCATOR` is true.
- @(builtin, disabled=NO_DEFAULT_TEMP_ALLOCATOR)
- init_global_temporary_allocator :: proc(size: int, backup_allocator := context.allocator) {
- when !NO_DEFAULT_TEMP_ALLOCATOR {
- default_temp_allocator_init(&global_default_temp_allocator_data, size, backup_allocator)
- }
- }
- @(require_results)
- copy_slice_raw :: proc "contextless" (dst, src: rawptr, dst_len, src_len, elem_size: int) -> int {
- n := min(dst_len, src_len)
- if n > 0 {
- intrinsics.mem_copy(dst, src, n*elem_size)
- }
- return n
- }
- // `copy_slice` is a built-in procedure that copies elements from a source slice `src` to a destination slice `dst`.
- // The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum
- // of len(src) and len(dst).
- //
- // Prefer the procedure group `copy`.
- @builtin
- copy_slice :: #force_inline proc "contextless" (dst, src: $T/[]$E) -> int {
- return copy_slice_raw(raw_data(dst), raw_data(src), len(dst), len(src), size_of(E))
- }
- // `copy_from_string` is a built-in procedure that copies elements from a source string `src` to a destination slice `dst`.
- // The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum
- // of len(src) and len(dst).
- //
- // Prefer the procedure group `copy`.
- @builtin
- copy_from_string :: #force_inline proc "contextless" (dst: $T/[]$E/u8, src: $S/string) -> int {
- return copy_slice_raw(raw_data(dst), raw_data(src), len(dst), len(src), 1)
- }
- // `copy_from_string16` is a built-in procedure that copies elements from a source string `src` to a destination slice `dst`.
- // The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum
- // of len(src) and len(dst).
- //
- // Prefer the procedure group `copy`.
- @builtin
- copy_from_string16 :: #force_inline proc "contextless" (dst: $T/[]$E/u16, src: $S/string16) -> int {
- return copy_slice_raw(raw_data(dst), raw_data(src), len(dst), len(src), 2)
- }
- // `copy` is a built-in procedure that copies elements from a source slice/string `src` to a destination slice `dst`.
- // The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum
- // of len(src) and len(dst).
- @builtin
- copy :: proc{copy_slice, copy_from_string, copy_from_string16}
- // `unordered_remove` removed the element at the specified `index`. It does so by replacing the current end value
- // with the old value, and reducing the length of the dynamic array by 1.
- //
- // Note: This is an O(1) operation.
- // Note: If you want the elements to remain in their order, use `ordered_remove`.
- // Note: If the index is out of bounds, this procedure will panic.
- @builtin
- unordered_remove :: proc(array: ^$D/[dynamic]$T, #any_int index: int, loc := #caller_location) #no_bounds_check {
- bounds_check_error_loc(loc, index, len(array))
- n := len(array)-1
- if index != n {
- array[index] = array[n]
- }
- (^Raw_Dynamic_Array)(array).len -= 1
- }
- // `ordered_remove` removed the element at the specified `index` whilst keeping the order of the other elements.
- //
- // Note: This is an O(N) operation.
- // Note: If the elements do not have to remain in their order, prefer `unordered_remove`.
- // Note: If the index is out of bounds, this procedure will panic.
- @builtin
- ordered_remove :: proc(array: ^$D/[dynamic]$T, #any_int index: int, loc := #caller_location) #no_bounds_check {
- bounds_check_error_loc(loc, index, len(array))
- if index+1 < len(array) {
- copy(array[index:], array[index+1:])
- }
- (^Raw_Dynamic_Array)(array).len -= 1
- }
- // `remove_range` removes a range of elements specified by the range `lo` and `hi`, whilst keeping the order of the other elements.
- //
- // Note: This is an O(N) operation.
- // Note: If the range is out of bounds, this procedure will panic.
- @builtin
- remove_range :: proc(array: ^$D/[dynamic]$T, #any_int lo, hi: int, loc := #caller_location) #no_bounds_check {
- slice_expr_error_lo_hi_loc(loc, lo, hi, len(array))
- n := max(hi-lo, 0)
- if n > 0 {
- if hi != len(array) {
- copy(array[lo:], array[hi:])
- }
- (^Raw_Dynamic_Array)(array).len -= n
- }
- }
- // `pop` will remove and return the end value of dynamic array `array` and reduces the length of `array` by 1.
- //
- // Note: If the dynamic array has no elements (`len(array) == 0`), this procedure will panic.
- @builtin
- pop :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check {
- assert(len(array) > 0, loc=loc)
- _pop_type_erased(&res, (^Raw_Dynamic_Array)(array), size_of(E))
- return res
- }
- _pop_type_erased :: proc(res: rawptr, array: ^Raw_Dynamic_Array, elem_size: int, loc := #caller_location) {
- end := rawptr(uintptr(array.data) + uintptr(elem_size*(array.len-1)))
- intrinsics.mem_copy_non_overlapping(res, end, elem_size)
- array.len -= 1
- }
- // `pop_safe` trys to remove and return the end value of dynamic array `array` and reduces the length of `array` by 1.
- // If the operation is not possible, it will return false.
- @builtin
- pop_safe :: proc "contextless" (array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check {
- if len(array) == 0 {
- return
- }
- res, ok = array[len(array)-1], true
- (^Raw_Dynamic_Array)(array).len -= 1
- return
- }
- // `pop_front` will remove and return the first value of dynamic array `array` and reduces the length of `array` by 1.
- //
- // Note: If the dynamic array as no elements (`len(array) == 0`), this procedure will panic.
- @builtin
- pop_front :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check {
- assert(len(array) > 0, loc=loc)
- res = array[0]
- if len(array) > 1 {
- copy(array[0:], array[1:])
- }
- (^Raw_Dynamic_Array)(array).len -= 1
- return res
- }
- // `pop_front_safe` trys to return and remove the first value of dynamic array `array` and reduces the length of `array` by 1.
- // If the operation is not possible, it will return false.
- @builtin
- pop_front_safe :: proc "contextless" (array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check {
- if len(array) == 0 {
- return
- }
- res, ok = array[0], true
- if len(array) > 1 {
- copy(array[0:], array[1:])
- }
- (^Raw_Dynamic_Array)(array).len -= 1
- return
- }
- // `clear` will set the length of a passed dynamic array or map to `0`
- @builtin
- clear :: proc{
- clear_dynamic_array,
- clear_map,
- clear_soa_dynamic_array,
- }
- // `reserve` will try to reserve memory of a passed dynamic array or map to the requested element count (setting the `cap`).
- @builtin
- reserve :: proc{
- reserve_dynamic_array,
- reserve_map,
- reserve_soa,
- }
- @builtin
- non_zero_reserve :: proc{
- non_zero_reserve_dynamic_array,
- non_zero_reserve_soa,
- }
- // `resize` will try to resize memory of a passed dynamic array to the requested element count (setting the `len`, and possibly `cap`).
- @builtin
- resize :: proc{
- resize_dynamic_array,
- resize_soa,
- }
- @builtin
- non_zero_resize :: proc{
- non_zero_resize_dynamic_array,
- non_zero_resize_soa,
- }
- // Shrinks the capacity of a dynamic array or map down to the current length, or the given capacity.
- @builtin
- shrink :: proc{shrink_dynamic_array, shrink_map}
- // `free` will try to free the passed pointer, with the given `allocator` if the allocator supports this operation.
- @builtin
- free :: proc{mem_free}
- // `free_all` will try to free/reset all of the memory of the given `allocator` if the allocator supports this operation.
- @builtin
- free_all :: proc{mem_free_all}
- // `delete_string` will try to free the underlying data of the passed string, with the given `allocator` if the allocator supports this operation.
- //
- // Note: Prefer the procedure group `delete`.
- @builtin
- delete_string :: proc(str: string, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
- return mem_free_with_size(raw_data(str), len(str), allocator, loc)
- }
- // `delete_cstring` will try to free the underlying data of the passed string, with the given `allocator` if the allocator supports this operation.
- //
- // Note: Prefer the procedure group `delete`.
- @builtin
- delete_cstring :: proc(str: cstring, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
- return mem_free((^byte)(str), allocator, loc)
- }
- // `delete_dynamic_array` will try to free the underlying data of the passed dynamic array, with the given `allocator` if the allocator supports this operation.
- //
- // Note: Prefer the procedure group `delete`.
- @builtin
- delete_dynamic_array :: proc(array: $T/[dynamic]$E, loc := #caller_location) -> Allocator_Error {
- return mem_free_with_size(raw_data(array), cap(array)*size_of(E), array.allocator, loc)
- }
- // `delete_slice` will try to free the underlying data of the passed sliced, with the given `allocator` if the allocator supports this operation.
- //
- // Note: Prefer the procedure group `delete`.
- @builtin
- delete_slice :: proc(array: $T/[]$E, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
- return mem_free_with_size(raw_data(array), len(array)*size_of(E), allocator, loc)
- }
- // `delete_map` will try to free the underlying data of the passed map, with the given `allocator` if the allocator supports this operation.
- //
- // Note: Prefer the procedure group `delete`.
- @builtin
- delete_map :: proc(m: $T/map[$K]$V, loc := #caller_location) -> Allocator_Error {
- return map_free_dynamic(transmute(Raw_Map)m, map_info(T), loc)
- }
- @builtin
- delete_string16 :: proc(str: string16, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
- return mem_free_with_size(raw_data(str), len(str)*size_of(u16), allocator, loc)
- }
- @builtin
- delete_cstring16 :: proc(str: cstring16, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
- return mem_free((^u16)(str), allocator, loc)
- }
- // `delete` will try to free the underlying data of the passed built-in data structure (string, cstring, dynamic array, slice, or map), with the given `allocator` if the allocator supports this operation.
- //
- // Note: Prefer `delete` over the specific `delete_*` procedures where possible.
- @builtin
- delete :: proc{
- delete_string,
- delete_cstring,
- delete_dynamic_array,
- delete_slice,
- delete_map,
- delete_soa_slice,
- delete_soa_dynamic_array,
- delete_string16,
- delete_cstring16,
- }
- // The new built-in procedure allocates memory. The first argument is a type, not a value, and the value
- // return is a pointer to a newly allocated value of that type using the specified allocator, default is context.allocator
- @(builtin, require_results)
- new :: proc($T: typeid, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) #optional_allocator_error {
- t = (^T)(raw_data(mem_alloc_bytes(size_of(T), align_of(T), allocator, loc) or_return))
- return
- }
- @(require_results)
- new_aligned :: proc($T: typeid, alignment: int, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) {
- t = (^T)(raw_data(mem_alloc_bytes(size_of(T), alignment, allocator, loc) or_return))
- return
- }
- @(builtin, require_results)
- new_clone :: proc(data: $T, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) #optional_allocator_error {
- t = (^T)(raw_data(mem_alloc_bytes(size_of(T), align_of(T), allocator, loc) or_return))
- if t != nil {
- t^ = data
- }
- return
- }
- DEFAULT_DYNAMIC_ARRAY_CAPACITY :: 8
- @(require_results)
- make_aligned :: proc($T: typeid/[]$E, #any_int len: int, alignment: int, allocator := context.allocator, loc := #caller_location) -> (res: T, err: Allocator_Error) #optional_allocator_error {
- err = _make_aligned_type_erased(&res, size_of(E), len, alignment, allocator, loc)
- return
- }
- @(require_results)
- _make_aligned_type_erased :: proc(slice: rawptr, elem_size: int, len: int, alignment: int, allocator: Allocator, loc := #caller_location) -> Allocator_Error {
- make_slice_error_loc(loc, len)
- data, err := mem_alloc_bytes(elem_size*len, alignment, allocator, loc)
- if data == nil && elem_size != 0 {
- return err
- }
- (^Raw_Slice)(slice).data = raw_data(data)
- (^Raw_Slice)(slice).len = len
- return err
- }
- // `make_slice` allocates and initializes a slice. Like `new`, the first argument is a type, not a value.
- // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
- //
- // Note: Prefer using the procedure group `make`.
- @(builtin, require_results)
- make_slice :: proc($T: typeid/[]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (res: T, err: Allocator_Error) #optional_allocator_error {
- err = _make_aligned_type_erased(&res, size_of(E), len, align_of(E), allocator, loc)
- return
- }
- // `make_dynamic_array` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
- // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
- //
- // Note: Prefer using the procedure group `make`.
- @(builtin, require_results)
- make_dynamic_array :: proc($T: typeid/[dynamic]$E, allocator := context.allocator, loc := #caller_location) -> (array: T, err: Allocator_Error) #optional_allocator_error {
- err = _make_dynamic_array_len_cap((^Raw_Dynamic_Array)(&array), size_of(E), align_of(E), 0, 0, allocator, loc)
- return
- }
- // `make_dynamic_array_len` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
- // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
- //
- // Note: Prefer using the procedure group `make`.
- @(builtin, require_results)
- make_dynamic_array_len :: proc($T: typeid/[dynamic]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (array: T, err: Allocator_Error) #optional_allocator_error {
- err = _make_dynamic_array_len_cap((^Raw_Dynamic_Array)(&array), size_of(E), align_of(E), len, len, allocator, loc)
- return
- }
- // `make_dynamic_array_len_cap` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
- // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
- //
- // Note: Prefer using the procedure group `make`.
- @(builtin, require_results)
- make_dynamic_array_len_cap :: proc($T: typeid/[dynamic]$E, #any_int len: int, #any_int cap: int, allocator := context.allocator, loc := #caller_location) -> (array: T, err: Allocator_Error) #optional_allocator_error {
- err = _make_dynamic_array_len_cap((^Raw_Dynamic_Array)(&array), size_of(E), align_of(E), len, cap, allocator, loc)
- return
- }
- @(require_results)
- _make_dynamic_array_len_cap :: proc(array: ^Raw_Dynamic_Array, size_of_elem, align_of_elem: int, #any_int len: int, #any_int cap: int, allocator := context.allocator, loc := #caller_location) -> (err: Allocator_Error) {
- make_dynamic_array_error_loc(loc, len, cap)
- array.allocator = allocator // initialize allocator before just in case it fails to allocate any memory
- data := mem_alloc_bytes(size_of_elem*cap, align_of_elem, allocator, loc) or_return
- use_zero := data == nil && size_of_elem != 0
- array.data = raw_data(data)
- array.len = 0 if use_zero else len
- array.cap = 0 if use_zero else cap
- array.allocator = allocator
- return
- }
- // `make_map` initializes a map with an allocator. Like `new`, the first argument is a type, not a value.
- // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
- //
- // Note: Prefer using the procedure group `make`.
- @(builtin, require_results)
- make_map :: proc($T: typeid/map[$K]$E, allocator := context.allocator, loc := #caller_location) -> (m: T) {
- m.allocator = allocator
- return m
- }
- // `make_map_cap` initializes a map with an allocator and allocates space using `capacity`.
- // Like `new`, the first argument is a type, not a value.
- // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
- //
- // Note: Prefer using the procedure group `make`.
- @(builtin, require_results)
- make_map_cap :: proc($T: typeid/map[$K]$E, #any_int capacity: int, allocator := context.allocator, loc := #caller_location) -> (m: T, err: Allocator_Error) #optional_allocator_error {
- make_map_expr_error_loc(loc, capacity)
- context.allocator = allocator
- err = reserve_map(&m, capacity, loc)
- return
- }
- // `make_multi_pointer` allocates and initializes a multi-pointer. Like `new`, the first argument is a type, not a value.
- // Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
- //
- // This is "similar" to doing `raw_data(make([]E, len, allocator))`.
- //
- // Note: Prefer using the procedure group `make`.
- @(builtin, require_results)
- make_multi_pointer :: proc($T: typeid/[^]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (mp: T, err: Allocator_Error) #optional_allocator_error {
- make_slice_error_loc(loc, len)
- data := mem_alloc_bytes(size_of(E)*len, align_of(E), allocator, loc) or_return
- if data == nil && size_of(E) != 0 {
- return
- }
- mp = cast(T)raw_data(data)
- return
- }
- // `make` built-in procedure allocates and initializes a value of type slice, dynamic array, map, or multi-pointer (only).
- //
- // Similar to `new`, the first argument is a type, not a value. Unlike new, make's return type is the same as the
- // type of its argument, not a pointer to it.
- // Make uses the specified allocator, default is context.allocator.
- @builtin
- make :: proc{
- make_slice,
- make_dynamic_array,
- make_dynamic_array_len,
- make_dynamic_array_len_cap,
- make_map,
- make_map_cap,
- make_multi_pointer,
- make_soa_slice,
- make_soa_dynamic_array,
- make_soa_dynamic_array_len,
- make_soa_dynamic_array_len_cap,
- }
- // `clear_map` will set the length of a passed map to `0`
- //
- // Note: Prefer the procedure group `clear`
- @builtin
- clear_map :: proc "contextless" (m: ^$T/map[$K]$V) {
- if m == nil {
- return
- }
- map_clear_dynamic((^Raw_Map)(m), map_info(T))
- }
- // `reserve_map` will try to reserve memory of a passed map to the requested element count (setting the `cap`).
- //
- // Note: Prefer the procedure group `reserve`
- @builtin
- reserve_map :: proc(m: ^$T/map[$K]$V, #any_int capacity: int, loc := #caller_location) -> Allocator_Error {
- return __dynamic_map_reserve((^Raw_Map)(m), map_info(T), uint(capacity), loc)
- }
- // Shrinks the capacity of a map down to the current length.
- //
- // Note: Prefer the procedure group `shrink`
- @builtin
- shrink_map :: proc(m: ^$T/map[$K]$V, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) {
- if m != nil {
- return map_shrink_dynamic((^Raw_Map)(m), map_info(T), loc)
- }
- return
- }
- // The delete_key built-in procedure deletes the element with the specified key (m[key]) from the map.
- // If m is nil, or there is no such element, this procedure is a no-op
- @builtin
- delete_key :: proc(m: ^$T/map[$K]$V, key: K) -> (deleted_key: K, deleted_value: V) {
- if m != nil {
- key := key
- old_k, old_v, ok := map_erase_dynamic((^Raw_Map)(m), map_info(T), uintptr(&key))
- if ok {
- deleted_key = (^K)(old_k)^
- deleted_value = (^V)(old_v)^
- }
- }
- return
- }
- _append_elem :: #force_no_inline proc(array: ^Raw_Dynamic_Array, size_of_elem, align_of_elem: int, arg_ptr: rawptr, should_zero: bool, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- if array == nil {
- return
- }
- if array.cap < array.len+1 {
- // Same behavior as _append_elems but there's only one arg, so we always just add DEFAULT_DYNAMIC_ARRAY_CAPACITY.
- cap := 2 * array.cap + DEFAULT_DYNAMIC_ARRAY_CAPACITY
- // do not 'or_return' here as it could be a partial success
- err = _reserve_dynamic_array(array, size_of_elem, align_of_elem, cap, should_zero, loc)
- }
- if array.cap-array.len > 0 {
- data := ([^]byte)(array.data)
- assert(data != nil, loc=loc)
- data = data[array.len*size_of_elem:]
- intrinsics.mem_copy_non_overlapping(data, arg_ptr, size_of_elem)
- array.len += 1
- n = 1
- }
- return
- }
- // `append_elem` appends an element to the end of a dynamic array.
- @builtin
- append_elem :: proc(array: ^$T/[dynamic]$E, #no_broadcast arg: E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- when size_of(E) == 0 {
- (^Raw_Dynamic_Array)(array).len += 1
- return 1, nil
- } else {
- arg := arg
- return _append_elem((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), &arg, true, loc=loc)
- }
- }
- // `non_zero_append_elem` appends an element to the end of a dynamic array, without zeroing any reserved memory
- //
- // Note: Prefer using the procedure group `non_zero_append
- @builtin
- non_zero_append_elem :: proc(array: ^$T/[dynamic]$E, #no_broadcast arg: E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- when size_of(E) == 0 {
- (^Raw_Dynamic_Array)(array).len += 1
- return 1, nil
- } else {
- arg := arg
- return _append_elem((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), &arg, false, loc=loc)
- }
- }
- _append_elems :: #force_no_inline proc(array: ^Raw_Dynamic_Array, size_of_elem, align_of_elem: int, should_zero: bool, loc := #caller_location, args: rawptr, arg_len: int) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- if array == nil {
- return 0, nil
- }
- if arg_len <= 0 {
- return 0, nil
- }
- if array.cap < array.len+arg_len {
- cap := 2 * array.cap + max(DEFAULT_DYNAMIC_ARRAY_CAPACITY, arg_len)
- // do not 'or_return' here as it could be a partial success
- err = _reserve_dynamic_array(array, size_of_elem, align_of_elem, cap, should_zero, loc)
- }
- arg_len := arg_len
- arg_len = min(array.cap-array.len, arg_len)
- if arg_len > 0 {
- data := ([^]byte)(array.data)
- assert(data != nil, loc=loc)
- data = data[array.len*size_of_elem:]
- intrinsics.mem_copy(data, args, size_of_elem * arg_len) // must be mem_copy (overlapping)
- array.len += arg_len
- }
- return arg_len, err
- }
- // `append_elems` appends `args` to the end of a dynamic array.
- //
- // Note: Prefer using the procedure group `append`.
- @builtin
- append_elems :: proc(array: ^$T/[dynamic]$E, #no_broadcast args: ..E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- when size_of(E) == 0 {
- a := (^Raw_Dynamic_Array)(array)
- a.len += len(args)
- return len(args), nil
- } else {
- return _append_elems((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), true, loc, raw_data(args), len(args))
- }
- }
- // `non_zero_append_elems` appends `args` to the end of a dynamic array, without zeroing any reserved memory
- //
- // Note: Prefer using the procedure group `non_zero_append
- @builtin
- non_zero_append_elems :: proc(array: ^$T/[dynamic]$E, #no_broadcast args: ..E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- when size_of(E) == 0 {
- a := (^Raw_Dynamic_Array)(array)
- a.len += len(args)
- return len(args), nil
- } else {
- return _append_elems((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), false, loc, raw_data(args), len(args))
- }
- }
- // The append_string built-in procedure appends a string to the end of a [dynamic]u8 like type
- _append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, should_zero: bool, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- return _append_elems((^Raw_Dynamic_Array)(array), 1, 1, should_zero, loc, raw_data(arg), len(arg))
- }
- // `append_elem_string` appends a string to the end of a dynamic array of bytes
- //
- // Note: Prefer using the procedure group `append`.
- @builtin
- append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- return _append_elem_string(array, arg, true, loc)
- }
- // `non_zero_append_elem_string` appends a string to the end of a dynamic array of bytes, without zeroing any reserved memory
- //
- // Note: Prefer using the procedure group `non_zero_append`.
- @builtin
- non_zero_append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- return _append_elem_string(array, arg, false, loc)
- }
- // The append_string built-in procedure appends multiple strings to the end of a [dynamic]u8 like type
- //
- // Note: Prefer using the procedure group `append`.
- @builtin
- append_string :: proc(array: ^$T/[dynamic]$E/u8, args: ..string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- n_arg: int
- for arg in args {
- n_arg, err = append(array, ..transmute([]E)(arg), loc=loc)
- n += n_arg
- if err != nil {
- return
- }
- }
- return
- }
- // The append built-in procedure appends elements to the end of a dynamic array
- @builtin
- append :: proc{
- append_elem,
- append_elems,
- append_elem_string,
- append_soa_elem,
- append_soa_elems,
- }
- @builtin
- non_zero_append :: proc{
- non_zero_append_elem,
- non_zero_append_elems,
- non_zero_append_elem_string,
- non_zero_append_soa_elem,
- non_zero_append_soa_elems,
- }
- // `append_nothing` appends an empty value to a dynamic array. It returns `1, nil` if successful, and `0, err` when it was not possible,
- // whatever `err` happens to be.
- @builtin
- append_nothing :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
- if array == nil {
- return 0, nil
- }
- prev_len := len(array)
- resize(array, len(array)+1, loc) or_return
- return len(array)-prev_len, nil
- }
- // `inject_at_elem` injects an element in a dynamic array at a specified index and moves the previous elements after that index "across"
- @builtin
- inject_at_elem :: proc(array: ^$T/[dynamic]$E, #any_int index: int, #no_broadcast arg: E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
- when !ODIN_NO_BOUNDS_CHECK {
- ensure(index >= 0, "Index must be positive.", loc)
- }
- if array == nil {
- return
- }
- n := max(len(array), index)
- m :: 1
- new_size := n + m
- resize(array, new_size, loc) or_return
- when size_of(E) != 0 {
- copy(array[index + m:], array[index:])
- array[index] = arg
- }
- ok = true
- return
- }
- // `inject_at_elems` injects multiple elements in a dynamic array at a specified index and moves the previous elements after that index "across"
- @builtin
- inject_at_elems :: proc(array: ^$T/[dynamic]$E, #any_int index: int, #no_broadcast args: ..E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
- when !ODIN_NO_BOUNDS_CHECK {
- ensure(index >= 0, "Index must be positive.", loc)
- }
- if array == nil {
- return
- }
- if len(args) == 0 {
- ok = true
- return
- }
- n := max(len(array), index)
- m := len(args)
- new_size := n + m
- resize(array, new_size, loc) or_return
- when size_of(E) != 0 {
- copy(array[index + m:], array[index:])
- copy(array[index:], args)
- }
- ok = true
- return
- }
- // `inject_at_elem_string` injects a string into a dynamic array at a specified index and moves the previous elements after that index "across"
- @builtin
- inject_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, #any_int index: int, arg: string, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
- when !ODIN_NO_BOUNDS_CHECK {
- ensure(index >= 0, "Index must be positive.", loc)
- }
- if array == nil {
- return
- }
- if len(arg) == 0 {
- ok = true
- return
- }
- n := max(len(array), index)
- m := len(arg)
- new_size := n + m
- resize(array, new_size, loc) or_return
- copy(array[index+m:], array[index:])
- copy(array[index:], arg)
- ok = true
- return
- }
- // `inject_at` injects something into a dynamic array at a specified index and moves the previous elements after that index "across"
- @builtin inject_at :: proc{inject_at_elem, inject_at_elems, inject_at_elem_string}
- // `assign_at_elem` assigns a value at a given index. If the requested index is smaller than the current
- // size of the dynamic array, it will attempt to `resize` the a new length of `index+1` and then assign as `index`.
- @builtin
- assign_at_elem :: proc(array: ^$T/[dynamic]$E, #any_int index: int, arg: E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
- if index < len(array) {
- array[index] = arg
- ok = true
- } else {
- resize(array, index+1, loc) or_return
- array[index] = arg
- ok = true
- }
- return
- }
- // `assign_at_elems` assigns a values at a given index. If the requested index is smaller than the current
- // size of the dynamic array, it will attempt to `resize` the a new length of `index+len(args)` and then assign as `index`.
- @builtin
- assign_at_elems :: proc(array: ^$T/[dynamic]$E, #any_int index: int, #no_broadcast args: ..E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
- new_size := index + len(args)
- if len(args) == 0 {
- ok = true
- } else if new_size < len(array) {
- copy(array[index:], args)
- ok = true
- } else {
- resize(array, new_size, loc) or_return
- copy(array[index:], args)
- ok = true
- }
- return
- }
- // `assign_at_elem_string` assigns a string at a given index. If the requested index is smaller than the current
- // size of the dynamic array, it will attempt to `resize` the a new length of `index+len(arg)` and then assign as `index`.
- @builtin
- assign_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, #any_int index: int, arg: string, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
- new_size := index + len(arg)
- if len(arg) == 0 {
- ok = true
- } else if new_size < len(array) {
- copy(array[index:], arg)
- ok = true
- } else {
- resize(array, new_size, loc) or_return
- copy(array[index:], arg)
- ok = true
- }
- return
- }
- // `assign_at` assigns a value at a given index. If the requested index is smaller than the current
- // size of the dynamic array, it will attempt to `resize` the a new length of `index+size_needed` and then assign as `index`.
- @builtin
- assign_at :: proc{
- assign_at_elem,
- assign_at_elems,
- assign_at_elem_string,
- }
- // `clear_dynamic_array` will set the length of a passed dynamic array to `0`
- //
- // Note: Prefer the procedure group `clear`.
- @builtin
- clear_dynamic_array :: proc "contextless" (array: ^$T/[dynamic]$E) {
- if array != nil {
- (^Raw_Dynamic_Array)(array).len = 0
- }
- }
- // `reserve_dynamic_array` will try to reserve memory of a passed dynamic array or map to the requested element count (setting the `cap`).
- //
- // When a memory resize allocation is required, the memory will be asked to be zeroed (i.e. it calls `mem_resize`).
- //
- // Note: Prefer the procedure group `reserve`.
- _reserve_dynamic_array :: #force_no_inline proc(a: ^Raw_Dynamic_Array, size_of_elem, align_of_elem: int, capacity: int, should_zero: bool, loc := #caller_location) -> Allocator_Error {
- if a == nil {
- return nil
- }
- if capacity <= a.cap {
- return nil
- }
- if a.allocator.procedure == nil {
- a.allocator = context.allocator
- }
- assert(a.allocator.procedure != nil)
- old_size := a.cap * size_of_elem
- new_size := capacity * size_of_elem
- allocator := a.allocator
- new_data: []byte
- if should_zero {
- new_data = mem_resize(a.data, old_size, new_size, align_of_elem, allocator, loc) or_return
- } else {
- new_data = non_zero_mem_resize(a.data, old_size, new_size, align_of_elem, allocator, loc) or_return
- }
- if new_data == nil && new_size > 0 {
- return .Out_Of_Memory
- }
- a.data = raw_data(new_data)
- a.cap = capacity
- return nil
- }
- // `reserve_dynamic_array` will try to reserve memory of a passed dynamic array or map to the requested element count (setting the `cap`).
- //
- // When a memory resize allocation is required, the memory will be asked to be zeroed (i.e. it calls `mem_resize`).
- //
- // Note: Prefer the procedure group `reserve`.
- @builtin
- reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, #any_int capacity: int, loc := #caller_location) -> Allocator_Error {
- return _reserve_dynamic_array((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), capacity, true, loc)
- }
- // `non_zero_reserve_dynamic_array` will try to reserve memory of a passed dynamic array or map to the requested element count (setting the `cap`).
- //
- // When a memory resize allocation is required, the memory will be asked to not be zeroed (i.e. it calls `non_zero_mem_resize`).
- //
- // Note: Prefer the procedure group `non_zero_reserve`.
- @builtin
- non_zero_reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, #any_int capacity: int, loc := #caller_location) -> Allocator_Error {
- return _reserve_dynamic_array((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), capacity, false, loc)
- }
- _resize_dynamic_array :: #force_no_inline proc(a: ^Raw_Dynamic_Array, size_of_elem, align_of_elem: int, length: int, should_zero: bool, loc := #caller_location) -> Allocator_Error {
- if a == nil {
- return nil
- }
- if should_zero && a.len < length {
- num_reused := min(a.cap, length) - a.len
- intrinsics.mem_zero(([^]byte)(a.data)[a.len*size_of_elem:], num_reused*size_of_elem)
- }
- if length <= a.cap {
- a.len = max(length, 0)
- return nil
- }
- if a.allocator.procedure == nil {
- a.allocator = context.allocator
- }
- assert(a.allocator.procedure != nil)
- old_size := a.cap * size_of_elem
- new_size := length * size_of_elem
- allocator := a.allocator
- new_data : []byte
- if should_zero {
- new_data = mem_resize(a.data, old_size, new_size, align_of_elem, allocator, loc) or_return
- } else {
- new_data = non_zero_mem_resize(a.data, old_size, new_size, align_of_elem, allocator, loc) or_return
- }
- if new_data == nil && new_size > 0 {
- return .Out_Of_Memory
- }
- a.data = raw_data(new_data)
- a.len = length
- a.cap = length
- return nil
- }
- // `resize_dynamic_array` will try to resize memory of a passed dynamic array or map to the requested element count (setting the `len`, and possibly `cap`).
- //
- // When a memory resize allocation is required, the memory will be asked to be zeroed (i.e. it calls `mem_resize`).
- //
- // Note: Prefer the procedure group `resize`
- @builtin
- resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, #any_int length: int, loc := #caller_location) -> Allocator_Error {
- return _resize_dynamic_array((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), length, true, loc=loc)
- }
- // `non_zero_resize_dynamic_array` will try to resize memory of a passed dynamic array or map to the requested element count (setting the `len`, and possibly `cap`).
- //
- // When a memory resize allocation is required, the memory will be asked to not be zeroed (i.e. it calls `non_zero_mem_resize`).
- //
- // Note: Prefer the procedure group `non_zero_resize`
- @builtin
- non_zero_resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, #any_int length: int, loc := #caller_location) -> Allocator_Error {
- return _resize_dynamic_array((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), length, false, loc=loc)
- }
- // Shrinks the capacity of a dynamic array down to the current length, or the given capacity.
- //
- // If `new_cap` is negative, then `len(array)` is used.
- //
- // Returns false if `cap(array) < new_cap`, or the allocator report failure.
- //
- // If `len(array) < new_cap`, then `len(array)` will be left unchanged.
- //
- // Note: Prefer the procedure group `shrink`
- shrink_dynamic_array :: proc(array: ^$T/[dynamic]$E, #any_int new_cap := -1, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) {
- return _shrink_dynamic_array((^Raw_Dynamic_Array)(array), size_of(E), align_of(E), new_cap, loc)
- }
- _shrink_dynamic_array :: proc(a: ^Raw_Dynamic_Array, size_of_elem, align_of_elem: int, new_cap := -1, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) {
- if a == nil {
- return
- }
- new_cap := new_cap if new_cap >= 0 else a.len
- if new_cap > a.cap {
- return
- }
- if a.allocator.procedure == nil {
- a.allocator = context.allocator
- }
- assert(a.allocator.procedure != nil)
- old_size := a.cap * size_of_elem
- new_size := new_cap * size_of_elem
- new_data := mem_resize(a.data, old_size, new_size, align_of_elem, a.allocator, loc) or_return
- a.data = raw_data(new_data)
- a.len = min(new_cap, a.len)
- a.cap = new_cap
- return true, nil
- }
- @builtin
- map_insert :: proc(m: ^$T/map[$K]$V, key: K, value: V, loc := #caller_location) -> (ptr: ^V) {
- key, value := key, value
- return (^V)(__dynamic_map_set_without_hash((^Raw_Map)(m), map_info(T), rawptr(&key), rawptr(&value), loc))
- }
- // Explicitly inserts a key and value into a map `m`, the same as `map_insert`, but the return values differ.
- // - `prev_key` will return the previous pointer of a key if it exists, check `found_previous` if was previously found
- // - `value_ptr` will return the pointer of the memory where the insertion happens, and `nil` if the map failed to resize
- // - `found_previous` will be true a previous key was found
- @(builtin, require_results)
- map_upsert :: proc(m: ^$T/map[$K]$V, key: K, value: V, loc := #caller_location) -> (prev_key: K, value_ptr: ^V, found_previous: bool) {
- key, value := key, value
- kp, vp := __dynamic_map_set_extra_without_hash((^Raw_Map)(m), map_info(T), rawptr(&key), rawptr(&value), loc)
- if kp != nil {
- prev_key = (^K)(kp)^
- found_previous = true
- }
- value_ptr = (^V)(vp)
- return
- }
- /*
- Retrieves a pointer to the key and value for a possibly just inserted entry into the map.
- If the `key` was not in the map `m`, an entry is inserted with the zero value and `just_inserted` will be `true`.
- Otherwise the existing entry is left untouched and pointers to its key and value are returned.
- If the map has to grow in order to insert the entry and the allocation fails, `err` is set and returned.
- If `err` is `nil`, `key_ptr` and `value_ptr` are valid pointers and will not be `nil`.
- WARN: User modification of the key pointed at by `key_ptr` should only be done if the new key is equal to (in hash) the old key.
- If that is not the case you will corrupt the map.
- */
- @(builtin, require_results)
- map_entry :: proc(m: ^$T/map[$K]$V, key: K, loc := #caller_location) -> (key_ptr: ^K, value_ptr: ^V, just_inserted: bool, err: Allocator_Error) {
- key := key
- zero: V
- _key_ptr, _value_ptr: rawptr
- _key_ptr, _value_ptr, just_inserted, err = __dynamic_map_entry((^Raw_Map)(m), map_info(T), &key, &zero, loc)
- key_ptr = (^K)(_key_ptr)
- value_ptr = (^V)(_value_ptr)
- return
- }
- // `card` returns the number of bits that are set in a bit_set—its cardinality
- @builtin
- card :: proc "contextless" (s: $S/bit_set[$E; $U]) -> int {
- return int(intrinsics.count_ones(transmute(intrinsics.type_bit_set_underlying_type(S))s))
- }
- // Evaluates the condition and panics the program iff the condition is false.
- // This uses the `context.assertion_failure_procedure` to assert.
- //
- // This routine will be ignored when `ODIN_DISABLE_ASSERT` is true.
- @builtin
- @(disabled=ODIN_DISABLE_ASSERT)
- assert :: proc(condition: bool, message := #caller_expression(condition), loc := #caller_location) {
- if !condition {
- // NOTE(bill): This is wrapped in a procedure call
- // to improve performance to make the CPU not
- // execute speculatively, making it about an order of
- // magnitude faster
- @(cold)
- internal :: proc(message: string, loc: Source_Code_Location) {
- p := context.assertion_failure_proc
- if p == nil {
- p = default_assertion_failure_proc
- }
- p("runtime assertion", message, loc)
- }
- internal(message, loc)
- }
- }
- // Evaluates the condition and panics the program iff the condition is false.
- // This uses the `context.assertion_failure_procedure` to assert.
- // This routine ignores `ODIN_DISABLE_ASSERT`, and will always execute.
- @builtin
- ensure :: proc(condition: bool, message := #caller_expression(condition), loc := #caller_location) {
- if !condition {
- @(cold)
- internal :: proc(message: string, loc: Source_Code_Location) {
- p := context.assertion_failure_proc
- if p == nil {
- p = default_assertion_failure_proc
- }
- p("unsatisfied ensure", message, loc)
- }
- internal(message, loc)
- }
- }
- // Panics the program with a message.
- // This uses the `context.assertion_failure_procedure` to panic.
- @builtin
- panic :: proc(message: string, loc := #caller_location) -> ! {
- p := context.assertion_failure_proc
- if p == nil {
- p = default_assertion_failure_proc
- }
- p("panic", message, loc)
- }
- // Panics the program with a message to indicate something has yet to be implemented.
- // This uses the `context.assertion_failure_procedure` to assert.
- @builtin
- unimplemented :: proc(message := "", loc := #caller_location) -> ! {
- p := context.assertion_failure_proc
- if p == nil {
- p = default_assertion_failure_proc
- }
- p("not yet implemented", message, loc)
- }
- // Evaluates the condition and panics the program iff the condition is false.
- // This uses the `default_assertion_contextless_failure_proc` to assert.
- //
- // This routine will be ignored when `ODIN_DISABLE_ASSERT` is true.
- @builtin
- @(disabled=ODIN_DISABLE_ASSERT)
- assert_contextless :: proc "contextless" (condition: bool, message := #caller_expression(condition), loc := #caller_location) {
- if !condition {
- // NOTE(bill): This is wrapped in a procedure call
- // to improve performance to make the CPU not
- // execute speculatively, making it about an order of
- // magnitude faster
- @(cold)
- internal :: proc "contextless" (message: string, loc: Source_Code_Location) {
- default_assertion_contextless_failure_proc("runtime assertion", message, loc)
- }
- internal(message, loc)
- }
- }
- // Evaluates the condition and panics the program iff the condition is false.
- // This uses the `default_assertion_contextless_failure_proc` to assert.
- @builtin
- ensure_contextless :: proc "contextless" (condition: bool, message := #caller_expression(condition), loc := #caller_location) {
- if !condition {
- @(cold)
- internal :: proc "contextless" (message: string, loc: Source_Code_Location) {
- default_assertion_contextless_failure_proc("unsatisfied ensure", message, loc)
- }
- internal(message, loc)
- }
- }
- // Panics the program with a message to indicate something has yet to be implemented.
- // This uses the `default_assertion_contextless_failure_proc` to assert.
- @builtin
- panic_contextless :: proc "contextless" (message: string, loc := #caller_location) -> ! {
- default_assertion_contextless_failure_proc("panic", message, loc)
- }
- // Panics the program with a message.
- // This uses the `default_assertion_contextless_failure_proc` to assert.
- @builtin
- unimplemented_contextless :: proc "contextless" (message := "", loc := #caller_location) -> ! {
- default_assertion_contextless_failure_proc("not yet implemented", message, loc)
- }
|