123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401 |
- package linalg
- import "core:math"
- import "intrinsics"
- // Generic
- @private IS_NUMERIC :: intrinsics.type_is_numeric;
- @private IS_QUATERNION :: intrinsics.type_is_quaternion;
- @private IS_ARRAY :: intrinsics.type_is_array;
- vector_dot :: proc(a, b: $T/[$N]$E) -> (c: E) where IS_NUMERIC(E) {
- for i in 0..<N {
- c += a[i] * b[i];
- }
- return;
- }
- quaternion128_dot :: proc(a, b: $T/quaternion128) -> (c: f32) {
- return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z;
- }
- quaternion256_dot :: proc(a, b: $T/quaternion256) -> (c: f64) {
- return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z;
- }
- dot :: proc{vector_dot, quaternion128_dot, quaternion256_dot};
- quaternion_inverse :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
- return conj(q) * quaternion(1.0/dot(q, q), 0, 0, 0);
- }
- vector_cross2 :: proc(a, b: $T/[2]$E) -> E where IS_NUMERIC(E) {
- return a[0]*b[1] - b[0]*a[1];
- }
- vector_cross3 :: proc(a, b: $T/[3]$E) -> (c: T) where IS_NUMERIC(E) {
- c[0] = a[1]*b[2] - b[1]*a[2];
- c[1] = a[2]*b[0] - b[2]*a[0];
- c[2] = a[0]*b[1] - b[0]*a[1];
- return;
- }
- vector_cross :: proc{vector_cross2, vector_cross3};
- cross :: vector_cross;
- vector_normalize :: proc(v: $T/[$N]$E) -> T where IS_NUMERIC(E) {
- return v / length(v);
- }
- quaternion_normalize :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
- return q/abs(q);
- }
- normalize :: proc{vector_normalize, quaternion_normalize};
- vector_normalize0 :: proc(v: $T/[$N]$E) -> T where IS_NUMERIC(E) {
- m := length(v);
- return m == 0 ? 0 : v/m;
- }
- quaternion_normalize0 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
- m := abs(q);
- return m == 0 ? 0 : q/m;
- }
- normalize0 :: proc{vector_normalize0, quaternion_normalize0};
- vector_length :: proc(v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
- return math.sqrt(dot(v, v));
- }
- vector_length2 :: proc(v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
- return dot(v, v);
- }
- quaternion_length :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
- return abs(q);
- }
- quaternion_length2 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
- return dot(q, q);
- }
- length :: proc{vector_length, quaternion_length};
- length2 :: proc{vector_length2, quaternion_length2};
- vector_lerp :: proc(x, y, t: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- ti := t[i];
- s[i] = x[i]*(1-ti) + y[i]*ti;
- }
- return s;
- }
- vector_unlerp :: proc(a, b, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- ai := a[i];
- s[i] = (x[i]-ai)/(b[i]-ai);
- }
- return s;
- }
- vector_sin :: proc(angle: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = math.sin(angle[i]);
- }
- return s;
- }
- vector_cos :: proc(angle: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = math.cos(angle[i]);
- }
- return s;
- }
- vector_tan :: proc(angle: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = math.tan(angle[i]);
- }
- return s;
- }
- vector_asin :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = math.asin(x[i]);
- }
- return s;
- }
- vector_acos :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = math.acos(x[i]);
- }
- return s;
- }
- vector_atan :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = math.atan(x[i]);
- }
- return s;
- }
- vector_atan2 :: proc(y, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = math.atan(y[i], x[i]);
- }
- return s;
- }
- vector_pow :: proc(x, y: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = math.pow(x[i], y[i]);
- }
- return s;
- }
- vector_expr :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = math.expr(x[i]);
- }
- return s;
- }
- vector_sqrt :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = math.sqrt(x[i]);
- }
- return s;
- }
- vector_abs :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = abs(x[i]);
- }
- return s;
- }
- vector_sign :: proc(v: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = math.sign(v[i]);
- }
- return s;
- }
- vector_floor :: proc(v: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = math.floor(v[i]);
- }
- return s;
- }
- vector_ceil :: proc(v: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = math.ceil(v[i]);
- }
- return s;
- }
- vector_mod :: proc(x, y: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = math.mod(x[i], y[i]);
- }
- return s;
- }
- vector_min :: proc(a, b: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = min(a[i], b[i]);
- }
- return s;
- }
- vector_max :: proc(a, b: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = max(a[i], b[i]);
- }
- return s;
- }
- vector_clamp :: proc(x, a, b: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = clamp(x[i], a[i], b[i]);
- }
- return s;
- }
- vector_mix :: proc(x, y, a: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = x[i]*(1-a[i]) + y[i]*a[i];
- }
- return s;
- }
- vector_step :: proc(edge, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- s[i] = x[i] < edge[i] ? 0 : 1;
- }
- return s;
- }
- vector_smoothstep :: proc(edge0, edge1, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- e0, e1 := edge0[i], edge1[i];
- t := clamp((x[i] - e0) / (e1 - e0), 0, 1);
- s[i] = t * t * (3 - 2*t);
- }
- return s;
- }
- vector_smootherstep :: proc(edge0, edge1, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- s: V;
- for i in 0..<N {
- e0, e1 := edge0[i], edge1[i];
- t := clamp((x[i] - e0) / (e1 - e0), 0, 1);
- s[i] = t * t * t * (t * (6*t - 15) + 10);
- }
- return s;
- }
- vector_distance :: proc(p0, p1: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- return length(p1 - p0);
- }
- vector_reflect :: proc(i, n: $V/[$N]$E) -> V where IS_NUMERIC(E) {
- b := n * (2 * dot(n, i));
- return i - b;
- }
- vector_refract :: proc(i, n: $V/[$N]$E, eta: E) -> V where IS_NUMERIC(E) {
- dv := dot(n, i);
- k := 1 - eta*eta - (1 - dv*dv);
- a := i * eta;
- b := n * eta*dv*math.sqrt(k);
- return (a - b) * E(int(k >= 0));
- }
- identity :: proc($T: typeid/[$N][N]$E) -> (m: T) {
- for i in 0..<N do m[i][i] = E(1);
- return m;
- }
- trace :: proc(m: $T/[$N][N]$E) -> (tr: E) {
- for i in 0..<N {
- tr += m[i][i];
- }
- return;
- }
- transpose :: proc(a: $T/[$N][$M]$E) -> (m: T) {
- for j in 0..<M {
- for i in 0..<N {
- m[j][i] = a[i][j];
- }
- }
- return;
- }
- matrix_mul :: proc(a, b: $M/[$N][N]$E) -> (c: M)
- where !IS_ARRAY(E),
- IS_NUMERIC(E) {
- for i in 0..<N {
- for k in 0..<N {
- for j in 0..<N {
- c[k][i] += a[j][i] * b[k][j];
- }
- }
- }
- return;
- }
- matrix_mul_differ :: proc(a: $A/[$J][$I]$E, b: $B/[$K][J]E) -> (c: [K][I]E)
- where !IS_ARRAY(E),
- IS_NUMERIC(E),
- I != K {
- for k in 0..<K {
- for j in 0..<J {
- for i in 0..<I {
- c[k][i] += a[j][i] * b[k][j];
- }
- }
- }
- return;
- }
- matrix_mul_vector :: proc(a: $A/[$I][$J]$E, b: $B/[I]E) -> (c: B)
- where !IS_ARRAY(E),
- IS_NUMERIC(E) {
- for i in 0..<I {
- for j in 0..<J {
- c[i] += a[i][j] * b[i];
- }
- }
- return;
- }
- quaternion128_mul_vector3 :: proc(q: $Q/quaternion128, v: $V/[3]$F/f32) -> V {
- Raw_Quaternion :: struct {xyz: [3]f32, r: f32};
- q := transmute(Raw_Quaternion)q;
- v := transmute([3]f32)v;
- t := cross(2*q.xyz, v);
- return V(v + q.r*t + cross(q.xyz, t));
- }
- quaternion256_mul_vector3 :: proc(q: $Q/quaternion256, v: $V/[3]$F/f64) -> V {
- Raw_Quaternion :: struct {xyz: [3]f64, r: f64};
- q := transmute(Raw_Quaternion)q;
- v := transmute([3]f64)v;
- t := cross(2*q.xyz, v);
- return V(v + q.r*t + cross(q.xyz, t));
- }
- quaternion_mul_vector3 :: proc{quaternion128_mul_vector3, quaternion256_mul_vector3};
- mul :: proc{
- matrix_mul,
- matrix_mul_differ,
- matrix_mul_vector,
- quaternion128_mul_vector3,
- quaternion256_mul_vector3,
- };
- vector_to_ptr :: proc(v: ^$V/[$N]$E) -> ^E where IS_NUMERIC(E) {
- return &v[0];
- }
- matrix_to_ptr :: proc(m: ^$A/[$I][$J]$E) -> ^E where IS_NUMERIC(E) {
- return &m[0][0];
- }
|