general.odin 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401
  1. package linalg
  2. import "core:math"
  3. import "intrinsics"
  4. // Generic
  5. @private IS_NUMERIC :: intrinsics.type_is_numeric;
  6. @private IS_QUATERNION :: intrinsics.type_is_quaternion;
  7. @private IS_ARRAY :: intrinsics.type_is_array;
  8. vector_dot :: proc(a, b: $T/[$N]$E) -> (c: E) where IS_NUMERIC(E) {
  9. for i in 0..<N {
  10. c += a[i] * b[i];
  11. }
  12. return;
  13. }
  14. quaternion128_dot :: proc(a, b: $T/quaternion128) -> (c: f32) {
  15. return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z;
  16. }
  17. quaternion256_dot :: proc(a, b: $T/quaternion256) -> (c: f64) {
  18. return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z;
  19. }
  20. dot :: proc{vector_dot, quaternion128_dot, quaternion256_dot};
  21. quaternion_inverse :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
  22. return conj(q) * quaternion(1.0/dot(q, q), 0, 0, 0);
  23. }
  24. vector_cross2 :: proc(a, b: $T/[2]$E) -> E where IS_NUMERIC(E) {
  25. return a[0]*b[1] - b[0]*a[1];
  26. }
  27. vector_cross3 :: proc(a, b: $T/[3]$E) -> (c: T) where IS_NUMERIC(E) {
  28. c[0] = a[1]*b[2] - b[1]*a[2];
  29. c[1] = a[2]*b[0] - b[2]*a[0];
  30. c[2] = a[0]*b[1] - b[0]*a[1];
  31. return;
  32. }
  33. vector_cross :: proc{vector_cross2, vector_cross3};
  34. cross :: vector_cross;
  35. vector_normalize :: proc(v: $T/[$N]$E) -> T where IS_NUMERIC(E) {
  36. return v / length(v);
  37. }
  38. quaternion_normalize :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
  39. return q/abs(q);
  40. }
  41. normalize :: proc{vector_normalize, quaternion_normalize};
  42. vector_normalize0 :: proc(v: $T/[$N]$E) -> T where IS_NUMERIC(E) {
  43. m := length(v);
  44. return 0 if m == 0 else v/m;
  45. }
  46. quaternion_normalize0 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
  47. m := abs(q);
  48. return 0 if m == 0 else q/m;
  49. }
  50. normalize0 :: proc{vector_normalize0, quaternion_normalize0};
  51. vector_length :: proc(v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
  52. return math.sqrt(dot(v, v));
  53. }
  54. vector_length2 :: proc(v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
  55. return dot(v, v);
  56. }
  57. quaternion_length :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
  58. return abs(q);
  59. }
  60. quaternion_length2 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
  61. return dot(q, q);
  62. }
  63. length :: proc{vector_length, quaternion_length};
  64. length2 :: proc{vector_length2, quaternion_length2};
  65. vector_lerp :: proc(x, y, t: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  66. s: V;
  67. for i in 0..<N {
  68. ti := t[i];
  69. s[i] = x[i]*(1-ti) + y[i]*ti;
  70. }
  71. return s;
  72. }
  73. vector_unlerp :: proc(a, b, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  74. s: V;
  75. for i in 0..<N {
  76. ai := a[i];
  77. s[i] = (x[i]-ai)/(b[i]-ai);
  78. }
  79. return s;
  80. }
  81. vector_sin :: proc(angle: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  82. s: V;
  83. for i in 0..<N {
  84. s[i] = math.sin(angle[i]);
  85. }
  86. return s;
  87. }
  88. vector_cos :: proc(angle: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  89. s: V;
  90. for i in 0..<N {
  91. s[i] = math.cos(angle[i]);
  92. }
  93. return s;
  94. }
  95. vector_tan :: proc(angle: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  96. s: V;
  97. for i in 0..<N {
  98. s[i] = math.tan(angle[i]);
  99. }
  100. return s;
  101. }
  102. vector_asin :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  103. s: V;
  104. for i in 0..<N {
  105. s[i] = math.asin(x[i]);
  106. }
  107. return s;
  108. }
  109. vector_acos :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  110. s: V;
  111. for i in 0..<N {
  112. s[i] = math.acos(x[i]);
  113. }
  114. return s;
  115. }
  116. vector_atan :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  117. s: V;
  118. for i in 0..<N {
  119. s[i] = math.atan(x[i]);
  120. }
  121. return s;
  122. }
  123. vector_atan2 :: proc(y, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  124. s: V;
  125. for i in 0..<N {
  126. s[i] = math.atan(y[i], x[i]);
  127. }
  128. return s;
  129. }
  130. vector_pow :: proc(x, y: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  131. s: V;
  132. for i in 0..<N {
  133. s[i] = math.pow(x[i], y[i]);
  134. }
  135. return s;
  136. }
  137. vector_expr :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  138. s: V;
  139. for i in 0..<N {
  140. s[i] = math.expr(x[i]);
  141. }
  142. return s;
  143. }
  144. vector_sqrt :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  145. s: V;
  146. for i in 0..<N {
  147. s[i] = math.sqrt(x[i]);
  148. }
  149. return s;
  150. }
  151. vector_abs :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  152. s: V;
  153. for i in 0..<N {
  154. s[i] = abs(x[i]);
  155. }
  156. return s;
  157. }
  158. vector_sign :: proc(v: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  159. s: V;
  160. for i in 0..<N {
  161. s[i] = math.sign(v[i]);
  162. }
  163. return s;
  164. }
  165. vector_floor :: proc(v: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  166. s: V;
  167. for i in 0..<N {
  168. s[i] = math.floor(v[i]);
  169. }
  170. return s;
  171. }
  172. vector_ceil :: proc(v: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  173. s: V;
  174. for i in 0..<N {
  175. s[i] = math.ceil(v[i]);
  176. }
  177. return s;
  178. }
  179. vector_mod :: proc(x, y: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  180. s: V;
  181. for i in 0..<N {
  182. s[i] = math.mod(x[i], y[i]);
  183. }
  184. return s;
  185. }
  186. vector_min :: proc(a, b: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  187. s: V;
  188. for i in 0..<N {
  189. s[i] = min(a[i], b[i]);
  190. }
  191. return s;
  192. }
  193. vector_max :: proc(a, b: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  194. s: V;
  195. for i in 0..<N {
  196. s[i] = max(a[i], b[i]);
  197. }
  198. return s;
  199. }
  200. vector_clamp :: proc(x, a, b: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  201. s: V;
  202. for i in 0..<N {
  203. s[i] = clamp(x[i], a[i], b[i]);
  204. }
  205. return s;
  206. }
  207. vector_mix :: proc(x, y, a: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  208. s: V;
  209. for i in 0..<N {
  210. s[i] = x[i]*(1-a[i]) + y[i]*a[i];
  211. }
  212. return s;
  213. }
  214. vector_step :: proc(edge, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  215. s: V;
  216. for i in 0..<N {
  217. s[i] = 0 if x[i] < edge[i] else 1;
  218. }
  219. return s;
  220. }
  221. vector_smoothstep :: proc(edge0, edge1, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  222. s: V;
  223. for i in 0..<N {
  224. e0, e1 := edge0[i], edge1[i];
  225. t := clamp((x[i] - e0) / (e1 - e0), 0, 1);
  226. s[i] = t * t * (3 - 2*t);
  227. }
  228. return s;
  229. }
  230. vector_smootherstep :: proc(edge0, edge1, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  231. s: V;
  232. for i in 0..<N {
  233. e0, e1 := edge0[i], edge1[i];
  234. t := clamp((x[i] - e0) / (e1 - e0), 0, 1);
  235. s[i] = t * t * t * (t * (6*t - 15) + 10);
  236. }
  237. return s;
  238. }
  239. vector_distance :: proc(p0, p1: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  240. return length(p1 - p0);
  241. }
  242. vector_reflect :: proc(i, n: $V/[$N]$E) -> V where IS_NUMERIC(E) {
  243. b := n * (2 * dot(n, i));
  244. return i - b;
  245. }
  246. vector_refract :: proc(i, n: $V/[$N]$E, eta: E) -> V where IS_NUMERIC(E) {
  247. dv := dot(n, i);
  248. k := 1 - eta*eta - (1 - dv*dv);
  249. a := i * eta;
  250. b := n * eta*dv*math.sqrt(k);
  251. return (a - b) * E(int(k >= 0));
  252. }
  253. identity :: proc($T: typeid/[$N][N]$E) -> (m: T) {
  254. for i in 0..<N do m[i][i] = E(1);
  255. return m;
  256. }
  257. trace :: proc(m: $T/[$N][N]$E) -> (tr: E) {
  258. for i in 0..<N {
  259. tr += m[i][i];
  260. }
  261. return;
  262. }
  263. transpose :: proc(a: $T/[$N][$M]$E) -> (m: T) {
  264. for j in 0..<M {
  265. for i in 0..<N {
  266. m[j][i] = a[i][j];
  267. }
  268. }
  269. return;
  270. }
  271. matrix_mul :: proc(a, b: $M/[$N][N]$E) -> (c: M)
  272. where !IS_ARRAY(E),
  273. IS_NUMERIC(E) {
  274. for i in 0..<N {
  275. for k in 0..<N {
  276. for j in 0..<N {
  277. c[k][i] += a[j][i] * b[k][j];
  278. }
  279. }
  280. }
  281. return;
  282. }
  283. matrix_mul_differ :: proc(a: $A/[$J][$I]$E, b: $B/[$K][J]E) -> (c: [K][I]E)
  284. where !IS_ARRAY(E),
  285. IS_NUMERIC(E),
  286. I != K {
  287. for k in 0..<K {
  288. for j in 0..<J {
  289. for i in 0..<I {
  290. c[k][i] += a[j][i] * b[k][j];
  291. }
  292. }
  293. }
  294. return;
  295. }
  296. matrix_mul_vector :: proc(a: $A/[$I][$J]$E, b: $B/[I]E) -> (c: B)
  297. where !IS_ARRAY(E),
  298. IS_NUMERIC(E) {
  299. for i in 0..<I {
  300. for j in 0..<J {
  301. c[j] += a[i][j] * b[i];
  302. }
  303. }
  304. return;
  305. }
  306. quaternion128_mul_vector3 :: proc(q: $Q/quaternion128, v: $V/[3]$F/f32) -> V {
  307. Raw_Quaternion :: struct {xyz: [3]f32, r: f32};
  308. q := transmute(Raw_Quaternion)q;
  309. v := transmute([3]f32)v;
  310. t := cross(2*q.xyz, v);
  311. return V(v + q.r*t + cross(q.xyz, t));
  312. }
  313. quaternion256_mul_vector3 :: proc(q: $Q/quaternion256, v: $V/[3]$F/f64) -> V {
  314. Raw_Quaternion :: struct {xyz: [3]f64, r: f64};
  315. q := transmute(Raw_Quaternion)q;
  316. v := transmute([3]f64)v;
  317. t := cross(2*q.xyz, v);
  318. return V(v + q.r*t + cross(q.xyz, t));
  319. }
  320. quaternion_mul_vector3 :: proc{quaternion128_mul_vector3, quaternion256_mul_vector3};
  321. mul :: proc{
  322. matrix_mul,
  323. matrix_mul_differ,
  324. matrix_mul_vector,
  325. quaternion128_mul_vector3,
  326. quaternion256_mul_vector3,
  327. };
  328. vector_to_ptr :: proc(v: ^$V/[$N]$E) -> ^E where IS_NUMERIC(E), N > 0 #no_bounds_check {
  329. return &v[0];
  330. }
  331. matrix_to_ptr :: proc(m: ^$A/[$I][$J]$E) -> ^E where IS_NUMERIC(E), I > 0, J > 0 #no_bounds_check {
  332. return &m[0][0];
  333. }