123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366 |
- TAU :: 6.28318530717958647692528676655900576;
- PI :: 3.14159265358979323846264338327950288;
- ONE_OVER_TAU :: 0.636619772367581343075535053490057448;
- ONE_OVER_PI :: 0.159154943091895335768883763372514362;
- E :: 2.71828182845904523536;
- SQRT_TWO :: 1.41421356237309504880168872420969808;
- SQRT_THREE :: 1.73205080756887729352744634150587236;
- SQRT_FIVE :: 2.23606797749978969640917366873127623;
- LOG_TWO :: 0.693147180559945309417232121458176568;
- LOG_TEN :: 2.30258509299404568401799145468436421;
- EPSILON :: 1.19209290e-7;
- τ :: TAU;
- π :: PI;
- Vec2 :: [vector 2]f32;
- Vec3 :: [vector 3]f32;
- Vec4 :: [vector 4]f32;
- Mat2 :: [2]Vec2;
- Mat3 :: [3]Vec3;
- Mat4 :: [4]Vec4;
- sqrt32 :: proc(x: f32) -> f32 #foreign "llvm.sqrt.f32"
- sqrt64 :: proc(x: f64) -> f64 #foreign "llvm.sqrt.f64"
- sin32 :: proc(x: f32) -> f32 #foreign "llvm.sin.f32"
- sin64 :: proc(x: f64) -> f64 #foreign "llvm.sin.f64"
- cos32 :: proc(x: f32) -> f32 #foreign "llvm.cos.f32"
- cos64 :: proc(x: f64) -> f64 #foreign "llvm.cos.f64"
- tan32 :: proc(x: f32) -> f32 #inline { return sin32(x)/cos32(x); }
- tan64 :: proc(x: f64) -> f64 #inline { return sin64(x)/cos64(x); }
- lerp32 :: proc(a, b, t: f32) -> f32 { return a*(1-t) + b*t; }
- lerp64 :: proc(a, b, t: f64) -> f64 { return a*(1-t) + b*t; }
- sign32 :: proc(x: f32) -> f32 { if x >= 0 { return +1; } return -1; }
- sign64 :: proc(x: f64) -> f64 { if x >= 0 { return +1; } return -1; }
- copy_sign32 :: proc(x, y: f32) -> f32 {
- ix := x transmute u32;
- iy := y transmute u32;
- ix &= 0x7fffffff;
- ix |= iy & 0x80000000;
- return ix transmute f32;
- }
- round32 :: proc(x: f32) -> f32 {
- if x >= 0 {
- return floor32(x + 0.5);
- }
- return ceil32(x - 0.5);
- }
- floor32 :: proc(x: f32) -> f32 {
- if x >= 0 {
- return x as int as f32;
- }
- return (x-0.5) as int as f32;
- }
- ceil32 :: proc(x: f32) -> f32 {
- if x < 0 {
- return x as int as f32;
- }
- return ((x as int)+1) as f32;
- }
- remainder32 :: proc(x, y: f32) -> f32 {
- return x - round32(x/y) * y;
- }
- fmod32 :: proc(x, y: f32) -> f32 {
- y = abs(y);
- result := remainder32(abs(x), y);
- if sign32(result) < 0 {
- result += y;
- }
- return copy_sign32(result, x);
- }
- to_radians :: proc(degrees: f32) -> f32 { return degrees * TAU / 360; }
- to_degrees :: proc(radians: f32) -> f32 { return radians * 360 / TAU; }
- dot2 :: proc(a, b: Vec2) -> f32 { c := a*b; return c.x + c.y; }
- dot3 :: proc(a, b: Vec3) -> f32 { c := a*b; return c.x + c.y + c.z; }
- dot4 :: proc(a, b: Vec4) -> f32 { c := a*b; return c.x + c.y + c.z + c.w; }
- cross3 :: proc(x, y: Vec3) -> Vec3 {
- a := swizzle(x, 1, 2, 0) * swizzle(y, 2, 0, 1);
- b := swizzle(x, 2, 0, 1) * swizzle(y, 1, 2, 0);
- return a - b;
- }
- vec2_mag :: proc(v: Vec2) -> f32 { return sqrt32(dot2(v, v)); }
- vec3_mag :: proc(v: Vec3) -> f32 { return sqrt32(dot3(v, v)); }
- vec4_mag :: proc(v: Vec4) -> f32 { return sqrt32(dot4(v, v)); }
- vec2_norm :: proc(v: Vec2) -> Vec2 { return v / Vec2{vec2_mag(v)}; }
- vec3_norm :: proc(v: Vec3) -> Vec3 { return v / Vec3{vec3_mag(v)}; }
- vec4_norm :: proc(v: Vec4) -> Vec4 { return v / Vec4{vec4_mag(v)}; }
- vec2_norm0 :: proc(v: Vec2) -> Vec2 {
- m := vec2_mag(v);
- if m == 0 {
- return Vec2{0};
- }
- return v / Vec2{m};
- }
- vec3_norm0 :: proc(v: Vec3) -> Vec3 {
- m := vec3_mag(v);
- if m == 0 {
- return Vec3{0};
- }
- return v / Vec3{m};
- }
- vec4_norm0 :: proc(v: Vec4) -> Vec4 {
- m := vec4_mag(v);
- if m == 0 {
- return Vec4{0};
- }
- return v / Vec4{m};
- }
- mat4_identity :: proc() -> Mat4 {
- return Mat4{
- {1, 0, 0, 0},
- {0, 1, 0, 0},
- {0, 0, 1, 0},
- {0, 0, 0, 1},
- };
- }
- mat4_transpose :: proc(m: Mat4) -> Mat4 {
- for j : 0..<4 {
- for i : 0..<4 {
- m[i][j], m[j][i] = m[j][i], m[i][j];
- }
- }
- return m;
- }
- mat4_mul :: proc(a, b: Mat4) -> Mat4 {
- c: Mat4;
- for j : 0..<4 {
- for i : 0..<4 {
- c[j][i] = a[0][i]*b[j][0] +
- a[1][i]*b[j][1] +
- a[2][i]*b[j][2] +
- a[3][i]*b[j][3];
- }
- }
- return c;
- }
- mat4_mul_vec4 :: proc(m: Mat4, v: Vec4) -> Vec4 {
- return Vec4{
- m[0][0]*v.x + m[1][0]*v.y + m[2][0]*v.z + m[3][0]*v.w,
- m[0][1]*v.x + m[1][1]*v.y + m[2][1]*v.z + m[3][1]*v.w,
- m[0][2]*v.x + m[1][2]*v.y + m[2][2]*v.z + m[3][2]*v.w,
- m[0][3]*v.x + m[1][3]*v.y + m[2][3]*v.z + m[3][3]*v.w,
- };
- }
- mat4_inverse :: proc(m: Mat4) -> Mat4 {
- o: Mat4;
- sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3];
- sf01 := m[2][1] * m[3][3] - m[3][1] * m[2][3];
- sf02 := m[2][1] * m[3][2] - m[3][1] * m[2][2];
- sf03 := m[2][0] * m[3][3] - m[3][0] * m[2][3];
- sf04 := m[2][0] * m[3][2] - m[3][0] * m[2][2];
- sf05 := m[2][0] * m[3][1] - m[3][0] * m[2][1];
- sf06 := m[1][2] * m[3][3] - m[3][2] * m[1][3];
- sf07 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
- sf08 := m[1][1] * m[3][2] - m[3][1] * m[1][2];
- sf09 := m[1][0] * m[3][3] - m[3][0] * m[1][3];
- sf10 := m[1][0] * m[3][2] - m[3][0] * m[1][2];
- sf11 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
- sf12 := m[1][0] * m[3][1] - m[3][0] * m[1][1];
- sf13 := m[1][2] * m[2][3] - m[2][2] * m[1][3];
- sf14 := m[1][1] * m[2][3] - m[2][1] * m[1][3];
- sf15 := m[1][1] * m[2][2] - m[2][1] * m[1][2];
- sf16 := m[1][0] * m[2][3] - m[2][0] * m[1][3];
- sf17 := m[1][0] * m[2][2] - m[2][0] * m[1][2];
- sf18 := m[1][0] * m[2][1] - m[2][0] * m[1][1];
- o[0][0] = +(m[1][1] * sf00 - m[1][2] * sf01 + m[1][3] * sf02);
- o[0][1] = -(m[1][0] * sf00 - m[1][2] * sf03 + m[1][3] * sf04);
- o[0][2] = +(m[1][0] * sf01 - m[1][1] * sf03 + m[1][3] * sf05);
- o[0][3] = -(m[1][0] * sf02 - m[1][1] * sf04 + m[1][2] * sf05);
- o[1][0] = -(m[0][1] * sf00 - m[0][2] * sf01 + m[0][3] * sf02);
- o[1][1] = +(m[0][0] * sf00 - m[0][2] * sf03 + m[0][3] * sf04);
- o[1][2] = -(m[0][0] * sf01 - m[0][1] * sf03 + m[0][3] * sf05);
- o[1][3] = +(m[0][0] * sf02 - m[0][1] * sf04 + m[0][2] * sf05);
- o[2][0] = +(m[0][1] * sf06 - m[0][2] * sf07 + m[0][3] * sf08);
- o[2][1] = -(m[0][0] * sf06 - m[0][2] * sf09 + m[0][3] * sf10);
- o[2][2] = +(m[0][0] * sf11 - m[0][1] * sf09 + m[0][3] * sf12);
- o[2][3] = -(m[0][0] * sf08 - m[0][1] * sf10 + m[0][2] * sf12);
- o[3][0] = -(m[0][1] * sf13 - m[0][2] * sf14 + m[0][3] * sf15);
- o[3][1] = +(m[0][0] * sf13 - m[0][2] * sf16 + m[0][3] * sf17);
- o[3][2] = -(m[0][0] * sf14 - m[0][1] * sf16 + m[0][3] * sf18);
- o[3][3] = +(m[0][0] * sf15 - m[0][1] * sf17 + m[0][2] * sf18);
- ood := 1.0 / (m[0][0] * o[0][0] +
- m[0][1] * o[0][1] +
- m[0][2] * o[0][2] +
- m[0][3] * o[0][3]);
- o[0][0] *= ood;
- o[0][1] *= ood;
- o[0][2] *= ood;
- o[0][3] *= ood;
- o[1][0] *= ood;
- o[1][1] *= ood;
- o[1][2] *= ood;
- o[1][3] *= ood;
- o[2][0] *= ood;
- o[2][1] *= ood;
- o[2][2] *= ood;
- o[2][3] *= ood;
- o[3][0] *= ood;
- o[3][1] *= ood;
- o[3][2] *= ood;
- o[3][3] *= ood;
- return o;
- }
- mat4_translate :: proc(v: Vec3) -> Mat4 {
- m := mat4_identity();
- m[3][0] = v.x;
- m[3][1] = v.y;
- m[3][2] = v.z;
- m[3][3] = 1;
- return m;
- }
- mat4_rotate :: proc(v: Vec3, angle_radians: f32) -> Mat4 {
- c := cos32(angle_radians);
- s := sin32(angle_radians);
- a := vec3_norm(v);
- t := a * Vec3{1-c};
- rot := mat4_identity();
- rot[0][0] = c + t.x*a.x;
- rot[0][1] = 0 + t.x*a.y + s*a.z;
- rot[0][2] = 0 + t.x*a.z - s*a.y;
- rot[0][3] = 0;
- rot[1][0] = 0 + t.y*a.x - s*a.z;
- rot[1][1] = c + t.y*a.y;
- rot[1][2] = 0 + t.y*a.z + s*a.x;
- rot[1][3] = 0;
- rot[2][0] = 0 + t.z*a.x + s*a.y;
- rot[2][1] = 0 + t.z*a.y - s*a.x;
- rot[2][2] = c + t.z*a.z;
- rot[2][3] = 0;
- return rot;
- }
- mat4_scale :: proc(m: Mat4, v: Vec3) -> Mat4 {
- m[0][0] *= v.x;
- m[1][1] *= v.y;
- m[2][2] *= v.z;
- return m;
- }
- mat4_scalef :: proc(m: Mat4, s: f32) -> Mat4 {
- m[0][0] *= s;
- m[1][1] *= s;
- m[2][2] *= s;
- return m;
- }
- mat4_look_at :: proc(eye, centre, up: Vec3) -> Mat4 {
- f := vec3_norm(centre - eye);
- s := vec3_norm(cross3(f, up));
- u := cross3(s, f);
- m: Mat4;
- m[0] = Vec4{+s.x, +s.y, +s.z, 0};
- m[1] = Vec4{+u.x, +u.y, +u.z, 0};
- m[2] = Vec4{-f.x, -f.y, -f.z, 0};
- m[3] = Vec4{dot3(s, eye), dot3(u, eye), dot3(f, eye), 1};
- return m;
- }
- mat4_perspective :: proc(fovy, aspect, near, far: f32) -> Mat4 {
- m: Mat4;
- tan_half_fovy := tan32(0.5 * fovy);
- m[0][0] = 1.0 / (aspect*tan_half_fovy);
- m[1][1] = 1.0 / (tan_half_fovy);
- m[2][2] = -(far + near) / (far - near);
- m[2][3] = -1.0;
- m[3][2] = -2.0*far*near / (far - near);
- return m;
- }
- mat4_ortho3d :: proc(left, right, bottom, top, near, far: f32) -> Mat4 {
- m := mat4_identity();
- m[0][0] = +2.0 / (right - left);
- m[1][1] = +2.0 / (top - bottom);
- m[2][2] = -2.0 / (far - near);
- m[3][0] = -(right + left) / (right - left);
- m[3][1] = -(top + bottom) / (top - bottom);
- m[3][2] = -(far + near) / (far - near);
- return m;
- }
- F32_DIG :: 6;
- F32_EPSILON :: 1.192092896e-07;
- F32_GUARD :: 0;
- F32_MANT_DIG :: 24;
- F32_MAX :: 3.402823466e+38;
- F32_MAX_10_EXP :: 38;
- F32_MAX_EXP :: 128;
- F32_MIN :: 1.175494351e-38;
- F32_MIN_10_EXP :: -37;
- F32_MIN_EXP :: -125;
- F32_NORMALIZE :: 0;
- F32_RADIX :: 2;
- F32_ROUNDS :: 1;
- F64_DIG :: 15; // # of decimal digits of precision
- F64_EPSILON :: 2.2204460492503131e-016; // smallest such that 1.0+F64_EPSILON != 1.0
- F64_MANT_DIG :: 53; // # of bits in mantissa
- F64_MAX :: 1.7976931348623158e+308; // max value
- F64_MAX_10_EXP :: 308; // max decimal exponent
- F64_MAX_EXP :: 1024; // max binary exponent
- F64_MIN :: 2.2250738585072014e-308; // min positive value
- F64_MIN_10_EXP :: -307; // min decimal exponent
- F64_MIN_EXP :: -1021; // min binary exponent
- F64_RADIX :: 2; // exponent radix
- F64_ROUNDS :: 1; // addition rounding: near
|