mem.odin 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242
  1. package mem
  2. foreign _ {
  3. @(link_name = "llvm.bswap.i16") swap16 :: proc(b: u16) -> u16 ---;
  4. @(link_name = "llvm.bswap.i32") swap32 :: proc(b: u32) -> u32 ---;
  5. @(link_name = "llvm.bswap.i64") swap64 :: proc(b: u64) -> u64 ---;
  6. }
  7. swap :: proc{swap16, swap32, swap64};
  8. set :: proc "contextless" (data: rawptr, value: byte, len: int) -> rawptr {
  9. if data == nil do return nil;
  10. if len < 0 do return data;
  11. foreign _ {
  12. when size_of(rawptr) == 8 {
  13. @(link_name="llvm.memset.p0i8.i64")
  14. llvm_memset :: proc(dst: rawptr, val: byte, len: int, align: i32, is_volatile: bool) ---;
  15. } else {
  16. @(link_name="llvm.memset.p0i8.i32")
  17. llvm_memset :: proc(dst: rawptr, val: byte, len: int, align: i32, is_volatile: bool) ---;
  18. }
  19. }
  20. llvm_memset(data, byte(value), len, 1, false);
  21. return data;
  22. }
  23. zero :: inline proc "contextless" (data: rawptr, len: int) -> rawptr {
  24. return set(data, 0, len);
  25. }
  26. zero_item :: inline proc "contextless" (item: $P/^$T) {
  27. set(item, 0, size_of(T));
  28. }
  29. zero_slice :: proc "contextless" (data: $T/[]$E) {
  30. if n := len(data); n > 0 {
  31. zero(&data[0], size_of(E)*n);
  32. }
  33. }
  34. copy :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
  35. if src == nil do return dst;
  36. // NOTE(bill): This _must_ be implemented like C's memmove
  37. foreign _ {
  38. when size_of(rawptr) == 8 {
  39. @(link_name="llvm.memmove.p0i8.p0i8.i64")
  40. llvm_memmove :: proc(dst, src: rawptr, len: int, align: i32, is_volatile: bool) ---;
  41. } else {
  42. @(link_name="llvm.memmove.p0i8.p0i8.i32")
  43. llvm_memmove :: proc(dst, src: rawptr, len: int, align: i32, is_volatile: bool) ---;
  44. }
  45. }
  46. llvm_memmove(dst, src, len, 1, false);
  47. return dst;
  48. }
  49. copy_non_overlapping :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
  50. if src == nil do return dst;
  51. // NOTE(bill): This _must_ be implemented like C's memcpy
  52. foreign _ {
  53. when size_of(rawptr) == 8 {
  54. @(link_name="llvm.memcpy.p0i8.p0i8.i64")
  55. llvm_memcpy :: proc(dst, src: rawptr, len: int, align: i32, is_volatile: bool) ---;
  56. } else {
  57. @(link_name="llvm.memcpy.p0i8.p0i8.i32")
  58. llvm_memcpy :: proc(dst, src: rawptr, len: int, align: i32, is_volatile: bool) ---;
  59. }
  60. }
  61. llvm_memcpy(dst, src, len, 1, false);
  62. return dst;
  63. }
  64. compare :: inline proc "contextless" (a, b: []byte) -> int {
  65. return compare_byte_ptrs(&a[0], &b[0], min(len(a), len(b)));
  66. }
  67. compare_byte_ptrs :: proc "contextless" (a, b: ^byte, n: int) -> int #no_bounds_check {
  68. x := slice_ptr(a, n);
  69. y := slice_ptr(b, n);
  70. SU :: size_of(uintptr);
  71. fast := n/SU + 1;
  72. offset := (fast-1)*SU;
  73. curr_block := 0;
  74. if n < SU {
  75. fast = 0;
  76. }
  77. la := slice_ptr((^uintptr)(a), fast);
  78. lb := slice_ptr((^uintptr)(b), fast);
  79. for /**/; curr_block < fast; curr_block += 1 {
  80. if la[curr_block] ~ lb[curr_block] != 0 {
  81. for pos := curr_block*SU; pos < n; pos += 1 {
  82. if x[pos] ~ y[pos] != 0 {
  83. return (int(x[pos]) - int(y[pos])) < 0 ? -1 : +1;
  84. }
  85. }
  86. }
  87. }
  88. for /**/; offset < n; offset += 1 {
  89. if x[offset] ~ y[offset] != 0 {
  90. return (int(x[offset]) - int(y[offset])) < 0 ? -1 : +1;
  91. }
  92. }
  93. return 0;
  94. }
  95. compare_ptrs :: inline proc "contextless" (a, b: rawptr, n: int) -> int {
  96. return compare_byte_ptrs((^byte)(a), (^byte)(b), n);
  97. }
  98. ptr_offset :: inline proc "contextless" (ptr: $P/^$T, n: int) -> P {
  99. new := int(uintptr(ptr)) + size_of(T)*n;
  100. return P(uintptr(new));
  101. }
  102. ptr_sub :: inline proc "contextless" (a, b: $P/^$T) -> int {
  103. return (int(uintptr(a)) - int(uintptr(b)))/size_of(T);
  104. }
  105. slice_ptr :: inline proc "contextless" (ptr: ^$T, len: int) -> []T {
  106. assert(len >= 0);
  107. slice := Raw_Slice{data = ptr, len = len};
  108. return transmute([]T)slice;
  109. }
  110. slice_to_bytes :: inline proc "contextless" (slice: $E/[]$T) -> []byte {
  111. s := transmute(Raw_Slice)slice;
  112. s.len *= size_of(T);
  113. return transmute([]byte)s;
  114. }
  115. buffer_from_slice :: inline proc(backing: $T/[]$E) -> [dynamic]E {
  116. s := transmute(Raw_Slice)backing;
  117. d := Raw_Dynamic_Array{
  118. data = s.data,
  119. len = 0,
  120. cap = s.len,
  121. allocator = nil_allocator(),
  122. };
  123. return transmute([dynamic]E)d;
  124. }
  125. ptr_to_bytes :: inline proc "contextless" (ptr: ^$T, len := 1) -> []byte {
  126. assert(len >= 0);
  127. return transmute([]byte)Raw_Slice{ptr, len*size_of(T)};
  128. }
  129. any_to_bytes :: inline proc "contextless" (val: any) -> []byte {
  130. ti := type_info_of(val.id);
  131. size := ti != nil ? ti.size : 0;
  132. return transmute([]byte)Raw_Slice{val.data, size};
  133. }
  134. kilobytes :: inline proc "contextless" (x: int) -> int do return (x) * 1024;
  135. megabytes :: inline proc "contextless" (x: int) -> int do return kilobytes(x) * 1024;
  136. gigabytes :: inline proc "contextless" (x: int) -> int do return megabytes(x) * 1024;
  137. terabytes :: inline proc "contextless" (x: int) -> int do return gigabytes(x) * 1024;
  138. is_power_of_two :: inline proc(x: uintptr) -> bool {
  139. if x <= 0 do return false;
  140. return (x & (x-1)) == 0;
  141. }
  142. align_forward :: proc(ptr: rawptr, align: uintptr) -> rawptr {
  143. assert(is_power_of_two(align));
  144. a := uintptr(align);
  145. p := uintptr(ptr);
  146. modulo := p & (a-1);
  147. if modulo != 0 do p += a - modulo;
  148. return rawptr(p);
  149. }
  150. align_forward_uintptr :: proc(ptr, align: uintptr) -> uintptr {
  151. assert(is_power_of_two(align));
  152. a := uintptr(align);
  153. p := uintptr(ptr);
  154. modulo := p & (a-1);
  155. if modulo != 0 do p += a - modulo;
  156. return uintptr(p);
  157. }
  158. align_forward_int :: inline proc(ptr, align: int) -> int {
  159. return int(align_forward_uintptr(uintptr(ptr), uintptr(align)));
  160. }
  161. align_forward_uint :: inline proc(ptr, align: uint) -> uint {
  162. return uint(align_forward_uintptr(uintptr(ptr), uintptr(align)));
  163. }
  164. context_from_allocator :: proc(a: Allocator) -> type_of(context) {
  165. context.allocator = a;
  166. return context;
  167. }
  168. Fixed_Byte_Buffer :: distinct [dynamic]byte;
  169. make_fixed_byte_buffer :: proc(backing: []byte) -> Fixed_Byte_Buffer {
  170. s := transmute(Raw_Slice)backing;
  171. d: Raw_Dynamic_Array;
  172. d.data = s.data;
  173. d.len = 0;
  174. d.cap = s.len;
  175. d.allocator = nil_allocator();
  176. return transmute(Fixed_Byte_Buffer)d;
  177. }
  178. align_formula :: proc(size, align: int) -> int {
  179. result := size + align-1;
  180. return result - result%align;
  181. }
  182. calc_padding_with_header :: proc(ptr: uintptr, align: uintptr, header_size: int) -> int {
  183. p := uintptr(ptr);
  184. a := uintptr(align);
  185. modulo := p & (a-1);
  186. padding := uintptr(0);
  187. if modulo != 0 do padding = a - modulo;
  188. needed_space := uintptr(header_size);
  189. if padding < needed_space {
  190. needed_space -= padding;
  191. if needed_space & (a-1) > 0 {
  192. padding += align * (1+(needed_space/align));
  193. } else {
  194. padding += align * (needed_space/align);
  195. }
  196. }
  197. return int(padding);
  198. }