generic_float.odin 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286
  1. package strconv
  2. import "decimal"
  3. Decimal_Slice :: struct {
  4. digits: []byte,
  5. count: int,
  6. decimal_point: int,
  7. neg: bool,
  8. }
  9. Float_Info :: struct {
  10. mantbits: uint,
  11. expbits: uint,
  12. bias: int,
  13. }
  14. _f16_info := Float_Info{10, 5, -15};
  15. _f32_info := Float_Info{23, 8, -127};
  16. _f64_info := Float_Info{52, 11, -1023};
  17. generic_ftoa :: proc(buf: []byte, val: f64, fmt: byte, precision, bit_size: int) -> []byte {
  18. bits: u64;
  19. flt: ^Float_Info;
  20. switch bit_size {
  21. case 16:
  22. bits = u64(transmute(u16)f16(val));
  23. flt = &_f16_info;
  24. case 32:
  25. bits = u64(transmute(u32)f32(val));
  26. flt = &_f32_info;
  27. case 64:
  28. bits = transmute(u64)val;
  29. flt = &_f64_info;
  30. case:
  31. panic("strconv: invalid bit_size");
  32. }
  33. neg := bits>>(flt.expbits+flt.mantbits) != 0;
  34. exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1);
  35. mant := bits & (u64(1) << flt.mantbits - 1);
  36. switch exp {
  37. case 1<<flt.expbits - 1:
  38. s: string;
  39. if mant != 0 {
  40. s = "NaN";
  41. } else if neg {
  42. s = "-Inf";
  43. } else {
  44. s = "+Inf";
  45. }
  46. n := copy(buf, s);
  47. return buf[:n];
  48. case 0: // denormalized
  49. exp += 1;
  50. case:
  51. mant |= u64(1) << flt.mantbits;
  52. }
  53. exp += flt.bias;
  54. d_: decimal.Decimal;
  55. d := &d_;
  56. decimal.assign(d, mant);
  57. decimal.shift(d, exp - int(flt.mantbits));
  58. digs: Decimal_Slice;
  59. prec := precision;
  60. shortest := prec < 0;
  61. if shortest {
  62. round_shortest(d, mant, exp, flt);
  63. digs = Decimal_Slice{digits = d.digits[:], count = d.count, decimal_point = d.decimal_point};
  64. switch fmt {
  65. case 'e', 'E': prec = digs.count-1;
  66. case 'f', 'F': prec = max(digs.count-digs.decimal_point, 0);
  67. case 'g', 'G': prec = digs.count;
  68. }
  69. } else {
  70. switch fmt {
  71. case 'e', 'E': decimal.round(d, prec+1);
  72. case 'f', 'F': decimal.round(d, d.decimal_point+prec);
  73. case 'g', 'G':
  74. if prec == 0 {
  75. prec = 1;
  76. }
  77. decimal.round(d, prec);
  78. }
  79. digs = Decimal_Slice{digits = d.digits[:], count = d.count, decimal_point = d.decimal_point};
  80. }
  81. return format_digits(buf, shortest, neg, digs, prec, fmt);
  82. }
  83. format_digits :: proc(buf: []byte, shortest: bool, neg: bool, digs: Decimal_Slice, precision: int, fmt: byte) -> []byte {
  84. Buffer :: struct {
  85. b: []byte,
  86. n: int,
  87. };
  88. to_bytes :: proc(b: Buffer) -> []byte {
  89. return b.b[:b.n];
  90. }
  91. add_bytes :: proc(buf: ^Buffer, bytes: ..byte) {
  92. buf.n += copy(buf.b[buf.n:], bytes);
  93. }
  94. b := Buffer{b = buf};
  95. prec := precision;
  96. switch fmt {
  97. case 'f', 'F':
  98. add_bytes(&b, '-' if neg else '+');
  99. // integer, padded with zeros when needed
  100. if digs.decimal_point > 0 {
  101. m := min(digs.count, digs.decimal_point);
  102. add_bytes(&b, ..digs.digits[0:m]);
  103. for ; m < digs.decimal_point; m += 1 {
  104. add_bytes(&b, '0');
  105. }
  106. } else {
  107. add_bytes(&b, '0');
  108. }
  109. // fractional part
  110. if prec > 0 {
  111. add_bytes(&b, '.');
  112. for i in 0..<prec {
  113. c: byte = '0';
  114. if j := digs.decimal_point + i; 0 <= j && j < digs.count {
  115. c = digs.digits[j];
  116. }
  117. add_bytes(&b, c);
  118. }
  119. }
  120. return to_bytes(b);
  121. case 'e', 'E':
  122. add_bytes(&b, '-' if neg else '+');
  123. ch := byte('0');
  124. if digs.count != 0 {
  125. ch = digs.digits[0];
  126. }
  127. add_bytes(&b, ch);
  128. if prec > 0 {
  129. add_bytes(&b, '.');
  130. i := 1;
  131. m := min(digs.count, prec+1);
  132. if i < m {
  133. add_bytes(&b, ..digs.digits[i:m]);
  134. i = m;
  135. }
  136. for ; i <= prec; i += 1 {
  137. add_bytes(&b, '0');
  138. }
  139. }
  140. add_bytes(&b, fmt);
  141. exp := digs.decimal_point-1;
  142. if digs.count == 0 {
  143. // Zero has exponent of 0
  144. exp = 0;
  145. }
  146. ch = '+';
  147. if exp < 0 {
  148. ch = '-';
  149. exp = -exp;
  150. }
  151. add_bytes(&b, ch);
  152. switch {
  153. case exp < 10: add_bytes(&b, '0', byte(exp)+'0'); // add prefix 0
  154. case exp < 100: add_bytes(&b, byte(exp/10)+'0', byte(exp%10)+'0');
  155. case: add_bytes(&b, byte(exp/100)+'0', byte(exp/10)%10+'0', byte(exp%10)+'0');
  156. }
  157. return to_bytes(b);
  158. case 'g', 'G':
  159. eprec := prec;
  160. if eprec > digs.count && digs.count >= digs.decimal_point {
  161. eprec = digs.count;
  162. }
  163. if shortest {
  164. eprec = 6;
  165. }
  166. exp := digs.decimal_point - 1;
  167. if exp < -4 || exp >= eprec {
  168. if prec > digs.count {
  169. prec = digs.count;
  170. }
  171. return format_digits(buf, shortest, neg, digs, prec-1, fmt+'e'-'g'); // keep the same case
  172. }
  173. if prec > digs.decimal_point {
  174. prec = digs.count;
  175. }
  176. return format_digits(buf, shortest, neg, digs, max(prec-digs.decimal_point, 0), 'f');
  177. case:
  178. add_bytes(&b, '%', fmt);
  179. return to_bytes(b);
  180. }
  181. }
  182. round_shortest :: proc(d: ^decimal.Decimal, mant: u64, exp: int, flt: ^Float_Info) {
  183. if mant == 0 { // If mantissa is zero, the number is zero
  184. d.count = 0;
  185. return;
  186. }
  187. /*
  188. 10^(dp-nd) > 2^(exp-mantbits)
  189. log2(10) * (dp-nd) > exp-mantbits
  190. log(2) >~ 0.332
  191. 332*(dp-nd) >= 100*(exp-mantbits)
  192. */
  193. minexp := flt.bias+1;
  194. if exp > minexp && 332*(d.decimal_point-d.count) >= 100*(exp - int(flt.mantbits)) {
  195. // Number is already its shortest
  196. return;
  197. }
  198. upper_: decimal.Decimal; upper := &upper_;
  199. decimal.assign(upper, 2*mant - 1);
  200. decimal.shift(upper, exp - int(flt.mantbits) - 1);
  201. mantlo: u64;
  202. explo: int;
  203. if mant > 1<<flt.mantbits || exp == minexp {
  204. mantlo = mant-1;
  205. explo = exp;
  206. } else {
  207. mantlo = 2*mant - 1;
  208. explo = exp-1;
  209. }
  210. lower_: decimal.Decimal; lower := &lower_;
  211. decimal.assign(lower, 2*mantlo + 1);
  212. decimal.shift(lower, explo - int(flt.mantbits) - 1);
  213. inclusive := mant%2 == 0;
  214. for i in 0..<d.count {
  215. l: byte = '0'; // lower digit
  216. if i < lower.count {
  217. l = lower.digits[i];
  218. }
  219. m := d.digits[i]; // middle digit
  220. u: byte = '0'; // upper digit
  221. if i < upper.count {
  222. u = upper.digits[i];
  223. }
  224. ok_round_down := l != m || inclusive && i+1 == lower.count;
  225. ok_round_up := m != u && (inclusive || m+1 < u || i+1 < upper.count);
  226. if ok_round_down && ok_round_up {
  227. decimal.round(d, i+1);
  228. return;
  229. }
  230. if ok_round_down {
  231. decimal.round_down(d, i+1);
  232. return;
  233. }
  234. if ok_round_up {
  235. decimal.round_up(d, i+1);
  236. return;
  237. }
  238. }
  239. }