123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 |
- package linalg
- import "core:math"
- import "intrinsics"
- // Generic
- dot_vector :: proc(a, b: $T/[$N]$E) -> (c: E) {
- for i in 0..<N {
- c += a[i] * b[i];
- }
- return;
- }
- dot_quaternion128 :: proc(a, b: $T/quaternion128) -> (c: f32) {
- return real(a)*real(a) + imag(a)*imag(b) + jmag(a)*jmag(b) + kmag(a)*kmag(b);
- }
- dot_quaternion256 :: proc(a, b: $T/quaternion256) -> (c: f64) {
- return real(a)*real(a) + imag(a)*imag(b) + jmag(a)*jmag(b) + kmag(a)*kmag(b);
- }
- dot :: proc{dot_vector, dot_quaternion128, dot_quaternion256};
- cross2 :: proc(a, b: $T/[2]$E) -> E {
- return a[0]*b[1] - b[0]*a[1];
- }
- cross3 :: proc(a, b: $T/[3]$E) -> (c: T) {
- c[0] = +(a[1]*b[2] - b[1]*a[2]);
- c[1] = -(a[2]*b[0] - b[2]*a[0]);
- c[2] = +(a[0]*b[1] - b[0]*a[1]);
- return;
- }
- cross :: proc{cross2, cross3};
- normalize_vector :: proc(v: $T/[$N]$E) -> T {
- return v / length(v);
- }
- normalize_quaternion128 :: proc(q: $Q/quaternion128) -> Q {
- return q/abs(q);
- }
- normalize_quaternion256 :: proc(q: $Q/quaternion256) -> Q {
- return q/abs(q);
- }
- normalize :: proc{normalize_vector, normalize_quaternion128, normalize_quaternion256};
- normalize0_vector :: proc(v: $T/[$N]$E) -> T {
- m := length(v);
- return m == 0 ? 0 : v/m;
- }
- normalize0_quaternion128 :: proc(q: $Q/quaternion128) -> Q {
- m := abs(q);
- return m == 0 ? 0 : q/m;
- }
- normalize0_quaternion256 :: proc(q: $Q/quaternion256) -> Q {
- m := abs(q);
- return m == 0 ? 0 : q/m;
- }
- normalize0 :: proc{normalize0_vector, normalize0_quaternion128, normalize0_quaternion256};
- length :: proc(v: $T/[$N]$E) -> E {
- return math.sqrt(dot(v, v));
- }
- identity :: proc($T: typeid/[$N][N]$E) -> (m: T) {
- for i in 0..<N do m[i][i] = E(1);
- return m;
- }
- transpose :: proc(a: $T/[$N][$M]$E) -> (m: [M][N]E) {
- for j in 0..<M {
- for i in 0..<N {
- m[j][i] = a[i][j];
- }
- }
- return;
- }
- mul_matrix :: proc(a, b: $M/[$N][N]$E) -> (c: M)
- where !intrinsics.type_is_array(E),
- intrinsics.type_is_numeric(E) {
- for i in 0..<N {
- for k in 0..<N {
- for j in 0..<N {
- c[k][i] += a[j][i] * b[k][j];
- }
- }
- }
- return;
- }
- mul_matrix_differ :: proc(a: $A/[$J][$I]$E, b: $B/[$K][J]E) -> (c: [K][I]E)
- where !intrinsics.type_is_array(E),
- intrinsics.type_is_numeric(E),
- I != K {
- for k in 0..<K {
- for j in 0..<J {
- for i in 0..<I {
- c[k][i] += a[j][i] * b[k][j];
- }
- }
- }
- return;
- }
- mul_matrix_vector :: proc(a: $A/[$I][$J]$E, b: $B/[I]E) -> (c: B)
- where !intrinsics.type_is_array(E),
- intrinsics.type_is_numeric(E) {
- for i in 0..<I {
- for j in 0..<J {
- c[i] += a[i][j] * b[i];
- }
- }
- return;
- }
- mul_quaternion128_vector3 :: proc(q: $Q/quaternion128, v: $V/[3]$F/f32) -> V {
- Raw_Quaternion :: struct {xyz: [3]f32, r: f32};
- q := transmute(Raw_Quaternion)q;
- v := transmute([3]f32)v;
- t := cross(2*q.xyz, v);
- return V(v + q.r*t + cross(q.xyz, t));
- }
- mul_quaternion256_vector3 :: proc(q: $Q/quaternion256, v: $V/[3]$F/f64) -> V {
- Raw_Quaternion :: struct {xyz: [3]f64, r: f64};
- q := transmute(Raw_Quaternion)q;
- v := transmute([3]f64)v;
- t := cross(2*q.xyz, v);
- return V(v + q.r*t + cross(q.xyz, t));
- }
- mul_quaternion_vector3 :: proc{mul_quaternion128_vector3, mul_quaternion256_vector3};
- mul :: proc{
- mul_matrix,
- mul_matrix_differ,
- mul_matrix_vector,
- mul_quaternion128_vector3,
- mul_quaternion256_vector3,
- };
- // Specific
- Float :: f32;
- Vector2 :: distinct [2]Float;
- Vector3 :: distinct [3]Float;
- Vector4 :: distinct [4]Float;
- Matrix1x1 :: distinct [1][1]Float;
- Matrix1x2 :: distinct [1][2]Float;
- Matrix1x3 :: distinct [1][3]Float;
- Matrix1x4 :: distinct [1][4]Float;
- Matrix2x1 :: distinct [2][1]Float;
- Matrix2x2 :: distinct [2][2]Float;
- Matrix2x3 :: distinct [2][3]Float;
- Matrix2x4 :: distinct [2][4]Float;
- Matrix3x1 :: distinct [3][1]Float;
- Matrix3x2 :: distinct [3][2]Float;
- Matrix3x3 :: distinct [3][3]Float;
- Matrix3x4 :: distinct [3][4]Float;
- Matrix4x1 :: distinct [4][1]Float;
- Matrix4x2 :: distinct [4][2]Float;
- Matrix4x3 :: distinct [4][3]Float;
- Matrix4x4 :: distinct [4][4]Float;
- Matrix1 :: Matrix1x1;
- Matrix2 :: Matrix2x2;
- Matrix3 :: Matrix3x3;
- Matrix4 :: Matrix4x4;
- Quaternion :: distinct (size_of(Float) == size_of(f32) ? quaternion128 : quaternion256);
- translate_matrix4 :: proc(v: Vector3) -> Matrix4 {
- m := identity(Matrix4);
- m[3][0] = v[0];
- m[3][1] = v[1];
- m[3][2] = v[2];
- return m;
- }
- rotate_matrix4 :: proc(v: Vector3, angle_radians: Float) -> Matrix4 {
- c := math.cos(angle_radians);
- s := math.sin(angle_radians);
- a := normalize(v);
- t := a * (1-c);
- rot := identity(Matrix4);
- rot[0][0] = c + t[0]*a[0];
- rot[0][1] = 0 + t[0]*a[1] + s*a[2];
- rot[0][2] = 0 + t[0]*a[2] - s*a[1];
- rot[0][3] = 0;
- rot[1][0] = 0 + t[1]*a[0] - s*a[2];
- rot[1][1] = c + t[1]*a[1];
- rot[1][2] = 0 + t[1]*a[2] + s*a[0];
- rot[1][3] = 0;
- rot[2][0] = 0 + t[2]*a[0] + s*a[1];
- rot[2][1] = 0 + t[2]*a[1] - s*a[0];
- rot[2][2] = c + t[2]*a[2];
- rot[2][3] = 0;
- return rot;
- }
- scale_matrix4 :: proc(m: Matrix4, v: Vector3) -> Matrix4 {
- mm := m;
- mm[0][0] *= v[0];
- mm[1][1] *= v[1];
- mm[2][2] *= v[2];
- return mm;
- }
- look_at :: proc(eye, centre, up: Vector3) -> Matrix4 {
- f := normalize(centre - eye);
- s := normalize(cross(f, up));
- u := cross(s, f);
- return Matrix4{
- {+s.x, +u.x, -f.x, 0},
- {+s.y, +u.y, -f.y, 0},
- {+s.z, +u.z, -f.z, 0},
- {-dot(s, eye), -dot(u, eye), +dot(f, eye), 1},
- };
- }
- perspective :: proc(fovy, aspect, near, far: Float) -> (m: Matrix4) {
- tan_half_fovy := math.tan(0.5 * fovy);
- m[0][0] = 1 / (aspect*tan_half_fovy);
- m[1][1] = 1 / (tan_half_fovy);
- m[2][2] = -(far + near) / (far - near);
- m[2][3] = -1;
- m[3][2] = -2*far*near / (far - near);
- return;
- }
- ortho3d :: proc(left, right, bottom, top, near, far: Float) -> (m: Matrix4) {
- m[0][0] = +2 / (right - left);
- m[1][1] = +2 / (top - bottom);
- m[2][2] = -2 / (far - near);
- m[3][0] = -(right + left) / (right - left);
- m[3][1] = -(top + bottom) / (top - bottom);
- m[3][2] = -(far + near) / (far- near);
- m[3][3] = 1;
- return;
- }
- axis_angle :: proc(axis: Vector3, angle_radians: Float) -> Quaternion {
- t := angle_radians*0.5;
- w := math.cos(t);
- v := normalize(axis) * math.sin(t);
- return quaternion(w, v.x, v.y, v.z);
- }
- angle_axis :: proc(angle_radians: Float, axis: Vector3) -> Quaternion {
- t := angle_radians*0.5;
- w := math.cos(t);
- v := normalize(axis) * math.sin(t);
- return quaternion(w, v.x, v.y, v.z);
- }
- euler_angles :: proc(pitch, yaw, roll: Float) -> Quaternion {
- p := axis_angle({1, 0, 0}, pitch);
- y := axis_angle({0, 1, 0}, yaw);
- r := axis_angle({0, 0, 1}, roll);
- return (y * p) * r;
- }
|