internal.odin 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511
  1. package runtime
  2. import "core:mem"
  3. import "core:os"
  4. import "core:unicode/utf8"
  5. print_u64 :: proc(fd: os.Handle, u: u64) {
  6. digits := "0123456789";
  7. a: [129]byte;
  8. i := len(a);
  9. b := u64(10);
  10. for u >= b {
  11. i -= 1; a[i] = digits[u % b];
  12. u /= b;
  13. }
  14. i -= 1; a[i] = digits[u % b];
  15. os.write(fd, a[i:]);
  16. }
  17. print_i64 :: proc(fd: os.Handle, u: i64) {
  18. digits := "0123456789";
  19. b :: i64(10);
  20. neg := u < 0;
  21. u = abs(u);
  22. a: [129]byte;
  23. i := len(a);
  24. for u >= b {
  25. i -= 1; a[i] = digits[u % b];
  26. u /= b;
  27. }
  28. i -= 1; a[i] = digits[u % b];
  29. if neg {
  30. i -= 1; a[i] = '-';
  31. }
  32. os.write(fd, a[i:]);
  33. }
  34. print_caller_location :: proc(fd: os.Handle, using loc: Source_Code_Location) {
  35. os.write_string(fd, file_path);
  36. os.write_byte(fd, '(');
  37. print_u64(fd, u64(line));
  38. os.write_byte(fd, ':');
  39. print_u64(fd, u64(column));
  40. os.write_byte(fd, ')');
  41. }
  42. print_typeid :: proc(fd: os.Handle, id: typeid) {
  43. ti := type_info_of(id);
  44. print_type(fd, ti);
  45. }
  46. print_type :: proc(fd: os.Handle, ti: ^Type_Info) {
  47. if ti == nil {
  48. os.write_string(fd, "nil");
  49. return;
  50. }
  51. switch info in ti.variant {
  52. case Type_Info_Named:
  53. os.write_string(fd, info.name);
  54. case Type_Info_Integer:
  55. switch ti.id {
  56. case int: os.write_string(fd, "int");
  57. case uint: os.write_string(fd, "uint");
  58. case uintptr: os.write_string(fd, "uintptr");
  59. case:
  60. os.write_byte(fd, info.signed ? 'i' : 'u');
  61. print_u64(fd, u64(8*ti.size));
  62. }
  63. case Type_Info_Rune:
  64. os.write_string(fd, "rune");
  65. case Type_Info_Float:
  66. os.write_byte(fd, 'f');
  67. print_u64(fd, u64(8*ti.size));
  68. case Type_Info_Complex:
  69. os.write_string(fd, "complex");
  70. print_u64(fd, u64(8*ti.size));
  71. case Type_Info_String:
  72. os.write_string(fd, "string");
  73. case Type_Info_Boolean:
  74. switch ti.id {
  75. case bool: os.write_string(fd, "bool");
  76. case:
  77. os.write_byte(fd, 'b');
  78. print_u64(fd, u64(8*ti.size));
  79. }
  80. case Type_Info_Any:
  81. os.write_string(fd, "any");
  82. case Type_Info_Type_Id:
  83. os.write_string(fd, "typeid");
  84. case Type_Info_Pointer:
  85. if info.elem == nil {
  86. os.write_string(fd, "rawptr");
  87. } else {
  88. os.write_string(fd, "^");
  89. print_type(fd, info.elem);
  90. }
  91. case Type_Info_Procedure:
  92. os.write_string(fd, "proc");
  93. if info.params == nil {
  94. os.write_string(fd, "()");
  95. } else {
  96. t := info.params.variant.(Type_Info_Tuple);
  97. os.write_string(fd, "(");
  98. for t, i in t.types {
  99. if i > 0 do os.write_string(fd, ", ");
  100. print_type(fd, t);
  101. }
  102. os.write_string(fd, ")");
  103. }
  104. if info.results != nil {
  105. os.write_string(fd, " -> ");
  106. print_type(fd, info.results);
  107. }
  108. case Type_Info_Tuple:
  109. count := len(info.names);
  110. if count != 1 do os.write_string(fd, "(");
  111. for name, i in info.names {
  112. if i > 0 do os.write_string(fd, ", ");
  113. t := info.types[i];
  114. if len(name) > 0 {
  115. os.write_string(fd, name);
  116. os.write_string(fd, ": ");
  117. }
  118. print_type(fd, t);
  119. }
  120. if count != 1 do os.write_string(fd, ")");
  121. case Type_Info_Array:
  122. os.write_string(fd, "[");
  123. print_u64(fd, u64(info.count));
  124. os.write_string(fd, "]");
  125. print_type(fd, info.elem);
  126. case Type_Info_Dynamic_Array:
  127. os.write_string(fd, "[dynamic]");
  128. print_type(fd, info.elem);
  129. case Type_Info_Slice:
  130. os.write_string(fd, "[]");
  131. print_type(fd, info.elem);
  132. case Type_Info_Map:
  133. os.write_string(fd, "map[");
  134. print_type(fd, info.key);
  135. os.write_byte(fd, ']');
  136. print_type(fd, info.value);
  137. case Type_Info_Struct:
  138. os.write_string(fd, "struct ");
  139. if info.is_packed do os.write_string(fd, "#packed ");
  140. if info.is_raw_union do os.write_string(fd, "#raw_union ");
  141. if info.custom_align {
  142. os.write_string(fd, "#align ");
  143. print_u64(fd, u64(ti.align));
  144. os.write_byte(fd, ' ');
  145. }
  146. os.write_byte(fd, '{');
  147. for name, i in info.names {
  148. if i > 0 do os.write_string(fd, ", ");
  149. os.write_string(fd, name);
  150. os.write_string(fd, ": ");
  151. print_type(fd, info.types[i]);
  152. }
  153. os.write_byte(fd, '}');
  154. case Type_Info_Union:
  155. os.write_string(fd, "union {");
  156. for variant, i in info.variants {
  157. if i > 0 do os.write_string(fd, ", ");
  158. print_type(fd, variant);
  159. }
  160. os.write_string(fd, "}");
  161. case Type_Info_Enum:
  162. os.write_string(fd, "enum ");
  163. print_type(fd, info.base);
  164. os.write_string(fd, " {");
  165. for name, i in info.names {
  166. if i > 0 do os.write_string(fd, ", ");
  167. os.write_string(fd, name);
  168. }
  169. os.write_string(fd, "}");
  170. case Type_Info_Bit_Field:
  171. os.write_string(fd, "bit_field ");
  172. if ti.align != 1 {
  173. os.write_string(fd, "#align ");
  174. print_u64(fd, u64(ti.align));
  175. os.write_byte(fd, ' ');
  176. }
  177. os.write_string(fd, " {");
  178. for name, i in info.names {
  179. if i > 0 do os.write_string(fd, ", ");
  180. os.write_string(fd, name);
  181. os.write_string(fd, ": ");
  182. print_u64(fd, u64(info.bits[i]));
  183. }
  184. os.write_string(fd, "}");
  185. case Type_Info_Bit_Set:
  186. os.write_string(fd, "bit_set[");
  187. switch elem in type_info_base(info.elem).variant {
  188. case Type_Info_Enum:
  189. print_type(fd, info.elem);
  190. case Type_Info_Rune:
  191. os.write_encoded_rune(fd, rune(info.lower));
  192. os.write_string(fd, "..");
  193. os.write_encoded_rune(fd, rune(info.upper));
  194. case:
  195. print_i64(fd, info.lower);
  196. os.write_string(fd, "..");
  197. print_i64(fd, info.upper);
  198. }
  199. if info.underlying != nil {
  200. os.write_string(fd, "; ");
  201. print_type(fd, info.underlying);
  202. }
  203. os.write_byte(fd, ']');
  204. case Type_Info_Opaque:
  205. os.write_string(fd, "opaque ");
  206. print_type(fd, info.elem);
  207. case Type_Info_Simd_Vector:
  208. if info.is_x86_mmx {
  209. os.write_string(fd, "intrinsics.x86_mmx");
  210. } else {
  211. os.write_string(fd, "intrinsics.vector(");
  212. print_u64(fd, u64(info.count));
  213. os.write_string(fd, ", ");
  214. print_type(fd, info.elem);
  215. os.write_byte(fd, ')');
  216. }
  217. }
  218. }
  219. string_eq :: proc "contextless" (a, b: string) -> bool {
  220. switch {
  221. case len(a) != len(b): return false;
  222. case len(a) == 0: return true;
  223. case &a[0] == &b[0]: return true;
  224. }
  225. return string_cmp(a, b) == 0;
  226. }
  227. string_cmp :: proc "contextless" (a, b: string) -> int {
  228. return mem.compare_byte_ptrs(&a[0], &b[0], min(len(a), len(b)));
  229. }
  230. string_ne :: inline proc "contextless" (a, b: string) -> bool { return !string_eq(a, b); }
  231. string_lt :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) < 0; }
  232. string_gt :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) > 0; }
  233. string_le :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) <= 0; }
  234. string_ge :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) >= 0; }
  235. cstring_len :: proc "contextless" (s: cstring) -> int {
  236. n := 0;
  237. for p := (^byte)(s); p != nil && p^ != 0; p = mem.ptr_offset(p, 1) {
  238. n += 1;
  239. }
  240. return n;
  241. }
  242. cstring_to_string :: proc "contextless" (s: cstring) -> string {
  243. if s == nil do return "";
  244. ptr := (^byte)(s);
  245. n := cstring_len(s);
  246. return transmute(string)mem.Raw_String{ptr, n};
  247. }
  248. complex64_eq :: inline proc "contextless" (a, b: complex64) -> bool { return real(a) == real(b) && imag(a) == imag(b); }
  249. complex64_ne :: inline proc "contextless" (a, b: complex64) -> bool { return real(a) != real(b) || imag(a) != imag(b); }
  250. complex128_eq :: inline proc "contextless" (a, b: complex128) -> bool { return real(a) == real(b) && imag(a) == imag(b); }
  251. complex128_ne :: inline proc "contextless" (a, b: complex128) -> bool { return real(a) != real(b) || imag(a) != imag(b); }
  252. bounds_check_error :: proc "contextless" (file: string, line, column: int, index, count: int) {
  253. if 0 <= index && index < count do return;
  254. handle_error :: proc "contextless" (file: string, line, column: int, index, count: int) {
  255. fd := os.stderr;
  256. print_caller_location(fd, Source_Code_Location{file, line, column, "", 0});
  257. os.write_string(fd, " Index ");
  258. print_i64(fd, i64(index));
  259. os.write_string(fd, " is out of bounds range 0:");
  260. print_i64(fd, i64(count));
  261. os.write_byte(fd, '\n');
  262. debug_trap();
  263. }
  264. handle_error(file, line, column, index, count);
  265. }
  266. slice_handle_error :: proc "contextless" (file: string, line, column: int, lo, hi: int, len: int) {
  267. fd := os.stderr;
  268. print_caller_location(fd, Source_Code_Location{file, line, column, "", 0});
  269. os.write_string(fd, " Invalid slice indices: ");
  270. print_i64(fd, i64(lo));
  271. os.write_string(fd, ":");
  272. print_i64(fd, i64(hi));
  273. os.write_string(fd, ":");
  274. print_i64(fd, i64(len));
  275. os.write_byte(fd, '\n');
  276. debug_trap();
  277. }
  278. slice_expr_error_hi :: proc "contextless" (file: string, line, column: int, hi: int, len: int) {
  279. if 0 <= hi && hi <= len do return;
  280. slice_handle_error(file, line, column, 0, hi, len);
  281. }
  282. slice_expr_error_lo_hi :: proc "contextless" (file: string, line, column: int, lo, hi: int, len: int) {
  283. if 0 <= lo && lo <= len && lo <= hi && hi <= len do return;
  284. slice_handle_error(file, line, column, lo, hi, len);
  285. }
  286. dynamic_array_expr_error :: proc "contextless" (file: string, line, column: int, low, high, max: int) {
  287. if 0 <= low && low <= high && high <= max do return;
  288. handle_error :: proc "contextless" (file: string, line, column: int, low, high, max: int) {
  289. fd := os.stderr;
  290. print_caller_location(fd, Source_Code_Location{file, line, column, "", 0});
  291. os.write_string(fd, " Invalid dynamic array values: ");
  292. print_i64(fd, i64(low));
  293. os.write_string(fd, ":");
  294. print_i64(fd, i64(high));
  295. os.write_string(fd, ":");
  296. print_i64(fd, i64(max));
  297. os.write_byte(fd, '\n');
  298. debug_trap();
  299. }
  300. handle_error(file, line, column, low, high, max);
  301. }
  302. type_assertion_check :: proc "contextless" (ok: bool, file: string, line, column: int, from, to: typeid) {
  303. if ok do return;
  304. handle_error :: proc "contextless" (file: string, line, column: int, from, to: typeid) {
  305. fd := os.stderr;
  306. print_caller_location(fd, Source_Code_Location{file, line, column, "", 0});
  307. os.write_string(fd, " Invalid type assertion from ");
  308. print_typeid(fd, from);
  309. os.write_string(fd, " to ");
  310. print_typeid(fd, to);
  311. os.write_byte(fd, '\n');
  312. debug_trap();
  313. }
  314. handle_error(file, line, column, from, to);
  315. }
  316. string_decode_rune :: inline proc "contextless" (s: string) -> (rune, int) {
  317. return utf8.decode_rune_in_string(s);
  318. }
  319. bounds_check_error_loc :: inline proc "contextless" (using loc := #caller_location, index, count: int) {
  320. bounds_check_error(file_path, int(line), int(column), index, count);
  321. }
  322. slice_expr_error_hi_loc :: inline proc "contextless" (using loc := #caller_location, hi: int, len: int) {
  323. slice_expr_error_hi(file_path, int(line), int(column), hi, len);
  324. }
  325. slice_expr_error_lo_hi_loc :: inline proc "contextless" (using loc := #caller_location, lo, hi: int, len: int) {
  326. slice_expr_error_lo_hi(file_path, int(line), int(column), lo, hi, len);
  327. }
  328. dynamic_array_expr_error_loc :: inline proc "contextless" (using loc := #caller_location, low, high, max: int) {
  329. dynamic_array_expr_error(file_path, int(line), int(column), low, high, max);
  330. }
  331. make_slice_error_loc :: inline proc "contextless" (loc := #caller_location, len: int) {
  332. if 0 <= len do return;
  333. handle_error :: proc "contextless" (loc: Source_Code_Location, len: int) {
  334. fd := os.stderr;
  335. print_caller_location(fd, loc);
  336. os.write_string(fd, " Invalid slice length for make: ");
  337. print_i64(fd, i64(len));
  338. os.write_byte(fd, '\n');
  339. debug_trap();
  340. }
  341. handle_error(loc, len);
  342. }
  343. make_dynamic_array_error_loc :: inline proc "contextless" (using loc := #caller_location, len, cap: int) {
  344. if 0 <= len && len <= cap do return;
  345. handle_error :: proc "contextless" (loc: Source_Code_Location, len, cap: int) {
  346. fd := os.stderr;
  347. print_caller_location(fd, loc);
  348. os.write_string(fd, " Invalid dynamic array parameters for make: ");
  349. print_i64(fd, i64(len));
  350. os.write_byte(fd, ':');
  351. print_i64(fd, i64(cap));
  352. os.write_byte(fd, '\n');
  353. debug_trap();
  354. }
  355. handle_error(loc, len, cap);
  356. }
  357. make_map_expr_error_loc :: inline proc "contextless" (loc := #caller_location, cap: int) {
  358. if 0 <= cap do return;
  359. handle_error :: proc "contextless" (loc: Source_Code_Location, cap: int) {
  360. fd := os.stderr;
  361. print_caller_location(fd, loc);
  362. os.write_string(fd, " Invalid map capacity for make: ");
  363. print_i64(fd, i64(cap));
  364. os.write_byte(fd, '\n');
  365. debug_trap();
  366. }
  367. handle_error(loc, cap);
  368. }
  369. @(default_calling_convention = "c")
  370. foreign {
  371. @(link_name="llvm.sqrt.f32") _sqrt_f32 :: proc(x: f32) -> f32 ---
  372. @(link_name="llvm.sqrt.f64") _sqrt_f64 :: proc(x: f64) -> f64 ---
  373. }
  374. abs_f32 :: inline proc "contextless" (x: f32) -> f32 {
  375. foreign {
  376. @(link_name="llvm.fabs.f32") _abs :: proc "c" (x: f32) -> f32 ---
  377. }
  378. return _abs(x);
  379. }
  380. abs_f64 :: inline proc "contextless" (x: f64) -> f64 {
  381. foreign {
  382. @(link_name="llvm.fabs.f64") _abs :: proc "c" (x: f64) -> f64 ---
  383. }
  384. return _abs(x);
  385. }
  386. min_f32 :: proc(a, b: f32) -> f32 {
  387. foreign {
  388. @(link_name="llvm.minnum.f32") _min :: proc "c" (a, b: f32) -> f32 ---
  389. }
  390. return _min(a, b);
  391. }
  392. min_f64 :: proc(a, b: f64) -> f64 {
  393. foreign {
  394. @(link_name="llvm.minnum.f64") _min :: proc "c" (a, b: f64) -> f64 ---
  395. }
  396. return _min(a, b);
  397. }
  398. max_f32 :: proc(a, b: f32) -> f32 {
  399. foreign {
  400. @(link_name="llvm.maxnum.f32") _max :: proc "c" (a, b: f32) -> f32 ---
  401. }
  402. return _max(a, b);
  403. }
  404. max_f64 :: proc(a, b: f64) -> f64 {
  405. foreign {
  406. @(link_name="llvm.maxnum.f64") _max :: proc "c" (a, b: f64) -> f64 ---
  407. }
  408. return _max(a, b);
  409. }
  410. abs_complex64 :: inline proc "contextless" (x: complex64) -> f32 {
  411. r, i := real(x), imag(x);
  412. return _sqrt_f32(r*r + i*i);
  413. }
  414. abs_complex128 :: inline proc "contextless" (x: complex128) -> f64 {
  415. r, i := real(x), imag(x);
  416. return _sqrt_f64(r*r + i*i);
  417. }
  418. quo_complex64 :: proc(n, m: complex64) -> complex64 {
  419. e, f: f32;
  420. if abs(real(m)) >= abs(imag(m)) {
  421. ratio := imag(m) / real(m);
  422. denom := real(m) + ratio*imag(m);
  423. e = (real(n) + imag(n)*ratio) / denom;
  424. f = (imag(n) - real(n)*ratio) / denom;
  425. } else {
  426. ratio := real(m) / imag(m);
  427. denom := imag(m) + ratio*real(m);
  428. e = (real(n)*ratio + imag(n)) / denom;
  429. f = (imag(n)*ratio - real(n)) / denom;
  430. }
  431. return complex(e, f);
  432. }
  433. quo_complex128 :: proc(n, m: complex128) -> complex128 {
  434. e, f: f64;
  435. if abs(real(m)) >= abs(imag(m)) {
  436. ratio := imag(m) / real(m);
  437. denom := real(m) + ratio*imag(m);
  438. e = (real(n) + imag(n)*ratio) / denom;
  439. f = (imag(n) - real(n)*ratio) / denom;
  440. } else {
  441. ratio := real(m) / imag(m);
  442. denom := imag(m) + ratio*real(m);
  443. e = (real(n)*ratio + imag(n)) / denom;
  444. f = (imag(n)*ratio - real(n)) / denom;
  445. }
  446. return complex(e, f);
  447. }