math.odin 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381
  1. TAU :: 6.28318530717958647692528676655900576;
  2. PI :: 3.14159265358979323846264338327950288;
  3. ONE_OVER_TAU :: 0.636619772367581343075535053490057448;
  4. ONE_OVER_PI :: 0.159154943091895335768883763372514362;
  5. E :: 2.71828182845904523536;
  6. SQRT_TWO :: 1.41421356237309504880168872420969808;
  7. SQRT_THREE :: 1.73205080756887729352744634150587236;
  8. SQRT_FIVE :: 2.23606797749978969640917366873127623;
  9. LOG_TWO :: 0.693147180559945309417232121458176568;
  10. LOG_TEN :: 2.30258509299404568401799145468436421;
  11. EPSILON :: 1.19209290e-7;
  12. τ :: TAU;
  13. π :: PI;
  14. Vec2 :: [vector 2]f32;
  15. Vec3 :: [vector 3]f32;
  16. Vec4 :: [vector 4]f32;
  17. Mat2 :: [2]Vec2;
  18. Mat3 :: [3]Vec3;
  19. Mat4 :: [4]Vec4;
  20. sqrt :: proc(x: f32) -> f32 #foreign __llvm_core "llvm.sqrt.f32";
  21. sqrt :: proc(x: f64) -> f64 #foreign __llvm_core "llvm.sqrt.f64";
  22. sin :: proc(x: f32) -> f32 #foreign __llvm_core "llvm.sin.f32";
  23. sin :: proc(x: f64) -> f64 #foreign __llvm_core "llvm.sin.f64";
  24. cos :: proc(x: f32) -> f32 #foreign __llvm_core "llvm.cos.f32";
  25. cos :: proc(x: f64) -> f64 #foreign __llvm_core "llvm.cos.f64";
  26. tan :: proc(x: f32) -> f32 #inline { return sin(x)/cos(x); }
  27. tan :: proc(x: f64) -> f64 #inline { return sin(x)/cos(x); }
  28. pow :: proc(x, power: f32) -> f32 #foreign __llvm_core "llvm.pow.f32";
  29. pow :: proc(x, power: f64) -> f64 #foreign __llvm_core "llvm.pow.f64";
  30. lerp :: proc(a, b, t: f32) -> f32 { return a*(1-t) + b*t; }
  31. lerp :: proc(a, b, t: f64) -> f64 { return a*(1-t) + b*t; }
  32. sign :: proc(x: f32) -> f32 { if x >= 0 { return +1; } return -1; }
  33. sign :: proc(x: f64) -> f64 { if x >= 0 { return +1; } return -1; }
  34. bit_reverse :: proc(b: u16) -> u16 #foreign __llvm_core "llvm.bitreverse.i16";
  35. bit_reverse :: proc(b: u32) -> u32 #foreign __llvm_core "llvm.bitreverse.i32";
  36. bit_reverse :: proc(b: u64) -> u64 #foreign __llvm_core "llvm.bitreverse.i64";
  37. fmuladd :: proc(a, b, c: f32) -> f32 #foreign __llvm_core "llvm.fmuladd.f32";
  38. fmuladd :: proc(a, b, c: f64) -> f64 #foreign __llvm_core "llvm.fmuladd.f64";
  39. copy_sign :: proc(x, y: f32) -> f32 {
  40. ix := transmute(u32)x;
  41. iy := transmute(u32)y;
  42. ix &= 0x7fff_ffff;
  43. ix |= iy & 0x8000_0000;
  44. return transmute(f32)ix;
  45. }
  46. copy_sign :: proc(x, y: f64) -> f64 {
  47. ix := transmute(u64)x;
  48. iy := transmute(u64)y;
  49. ix &= 0x7fff_ffff_ffff_ff;
  50. ix |= iy & 0x8000_0000_0000_0000;
  51. return transmute(f64)ix;
  52. }
  53. round :: proc(x: f32) -> f32 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); }
  54. round :: proc(x: f64) -> f64 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); }
  55. floor :: proc(x: f32) -> f32 { return x >= 0 ? cast(f32)cast(i64)x : cast(f32)cast(i64)(x-0.5); } // TODO: Get accurate versions
  56. floor :: proc(x: f64) -> f64 { return x >= 0 ? cast(f64)cast(i64)x : cast(f64)cast(i64)(x-0.5); } // TODO: Get accurate versions
  57. ceil :: proc(x: f32) -> f32 { return x < 0 ? cast(f32)cast(i64)x : cast(f32)cast(i64)(x+1); } // TODO: Get accurate versions
  58. ceil :: proc(x: f64) -> f64 { return x < 0 ? cast(f64)cast(i64)x : cast(f64)cast(i64)(x+1); } // TODO: Get accurate versions
  59. remainder :: proc(x, y: f32) -> f32 { return x - round(x/y) * y; }
  60. remainder :: proc(x, y: f64) -> f64 { return x - round(x/y) * y; }
  61. mod :: proc(x, y: f32) -> f32 {
  62. y = abs(y);
  63. result := remainder(abs(x), y);
  64. if sign(result) < 0 {
  65. result += y;
  66. }
  67. return copy_sign(result, x);
  68. }
  69. mod :: proc(x, y: f64) -> f64 {
  70. y = abs(y);
  71. result := remainder(abs(x), y);
  72. if sign(result) < 0 {
  73. result += y;
  74. }
  75. return copy_sign(result, x);
  76. }
  77. to_radians :: proc(degrees: f32) -> f32 { return degrees * TAU / 360; }
  78. to_degrees :: proc(radians: f32) -> f32 { return radians * 360 / TAU; }
  79. dot :: proc(a, b: Vec2) -> f32 { c := a*b; return c.x + c.y; }
  80. dot :: proc(a, b: Vec3) -> f32 { c := a*b; return c.x + c.y + c.z; }
  81. dot :: proc(a, b: Vec4) -> f32 { c := a*b; return c.x + c.y + c.z + c.w; }
  82. cross :: proc(x, y: Vec3) -> Vec3 {
  83. a := swizzle(x, 1, 2, 0) * swizzle(y, 2, 0, 1);
  84. b := swizzle(x, 2, 0, 1) * swizzle(y, 1, 2, 0);
  85. return a - b;
  86. }
  87. mag :: proc(v: Vec2) -> f32 { return sqrt(dot(v, v)); }
  88. mag :: proc(v: Vec3) -> f32 { return sqrt(dot(v, v)); }
  89. mag :: proc(v: Vec4) -> f32 { return sqrt(dot(v, v)); }
  90. norm :: proc(v: Vec2) -> Vec2 { return v / Vec2{mag(v)}; }
  91. norm :: proc(v: Vec3) -> Vec3 { return v / Vec3{mag(v)}; }
  92. norm :: proc(v: Vec4) -> Vec4 { return v / Vec4{mag(v)}; }
  93. norm0 :: proc(v: Vec2) -> Vec2 {
  94. m := mag(v);
  95. if m == 0 {
  96. return Vec2{0};
  97. }
  98. return v / Vec2{m};
  99. }
  100. norm0 :: proc(v: Vec3) -> Vec3 {
  101. m := mag(v);
  102. if m == 0 {
  103. return Vec3{0};
  104. }
  105. return v / Vec3{m};
  106. }
  107. norm0 :: proc(v: Vec4) -> Vec4 {
  108. m := mag(v);
  109. if m == 0 {
  110. return Vec4{0};
  111. }
  112. return v / Vec4{m};
  113. }
  114. mat4_identity :: proc() -> Mat4 {
  115. return Mat4{
  116. {1, 0, 0, 0},
  117. {0, 1, 0, 0},
  118. {0, 0, 1, 0},
  119. {0, 0, 0, 1},
  120. };
  121. }
  122. mat4_transpose :: proc(m: Mat4) -> Mat4 {
  123. for j in 0..4 {
  124. for i in 0..4 {
  125. m[i][j], m[j][i] = m[j][i], m[i][j];
  126. }
  127. }
  128. return m;
  129. }
  130. mul :: proc(a, b: Mat4) -> Mat4 {
  131. c: Mat4;
  132. for j in 0..4 {
  133. for i in 0..4 {
  134. c[j][i] = a[0][i]*b[j][0] +
  135. a[1][i]*b[j][1] +
  136. a[2][i]*b[j][2] +
  137. a[3][i]*b[j][3];
  138. }
  139. }
  140. return c;
  141. }
  142. mul :: proc(m: Mat4, v: Vec4) -> Vec4 {
  143. return Vec4{
  144. m[0][0]*v.x + m[1][0]*v.y + m[2][0]*v.z + m[3][0]*v.w,
  145. m[0][1]*v.x + m[1][1]*v.y + m[2][1]*v.z + m[3][1]*v.w,
  146. m[0][2]*v.x + m[1][2]*v.y + m[2][2]*v.z + m[3][2]*v.w,
  147. m[0][3]*v.x + m[1][3]*v.y + m[2][3]*v.z + m[3][3]*v.w,
  148. };
  149. }
  150. inverse :: proc(m: Mat4) -> Mat4 {
  151. o: Mat4;
  152. sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3];
  153. sf01 := m[2][1] * m[3][3] - m[3][1] * m[2][3];
  154. sf02 := m[2][1] * m[3][2] - m[3][1] * m[2][2];
  155. sf03 := m[2][0] * m[3][3] - m[3][0] * m[2][3];
  156. sf04 := m[2][0] * m[3][2] - m[3][0] * m[2][2];
  157. sf05 := m[2][0] * m[3][1] - m[3][0] * m[2][1];
  158. sf06 := m[1][2] * m[3][3] - m[3][2] * m[1][3];
  159. sf07 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
  160. sf08 := m[1][1] * m[3][2] - m[3][1] * m[1][2];
  161. sf09 := m[1][0] * m[3][3] - m[3][0] * m[1][3];
  162. sf10 := m[1][0] * m[3][2] - m[3][0] * m[1][2];
  163. sf11 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
  164. sf12 := m[1][0] * m[3][1] - m[3][0] * m[1][1];
  165. sf13 := m[1][2] * m[2][3] - m[2][2] * m[1][3];
  166. sf14 := m[1][1] * m[2][3] - m[2][1] * m[1][3];
  167. sf15 := m[1][1] * m[2][2] - m[2][1] * m[1][2];
  168. sf16 := m[1][0] * m[2][3] - m[2][0] * m[1][3];
  169. sf17 := m[1][0] * m[2][2] - m[2][0] * m[1][2];
  170. sf18 := m[1][0] * m[2][1] - m[2][0] * m[1][1];
  171. o[0][0] = +(m[1][1] * sf00 - m[1][2] * sf01 + m[1][3] * sf02);
  172. o[0][1] = -(m[1][0] * sf00 - m[1][2] * sf03 + m[1][3] * sf04);
  173. o[0][2] = +(m[1][0] * sf01 - m[1][1] * sf03 + m[1][3] * sf05);
  174. o[0][3] = -(m[1][0] * sf02 - m[1][1] * sf04 + m[1][2] * sf05);
  175. o[1][0] = -(m[0][1] * sf00 - m[0][2] * sf01 + m[0][3] * sf02);
  176. o[1][1] = +(m[0][0] * sf00 - m[0][2] * sf03 + m[0][3] * sf04);
  177. o[1][2] = -(m[0][0] * sf01 - m[0][1] * sf03 + m[0][3] * sf05);
  178. o[1][3] = +(m[0][0] * sf02 - m[0][1] * sf04 + m[0][2] * sf05);
  179. o[2][0] = +(m[0][1] * sf06 - m[0][2] * sf07 + m[0][3] * sf08);
  180. o[2][1] = -(m[0][0] * sf06 - m[0][2] * sf09 + m[0][3] * sf10);
  181. o[2][2] = +(m[0][0] * sf11 - m[0][1] * sf09 + m[0][3] * sf12);
  182. o[2][3] = -(m[0][0] * sf08 - m[0][1] * sf10 + m[0][2] * sf12);
  183. o[3][0] = -(m[0][1] * sf13 - m[0][2] * sf14 + m[0][3] * sf15);
  184. o[3][1] = +(m[0][0] * sf13 - m[0][2] * sf16 + m[0][3] * sf17);
  185. o[3][2] = -(m[0][0] * sf14 - m[0][1] * sf16 + m[0][3] * sf18);
  186. o[3][3] = +(m[0][0] * sf15 - m[0][1] * sf17 + m[0][2] * sf18);
  187. ood := 1.0 / (m[0][0] * o[0][0] +
  188. m[0][1] * o[0][1] +
  189. m[0][2] * o[0][2] +
  190. m[0][3] * o[0][3]);
  191. o[0][0] *= ood;
  192. o[0][1] *= ood;
  193. o[0][2] *= ood;
  194. o[0][3] *= ood;
  195. o[1][0] *= ood;
  196. o[1][1] *= ood;
  197. o[1][2] *= ood;
  198. o[1][3] *= ood;
  199. o[2][0] *= ood;
  200. o[2][1] *= ood;
  201. o[2][2] *= ood;
  202. o[2][3] *= ood;
  203. o[3][0] *= ood;
  204. o[3][1] *= ood;
  205. o[3][2] *= ood;
  206. o[3][3] *= ood;
  207. return o;
  208. }
  209. mat4_translate :: proc(v: Vec3) -> Mat4 {
  210. m := mat4_identity();
  211. m[3][0] = v.x;
  212. m[3][1] = v.y;
  213. m[3][2] = v.z;
  214. m[3][3] = 1;
  215. return m;
  216. }
  217. mat4_rotate :: proc(v: Vec3, angle_radians: f32) -> Mat4 {
  218. c := cos(angle_radians);
  219. s := sin(angle_radians);
  220. a := norm(v);
  221. t := a * Vec3{1-c};
  222. rot := mat4_identity();
  223. rot[0][0] = c + t.x*a.x;
  224. rot[0][1] = 0 + t.x*a.y + s*a.z;
  225. rot[0][2] = 0 + t.x*a.z - s*a.y;
  226. rot[0][3] = 0;
  227. rot[1][0] = 0 + t.y*a.x - s*a.z;
  228. rot[1][1] = c + t.y*a.y;
  229. rot[1][2] = 0 + t.y*a.z + s*a.x;
  230. rot[1][3] = 0;
  231. rot[2][0] = 0 + t.z*a.x + s*a.y;
  232. rot[2][1] = 0 + t.z*a.y - s*a.x;
  233. rot[2][2] = c + t.z*a.z;
  234. rot[2][3] = 0;
  235. return rot;
  236. }
  237. scale :: proc(m: Mat4, v: Vec3) -> Mat4 {
  238. m[0][0] *= v.x;
  239. m[1][1] *= v.y;
  240. m[2][2] *= v.z;
  241. return m;
  242. }
  243. scale :: proc(m: Mat4, s: f32) -> Mat4 {
  244. m[0][0] *= s;
  245. m[1][1] *= s;
  246. m[2][2] *= s;
  247. return m;
  248. }
  249. look_at :: proc(eye, centre, up: Vec3) -> Mat4 {
  250. f := norm(centre - eye);
  251. s := norm(cross(f, up));
  252. u := cross(s, f);
  253. m: Mat4;
  254. m[0] = Vec4{+s.x, +s.y, +s.z, 0};
  255. m[1] = Vec4{+u.x, +u.y, +u.z, 0};
  256. m[2] = Vec4{-f.x, -f.y, -f.z, 0};
  257. m[3] = Vec4{dot(s, eye), dot(u, eye), dot(f, eye), 1};
  258. return m;
  259. }
  260. perspective :: proc(fovy, aspect, near, far: f32) -> Mat4 {
  261. m: Mat4;
  262. tan_half_fovy := tan(0.5 * fovy);
  263. m[0][0] = 1.0 / (aspect*tan_half_fovy);
  264. m[1][1] = 1.0 / (tan_half_fovy);
  265. m[2][2] = -(far + near) / (far - near);
  266. m[2][3] = -1.0;
  267. m[3][2] = -2.0*far*near / (far - near);
  268. return m;
  269. }
  270. ortho3d :: proc(left, right, bottom, top, near, far: f32) -> Mat4 {
  271. m := mat4_identity();
  272. m[0][0] = +2.0 / (right - left);
  273. m[1][1] = +2.0 / (top - bottom);
  274. m[2][2] = -2.0 / (far - near);
  275. m[3][0] = -(right + left) / (right - left);
  276. m[3][1] = -(top + bottom) / (top - bottom);
  277. m[3][2] = -(far + near) / (far - near);
  278. return m;
  279. }
  280. F32_DIG :: 6;
  281. F32_EPSILON :: 1.192092896e-07;
  282. F32_GUARD :: 0;
  283. F32_MANT_DIG :: 24;
  284. F32_MAX :: 3.402823466e+38;
  285. F32_MAX_10_EXP :: 38;
  286. F32_MAX_EXP :: 128;
  287. F32_MIN :: 1.175494351e-38;
  288. F32_MIN_10_EXP :: -37;
  289. F32_MIN_EXP :: -125;
  290. F32_NORMALIZE :: 0;
  291. F32_RADIX :: 2;
  292. F32_ROUNDS :: 1;
  293. F64_DIG :: 15; // # of decimal digits of precision
  294. F64_EPSILON :: 2.2204460492503131e-016; // smallest such that 1.0+F64_EPSILON != 1.0
  295. F64_MANT_DIG :: 53; // # of bits in mantissa
  296. F64_MAX :: 1.7976931348623158e+308; // max value
  297. F64_MAX_10_EXP :: 308; // max decimal exponent
  298. F64_MAX_EXP :: 1024; // max binary exponent
  299. F64_MIN :: 2.2250738585072014e-308; // min positive value
  300. F64_MIN_10_EXP :: -307; // min decimal exponent
  301. F64_MIN_EXP :: -1021; // min binary exponent
  302. F64_RADIX :: 2; // exponent radix
  303. F64_ROUNDS :: 1; // addition rounding: near