123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332 |
- #import "fmt.odin"
- #import "os.odin"
- set :: proc(data: rawptr, value: i32, len: int) -> rawptr #link_name "__mem_set" {
- llvm_memset_64bit :: proc(dst: rawptr, val: byte, len: int, align: i32, is_volatile: bool) #foreign "llvm.memset.p0i8.i64"
- llvm_memset_64bit(data, value as byte, len, 1, false)
- return data
- }
- zero :: proc(data: rawptr, len: int) -> rawptr {
- return set(data, 0, len)
- }
- copy :: proc(dst, src: rawptr, len: int) -> rawptr #link_name "__mem_copy" {
- // NOTE(bill): This _must_ implemented like C's memmove
- llvm_memmove_64bit :: proc(dst, src: rawptr, len: int, align: i32, is_volatile: bool) #foreign "llvm.memmove.p0i8.p0i8.i64"
- llvm_memmove_64bit(dst, src, len, 1, false)
- return dst
- }
- copy_non_overlapping :: proc(dst, src: rawptr, len: int) -> rawptr #link_name "__mem_copy_non_overlapping" {
- // NOTE(bill): This _must_ implemented like C's memcpy
- llvm_memcpy_64bit :: proc(dst, src: rawptr, len: int, align: i32, is_volatile: bool) #foreign "llvm.memcpy.p0i8.p0i8.i64"
- llvm_memcpy_64bit(dst, src, len, 1, false)
- return dst
- }
- compare :: proc(dst, src: rawptr, n: int) -> int #link_name "__mem_compare" {
- // Translation of http://mgronhol.github.io/fast-strcmp/
- a := slice_ptr(dst as ^byte, n)
- b := slice_ptr(src as ^byte, n)
- fast := n/size_of(int) + 1
- offset := (fast-1)*size_of(int)
- curr_block := 0
- if n <= size_of(int) {
- fast = 0
- }
- la := slice_ptr(^a[0] as ^int, fast)
- lb := slice_ptr(^b[0] as ^int, fast)
- for ; curr_block < fast; curr_block++ {
- if (la[curr_block] ~ lb[curr_block]) != 0 {
- for pos := curr_block*size_of(int); pos < n; pos++ {
- if (a[pos] ~ b[pos]) != 0 {
- return a[pos] as int - b[pos] as int
- }
- }
- }
- }
- for ; offset < n; offset++ {
- if (a[offset] ~ b[offset]) != 0 {
- return a[offset] as int - b[offset] as int
- }
- }
- return 0
- }
- kilobytes :: proc(x: int) -> int #inline { return (x) * 1024; }
- megabytes :: proc(x: int) -> int #inline { return kilobytes(x) * 1024; }
- gigabytes :: proc(x: int) -> int #inline { return gigabytes(x) * 1024; }
- terabytes :: proc(x: int) -> int #inline { return terabytes(x) * 1024; }
- is_power_of_two :: proc(x: int) -> bool {
- if x <= 0 {
- return false
- }
- return (x & (x-1)) == 0
- }
- align_forward :: proc(ptr: rawptr, align: int) -> rawptr {
- assert(is_power_of_two(align))
- a := align as uint
- p := ptr as uint
- modulo := p & (a-1)
- if modulo != 0 {
- p += a - modulo
- }
- return p as rawptr
- }
- AllocationHeader :: struct {
- size: int
- }
- allocation_header_fill :: proc(header: ^AllocationHeader, data: rawptr, size: int) {
- header.size = size
- ptr := (header+1) as ^int
- for i := 0; ptr as rawptr < data; i++ {
- (ptr+i)^ = -1
- }
- }
- allocation_header :: proc(data: rawptr) -> ^AllocationHeader {
- p := data as ^int
- for (p-1)^ == -1 {
- p = (p-1)
- }
- return (p as ^AllocationHeader)-1
- }
- // Custom allocators
- Arena :: struct {
- backing: Allocator
- memory: []byte
- temp_count: int
- Temp_Memory :: struct {
- arena: ^Arena
- original_count: int
- }
- }
- init_arena_from_memory :: proc(using a: ^Arena, data: []byte) {
- backing = Allocator{}
- memory = data[:0]
- temp_count = 0
- }
- init_arena_from_context :: proc(using a: ^Arena, size: int) {
- backing = context.allocator
- memory = new_slice(byte, 0, size)
- temp_count = 0
- }
- free_arena :: proc(using a: ^Arena) {
- if backing.procedure != nil {
- push_allocator backing {
- free(memory.data)
- memory = memory[0:0:0]
- }
- }
- }
- arena_allocator :: proc(arena: ^Arena) -> Allocator {
- return Allocator{
- procedure = arena_allocator_proc,
- data = arena,
- }
- }
- arena_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator.Mode,
- size, alignment: int,
- old_memory: rawptr, old_size: int, flags: u64) -> rawptr {
- arena := allocator_data as ^Arena
- using Allocator.Mode
- match mode {
- case ALLOC:
- total_size := size + alignment
- if arena.memory.count + total_size > arena.memory.capacity {
- fmt.fprintln(os.stderr, "Arena out of memory")
- return nil
- }
- #no_bounds_check end := ^arena.memory[arena.memory.count]
- ptr := align_forward(end, alignment)
- arena.memory.count += total_size
- return zero(ptr, size)
- case FREE:
- // NOTE(bill): Free all at once
- // Use Arena.Temp_Memory if you want to free a block
- case FREE_ALL:
- arena.memory.count = 0
- case RESIZE:
- return default_resize_align(old_memory, old_size, size, alignment)
- }
- return nil
- }
- begin_arena_temp_memory :: proc(a: ^Arena) -> Arena.Temp_Memory {
- tmp: Arena.Temp_Memory
- tmp.arena = a
- tmp.original_count = a.memory.count
- a.temp_count++
- return tmp
- }
- end_arena_temp_memory :: proc(using tmp: Arena.Temp_Memory) {
- assert(arena.memory.count >= original_count)
- assert(arena.temp_count > 0)
- arena.memory.count = original_count
- arena.temp_count--
- }
- align_of_type_info :: proc(type_info: ^Type_Info) -> int {
- WORD_SIZE :: size_of(int)
- using Type_Info
- match type info : type_info {
- case Named:
- return align_of_type_info(info.base)
- case Integer:
- return info.size
- case Float:
- return info.size
- case String:
- return WORD_SIZE
- case Boolean:
- return 1
- case Pointer:
- return WORD_SIZE
- case Maybe:
- return max(align_of_type_info(info.elem), 1)
- case Procedure:
- return WORD_SIZE
- case Array:
- return align_of_type_info(info.elem)
- case Slice:
- return WORD_SIZE
- case Vector:
- return align_of_type_info(info.elem)
- case Struct:
- return info.align
- case Union:
- return info.align
- case Raw_Union:
- return info.align
- case Enum:
- return align_of_type_info(info.base)
- }
- return 0
- }
- align_formula :: proc(size, align: int) -> int {
- result := size + align-1
- return result - result%align
- }
- size_of_type_info :: proc(type_info: ^Type_Info) -> int {
- WORD_SIZE :: size_of(int)
- using Type_Info
- match type info : type_info {
- case Named:
- return size_of_type_info(info.base)
- case Integer:
- return info.size
- case Float:
- return info.size
- case Any:
- return 2*WORD_SIZE
- case String:
- return 2*WORD_SIZE
- case Boolean:
- return 1
- case Pointer:
- return WORD_SIZE
- case Maybe:
- return size_of_type_info(info.elem) + 1
- case Procedure:
- return WORD_SIZE
- case Array:
- count := info.count
- if count == 0 {
- return 0
- }
- size := size_of_type_info(info.elem)
- align := align_of_type_info(info.elem)
- alignment := align_formula(size, align)
- return alignment*(count-1) + size
- case Slice:
- return 3*WORD_SIZE
- case Vector:
- is_bool :: proc(type_info: ^Type_Info) -> bool {
- match type info : type_info {
- case Named:
- return is_bool(info.base)
- case Boolean:
- return true
- }
- return false
- }
- count := info.count
- if count == 0 {
- return 0
- }
- bit_size := 8*size_of_type_info(info.elem)
- if is_bool(info.elem) {
- // NOTE(bill): LLVM can store booleans as 1 bit because a boolean _is_ an `i1`
- // Silly LLVM spec
- bit_size = 1
- }
- total_size_in_bits := bit_size * count
- total_size := (total_size_in_bits+7)/8
- return total_size
- case Struct:
- return info.size
- case Union:
- return info.size
- case Raw_Union:
- return info.size
- case Enum:
- return size_of_type_info(info.base)
- }
- return 0
- }
|