123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821 |
- package math
- import "intrinsics"
- _ :: intrinsics;
- Float_Class :: enum {
- Normal, // an ordinary nonzero floating point value
- Subnormal, // a subnormal floating point value
- Zero, // zero
- Neg_Zero, // the negative zero
- NaN, // Not-A-Number (NaN)
- Inf, // positive infinity
- Neg_Inf // negative infinity
- };
- TAU :: 6.28318530717958647692528676655900576;
- PI :: 3.14159265358979323846264338327950288;
- E :: 2.71828182845904523536;
- τ :: TAU;
- π :: PI;
- e :: E;
- SQRT_TWO :: 1.41421356237309504880168872420969808;
- SQRT_THREE :: 1.73205080756887729352744634150587236;
- SQRT_FIVE :: 2.23606797749978969640917366873127623;
- LN2 :: 0.693147180559945309417232121458176568;
- LN10 :: 2.30258509299404568401799145468436421;
- MAX_F64_PRECISION :: 16; // Maximum number of meaningful digits after the decimal point for 'f64'
- MAX_F32_PRECISION :: 8; // Maximum number of meaningful digits after the decimal point for 'f32'
- RAD_PER_DEG :: TAU/360.0;
- DEG_PER_RAD :: 360.0/TAU;
- @(default_calling_convention="none")
- foreign _ {
- @(link_name="llvm.sqrt.f32")
- sqrt_f32 :: proc(x: f32) -> f32 ---;
- @(link_name="llvm.sqrt.f64")
- sqrt_f64 :: proc(x: f64) -> f64 ---;
- @(link_name="llvm.sin.f32")
- sin_f32 :: proc(θ: f32) -> f32 ---;
- @(link_name="llvm.sin.f64")
- sin_f64 :: proc(θ: f64) -> f64 ---;
- @(link_name="llvm.cos.f32")
- cos_f32 :: proc(θ: f32) -> f32 ---;
- @(link_name="llvm.cos.f64")
- cos_f64 :: proc(θ: f64) -> f64 ---;
- @(link_name="llvm.pow.f32")
- pow_f32 :: proc(x, power: f32) -> f32 ---;
- @(link_name="llvm.pow.f64")
- pow_f64 :: proc(x, power: f64) -> f64 ---;
- @(link_name="llvm.fmuladd.f32")
- fmuladd_f32 :: proc(a, b, c: f32) -> f32 ---;
- @(link_name="llvm.fmuladd.f64")
- fmuladd_f64 :: proc(a, b, c: f64) -> f64 ---;
- @(link_name="llvm.log.f32")
- ln_f32 :: proc(x: f32) -> f32 ---;
- @(link_name="llvm.log.f64")
- ln_f64 :: proc(x: f64) -> f64 ---;
- @(link_name="llvm.exp.f32")
- exp_f32 :: proc(x: f32) -> f32 ---;
- @(link_name="llvm.exp.f64")
- exp_f64 :: proc(x: f64) -> f64 ---;
- @(link_name="llvm.ldexp.f32")
- ldexp_f32 :: proc(val: f32, exp: i32) -> f32 ---;
- @(link_name="llvm.ldexp.f64")
- ldexp_f64 :: proc(val: f64, exp: i32) -> f64 ---;
- }
- sqrt :: proc{sqrt_f32, sqrt_f64};
- sin :: proc{sin_f32, sin_f64};
- cos :: proc{cos_f32, cos_f64};
- pow :: proc{pow_f32, pow_f64};
- fmuladd :: proc{fmuladd_f32, fmuladd_f64};
- ln :: proc{ln_f32, ln_f64};
- exp :: proc{exp_f32, exp_f64};
- ldexp :: proc{ldexp_f32, ldexp_f64};
- log_f32 :: proc(x, base: f32) -> f32 { return ln(x) / ln(base); }
- log_f64 :: proc(x, base: f64) -> f64 { return ln(x) / ln(base); }
- log :: proc{log_f32, log_f64};
- log2_f32 :: proc(x: f32) -> f32 { return ln(x)/LN2; }
- log2_f64 :: proc(x: f64) -> f64 { return ln(x)/LN2; }
- log2 :: proc{log2_f32, log2_f64};
- log10_f32 :: proc(x: f32) -> f32 { return ln(x)/LN10; }
- log10_f64 :: proc(x: f64) -> f64 { return ln(x)/LN10; }
- log10 :: proc{log10_f32, log10_f64};
- tan_f32 :: proc "c" (θ: f32) -> f32 { return sin(θ)/cos(θ); }
- tan_f64 :: proc "c" (θ: f64) -> f64 { return sin(θ)/cos(θ); }
- tan :: proc{tan_f32, tan_f64};
- lerp :: proc(a, b: $T, t: $E) -> (x: T) { return a*(1-t) + b*t; }
- unlerp_f32 :: proc(a, b, x: f32) -> (t: f32) { return (x-a)/(b-a); }
- unlerp_f64 :: proc(a, b, x: f64) -> (t: f64) { return (x-a)/(b-a); }
- unlerp :: proc{unlerp_f32, unlerp_f64};
- wrap :: proc(x, y: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) {
- tmp := mod(x, y);
- return y + tmp if tmp < 0 else tmp;
- }
- angle_diff :: proc(a, b: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) {
- dist := wrap(b - a, TAU);
- return wrap(dist*2, TAU) - dist;
- }
- angle_lerp :: proc(a, b, t: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) {
- return a + angle_diff(a, b) * t;
- }
- step :: proc(edge, x: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) {
- return 0 if x < edge else 1;
- }
- smoothstep :: proc(edge0, edge1, x: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) {
- t := clamp((x - edge0) / (edge1 - edge0), 0, 1);
- return t * t * (3 - 2*t);
- }
- bias :: proc(t, b: $T) -> T where intrinsics.type_is_numeric(T) {
- return t / (((1/b) - 2) * (1 - t) + 1);
- }
- gain :: proc(t, g: $T) -> T where intrinsics.type_is_numeric(T) {
- if t < 0.5 {
- return bias(t*2, g)*0.5;
- }
- return bias(t*2 - 1, 1 - g)*0.5 + 0.5;
- }
- sign_f32 :: proc(x: f32) -> f32 { return f32(int(0 < x) - int(x < 0)); }
- sign_f64 :: proc(x: f64) -> f64 { return f64(int(0 < x) - int(x < 0)); }
- sign :: proc{sign_f32, sign_f64};
- sign_bit_f32 :: proc(x: f32) -> bool {
- return (transmute(u32)x) & (1<<31) != 0;
- }
- sign_bit_f64 :: proc(x: f64) -> bool {
- return (transmute(u64)x) & (1<<63) != 0;
- }
- sign_bit :: proc{sign_bit_f32, sign_bit_f64};
- copy_sign_f32 :: proc(x, y: f32) -> f32 {
- ix := transmute(u32)x;
- iy := transmute(u32)y;
- ix &= 0x7fff_ffff;
- ix |= iy & 0x8000_0000;
- return transmute(f32)ix;
- }
- copy_sign_f64 :: proc(x, y: f64) -> f64 {
- ix := transmute(u64)x;
- iy := transmute(u64)y;
- ix &= 0x7fff_ffff_ffff_ffff;
- ix |= iy & 0x8000_0000_0000_0000;
- return transmute(f64)ix;
- }
- copy_sign :: proc{copy_sign_f32, copy_sign_f64};
- to_radians_f32 :: proc(degrees: f32) -> f32 { return degrees * RAD_PER_DEG; }
- to_radians_f64 :: proc(degrees: f64) -> f64 { return degrees * RAD_PER_DEG; }
- to_degrees_f32 :: proc(radians: f32) -> f32 { return radians * DEG_PER_RAD; }
- to_degrees_f64 :: proc(radians: f64) -> f64 { return radians * DEG_PER_RAD; }
- to_radians :: proc{to_radians_f32, to_radians_f64};
- to_degrees :: proc{to_degrees_f32, to_degrees_f64};
- trunc_f32 :: proc(x: f32) -> f32 {
- trunc_internal :: proc(f: f32) -> f32 {
- mask :: 0xff;
- shift :: 32 - 9;
- bias :: 0x7f;
- if f < 1 {
- switch {
- case f < 0: return -trunc_internal(-f);
- case f == 0: return f;
- case: return 0;
- }
- }
- x := transmute(u32)f;
- e := (x >> shift) & mask - bias;
- if e < shift {
- x &= ~(1 << (shift-e)) - 1;
- }
- return transmute(f32)x;
- }
- switch classify(x) {
- case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf:
- return x;
- case .Normal, .Subnormal: // carry on
- }
- return trunc_internal(x);
- }
- trunc_f64 :: proc(x: f64) -> f64 {
- trunc_internal :: proc(f: f64) -> f64 {
- mask :: 0x7ff;
- shift :: 64 - 12;
- bias :: 0x3ff;
- if f < 1 {
- switch {
- case f < 0: return -trunc_internal(-f);
- case f == 0: return f;
- case: return 0;
- }
- }
- x := transmute(u64)f;
- e := (x >> shift) & mask - bias;
- if e < shift {
- x &= ~(1 << (shift-e)) - 1;
- }
- return transmute(f64)x;
- }
- switch classify(x) {
- case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf:
- return x;
- case .Normal, .Subnormal: // carry on
- }
- return trunc_internal(x);
- }
- trunc :: proc{trunc_f32, trunc_f64};
- round_f32 :: proc(x: f32) -> f32 {
- return ceil(x - 0.5) if x < 0 else floor(x + 0.5);
- }
- round_f64 :: proc(x: f64) -> f64 {
- return ceil(x - 0.5) if x < 0 else floor(x + 0.5);
- }
- round :: proc{round_f32, round_f64};
- ceil_f32 :: proc(x: f32) -> f32 { return -floor(-x); }
- ceil_f64 :: proc(x: f64) -> f64 { return -floor(-x); }
- ceil :: proc{ceil_f32, ceil_f64};
- floor_f32 :: proc(x: f32) -> f32 {
- if x == 0 || is_nan(x) || is_inf(x) {
- return x;
- }
- if x < 0 {
- d, fract := modf(-x);
- if fract != 0.0 {
- d = d + 1;
- }
- return -d;
- }
- d, _ := modf(x);
- return d;
- }
- floor_f64 :: proc(x: f64) -> f64 {
- if x == 0 || is_nan(x) || is_inf(x) {
- return x;
- }
- if x < 0 {
- d, fract := modf(-x);
- if fract != 0.0 {
- d = d + 1;
- }
- return -d;
- }
- d, _ := modf(x);
- return d;
- }
- floor :: proc{floor_f32, floor_f64};
- floor_div :: proc(x, y: $T) -> T
- where intrinsics.type_is_integer(T) {
- a := x / y;
- r := x % y;
- if (r > 0 && y < 0) || (r < 0 && y > 0) {
- a -= 1;
- }
- return a;
- }
- floor_mod :: proc(x, y: $T) -> T
- where intrinsics.type_is_integer(T) {
- r := x % y;
- if (r > 0 && y < 0) || (r < 0 && y > 0) {
- r += y;
- }
- return r;
- }
- modf_f32 :: proc(x: f32) -> (int: f32, frac: f32) {
- shift :: 32 - 8 - 1;
- mask :: 0xff;
- bias :: 127;
- if x < 1 {
- switch {
- case x < 0:
- int, frac = modf(-x);
- return -int, -frac;
- case x == 0:
- return x, x;
- }
- return 0, x;
- }
- i := transmute(u32)x;
- e := uint(i>>shift)&mask - bias;
- if e < shift {
- i &~= 1<<(shift-e) - 1;
- }
- int = transmute(f32)i;
- frac = x - int;
- return;
- }
- modf_f64 :: proc(x: f64) -> (int: f64, frac: f64) {
- shift :: 64 - 11 - 1;
- mask :: 0x7ff;
- bias :: 1023;
- if x < 1 {
- switch {
- case x < 0:
- int, frac = modf(-x);
- return -int, -frac;
- case x == 0:
- return x, x;
- }
- return 0, x;
- }
- i := transmute(u64)x;
- e := uint(i>>shift)&mask - bias;
- if e < shift {
- i &~= 1<<(shift-e) - 1;
- }
- int = transmute(f64)i;
- frac = x - int;
- return;
- }
- modf :: proc{modf_f32, modf_f64};
- split_decimal :: modf;
- mod_f32 :: proc(x, y: f32) -> (n: f32) {
- z := abs(y);
- n = remainder(abs(x), z);
- if sign(n) < 0 {
- n += z;
- }
- return copy_sign(n, x);
- }
- mod_f64 :: proc(x, y: f64) -> (n: f64) {
- z := abs(y);
- n = remainder(abs(x), z);
- if sign(n) < 0 {
- n += z;
- }
- return copy_sign(n, x);
- }
- mod :: proc{mod_f32, mod_f64};
- remainder_f32 :: proc(x, y: f32) -> f32 { return x - round(x/y) * y; }
- remainder_f64 :: proc(x, y: f64) -> f64 { return x - round(x/y) * y; }
- remainder :: proc{remainder_f32, remainder_f64};
- gcd :: proc(x, y: $T) -> T
- where intrinsics.type_is_ordered_numeric(T) {
- x, y := x, y;
- for y != 0 {
- x %= y;
- x, y = y, x;
- }
- return abs(x);
- }
- lcm :: proc(x, y: $T) -> T
- where intrinsics.type_is_ordered_numeric(T) {
- return x / gcd(x, y) * y;
- }
- frexp_f32 :: proc(x: f32) -> (significand: f32, exponent: int) {
- switch {
- case x == 0:
- return 0, 0;
- case x < 0:
- significand, exponent = frexp(-x);
- return -significand, exponent;
- }
- ex := trunc(log2(x));
- exponent = int(ex);
- significand = x / pow(2.0, ex);
- if abs(significand) >= 1 {
- exponent += 1;
- significand /= 2;
- }
- if exponent == 1024 && significand == 0 {
- significand = 0.99999999999999988898;
- }
- return;
- }
- frexp_f64 :: proc(x: f64) -> (significand: f64, exponent: int) {
- switch {
- case x == 0:
- return 0, 0;
- case x < 0:
- significand, exponent = frexp(-x);
- return -significand, exponent;
- }
- ex := trunc(log2(x));
- exponent = int(ex);
- significand = x / pow(2.0, ex);
- if abs(significand) >= 1 {
- exponent += 1;
- significand /= 2;
- }
- if exponent == 1024 && significand == 0 {
- significand = 0.99999999999999988898;
- }
- return;
- }
- frexp :: proc{frexp_f32, frexp_f64};
- binomial :: proc(n, k: int) -> int {
- switch {
- case k <= 0: return 1;
- case 2*k > n: return binomial(n, n-k);
- }
- b := n;
- for i in 2..<k {
- b = (b * (n+1-i))/i;
- }
- return b;
- }
- factorial :: proc(n: int) -> int {
- when size_of(int) == size_of(i64) {
- @static table := [21]int{
- 1,
- 1,
- 2,
- 6,
- 24,
- 120,
- 720,
- 5_040,
- 40_320,
- 362_880,
- 3_628_800,
- 39_916_800,
- 479_001_600,
- 6_227_020_800,
- 87_178_291_200,
- 1_307_674_368_000,
- 20_922_789_888_000,
- 355_687_428_096_000,
- 6_402_373_705_728_000,
- 121_645_100_408_832_000,
- 2_432_902_008_176_640_000,
- };
- } else {
- @static table := [13]int{
- 1,
- 1,
- 2,
- 6,
- 24,
- 120,
- 720,
- 5_040,
- 40_320,
- 362_880,
- 3_628_800,
- 39_916_800,
- 479_001_600,
- };
- }
- assert(n >= 0, "parameter must not be negative");
- assert(n < len(table), "parameter is too large to lookup in the table");
- return 0;
- }
- classify_f32 :: proc(x: f32) -> Float_Class {
- switch {
- case x == 0:
- i := transmute(i32)x;
- if i < 0 {
- return .Neg_Zero;
- }
- return .Zero;
- case x*0.5 == x:
- if x < 0 {
- return .Neg_Inf;
- }
- return .Inf;
- case !(x == x):
- return .NaN;
- }
- u := transmute(u32)x;
- exp := int(u>>23) & (1<<8 - 1);
- if exp == 0 {
- return .Subnormal;
- }
- return .Normal;
- }
- classify_f64 :: proc(x: f64) -> Float_Class {
- switch {
- case x == 0:
- i := transmute(i64)x;
- if i < 0 {
- return .Neg_Zero;
- }
- return .Zero;
- case x*0.5 == x:
- if x < 0 {
- return .Neg_Inf;
- }
- return .Inf;
- case !(x == x):
- return .NaN;
- }
- u := transmute(u64)x;
- exp := int(u>>52) & (1<<11 - 1);
- if exp == 0 {
- return .Subnormal;
- }
- return .Normal;
- }
- classify :: proc{classify_f32, classify_f64};
- is_nan_f32 :: proc(x: f32) -> bool { return classify(x) == .NaN; }
- is_nan_f64 :: proc(x: f64) -> bool { return classify(x) == .NaN; }
- is_nan :: proc{is_nan_f32, is_nan_f64};
- // is_inf reports whether f is an infinity, according to sign.
- // If sign > 0, is_inf reports whether f is positive infinity.
- // If sign < 0, is_inf reports whether f is negative infinity.
- // If sign == 0, is_inf reports whether f is either infinity.
- is_inf_f32 :: proc(x: f32, sign: int = 0) -> bool {
- class := classify(abs(x));
- switch {
- case sign > 0:
- return class == .Inf;
- case sign < 0:
- return class == .Neg_Inf;
- }
- return class == .Inf || class == .Neg_Inf;
- }
- is_inf_f64 :: proc(x: f64, sign: int = 0) -> bool {
- class := classify(abs(x));
- switch {
- case sign > 0:
- return class == .Inf;
- case sign < 0:
- return class == .Neg_Inf;
- }
- return class == .Inf || class == .Neg_Inf;
- }
- is_inf :: proc{is_inf_f32, is_inf_f64};
- is_power_of_two :: proc(x: int) -> bool {
- return x > 0 && (x & (x-1)) == 0;
- }
- next_power_of_two :: proc(x: int) -> int {
- k := x -1;
- when size_of(int) == 8 {
- k = k | (k >> 32);
- }
- k = k | (k >> 16);
- k = k | (k >> 8);
- k = k | (k >> 4);
- k = k | (k >> 2);
- k = k | (k >> 1);
- k += 1 + int(x <= 0);
- return k;
- }
- sum :: proc(x: $T/[]$E) -> (res: E)
- where intrinsics.type_is_numeric(E) {
- for i in x {
- res += i;
- }
- return;
- }
- prod :: proc(x: $T/[]$E) -> (res: E)
- where intrinsics.type_is_numeric(E) {
- for i in x {
- res *= i;
- }
- return;
- }
- cumsum_inplace :: proc(x: $T/[]$E) -> T
- where intrinsics.type_is_numeric(E) {
- for i in 1..<len(x) {
- x[i] = x[i-1] + x[i];
- }
- }
- cumsum :: proc(dst, src: $T/[]$E) -> T
- where intrinsics.type_is_numeric(E) {
- N := min(len(dst), len(src));
- if N > 0 {
- dst[0] = src[0];
- for i in 1..<N {
- dst[i] = dst[i-1] + src[i];
- }
- }
- return dst[:N];
- }
- atan2_f32 :: proc(y, x: f32) -> f32 {
- // TODO(bill): Better atan2_f32
- return f32(atan2_f64(f64(y), f64(x)));
- }
- atan2_f64 :: proc(y, x: f64) -> f64 {
- // TODO(bill): Faster atan2_f64 if possible
- // The original C code:
- // Stephen L. Moshier
- // [email protected]
- NAN :: 0h7fff_ffff_ffff_ffff;
- INF :: 0h7FF0_0000_0000_0000;
- PI :: 0h4009_21fb_5444_2d18;
- atan :: proc(x: f64) -> f64 {
- if x == 0 {
- return x;
- }
- if x > 0 {
- return s_atan(x);
- }
- return -s_atan(-x);
- }
- // s_atan reduces its argument (known to be positive) to the range [0, 0.66] and calls x_atan.
- s_atan :: proc(x: f64) -> f64 {
- MORE_BITS :: 6.123233995736765886130e-17; // pi/2 = PIO2 + MORE_BITS
- TAN3PI08 :: 2.41421356237309504880; // tan(3*pi/8)
- if x <= 0.66 {
- return x_atan(x);
- }
- if x > TAN3PI08 {
- return PI/2 - x_atan(1/x) + MORE_BITS;
- }
- return PI/4 + x_atan((x-1)/(x+1)) + 0.5*MORE_BITS;
- }
- // x_atan evaluates a series valid in the range [0, 0.66].
- x_atan :: proc(x: f64) -> f64 {
- P0 :: -8.750608600031904122785e-01;
- P1 :: -1.615753718733365076637e+01;
- P2 :: -7.500855792314704667340e+01;
- P3 :: -1.228866684490136173410e+02;
- P4 :: -6.485021904942025371773e+01;
- Q0 :: +2.485846490142306297962e+01;
- Q1 :: +1.650270098316988542046e+02;
- Q2 :: +4.328810604912902668951e+02;
- Q3 :: +4.853903996359136964868e+02;
- Q4 :: +1.945506571482613964425e+02;
- z := x * x;
- z = z * ((((P0*z+P1)*z+P2)*z+P3)*z + P4) / (((((z+Q0)*z+Q1)*z+Q2)*z+Q3)*z + Q4);
- z = x*z + x;
- return z;
- }
- switch {
- case is_nan(y) || is_nan(x):
- return NAN;
- case y == 0:
- if x >= 0 && !sign_bit(x) {
- return copy_sign(0.0, y);
- }
- return copy_sign(PI, y);
- case x == 0:
- return copy_sign(PI*0.5, y);
- case is_inf(x, 0):
- if is_inf(x, 1) {
- if is_inf(y, 0) {
- return copy_sign(PI*0.25, y);
- }
- return copy_sign(0, y);
- }
- if is_inf(y, 0) {
- return copy_sign(PI*0.75, y);
- }
- return copy_sign(PI, y);
- case is_inf(y, 0):
- return copy_sign(PI*0.5, y);
- }
- q := atan(y / x);
- if x < 0 {
- if q <= 0 {
- return q + PI;
- }
- return q - PI;
- }
- return q;
- }
- atan2 :: proc{atan2_f32, atan2_f64};
- atan_f32 :: proc(x: f32) -> f32 {
- return atan2_f32(x, 1);
- }
- atan_f64 :: proc(x: f64) -> f64 {
- return atan2_f64(x, 1);
- }
- atan :: proc{atan_f32, atan_f64};
- asin_f32 :: proc(x: f32) -> f32 {
- return atan2_f32(x, 1 + sqrt_f32(1 - x*x));
- }
- asin_f64 :: proc(x: f64) -> f64 {
- return atan2_f64(x, 1 + sqrt_f64(1 - x*x));
- }
- asin :: proc{asin_f32, asin_f64};
- acos_f32 :: proc(x: f32) -> f32 {
- return 2 * atan2_f32(sqrt_f32(1 - x), sqrt_f32(1 + x));
- }
- acos_f64 :: proc(x: f64) -> f64 {
- return 2 * atan2_f64(sqrt_f64(1 - x), sqrt_f64(1 + x));
- }
- acos :: proc{acos_f32, acos_f64};
- sinh_f32 :: proc(x: f32) -> f32 {
- return (exp(x) - exp(-x))*0.5;
- }
- sinh_f64 :: proc(x: f64) -> f64 {
- return (exp(x) - exp(-x))*0.5;
- }
- sinh :: proc{sinh_f32, sinh_f64};
- cosh_f32 :: proc(x: f32) -> f32 {
- return (exp(x) + exp(-x))*0.5;
- }
- cosh_f64 :: proc(x: f64) -> f64 {
- return (exp(x) + exp(-x))*0.5;
- }
- cosh :: proc{cosh_f32, cosh_f64};
- tanh_f32 :: proc(x: f32) -> f32 {
- t := exp(2*x);
- return (t - 1) / (t + 1);
- }
- tanh_f64 :: proc(x: f64) -> f64 {
- t := exp(2*x);
- return (t - 1) / (t + 1);
- }
- tanh :: proc{tanh_f32, tanh_f64};
- F32_DIG :: 6;
- F32_EPSILON :: 1.192092896e-07;
- F32_GUARD :: 0;
- F32_MANT_DIG :: 24;
- F32_MAX :: 3.402823466e+38;
- F32_MAX_10_EXP :: 38;
- F32_MAX_EXP :: 128;
- F32_MIN :: 1.175494351e-38;
- F32_MIN_10_EXP :: -37;
- F32_MIN_EXP :: -125;
- F32_NORMALIZE :: 0;
- F32_RADIX :: 2;
- F32_ROUNDS :: 1;
- F64_DIG :: 15; // # of decimal digits of precision
- F64_EPSILON :: 2.2204460492503131e-016; // smallest such that 1.0+F64_EPSILON != 1.0
- F64_MANT_DIG :: 53; // # of bits in mantissa
- F64_MAX :: 1.7976931348623158e+308; // max value
- F64_MAX_10_EXP :: 308; // max decimal exponent
- F64_MAX_EXP :: 1024; // max binary exponent
- F64_MIN :: 2.2250738585072014e-308; // min positive value
- F64_MIN_10_EXP :: -307; // min decimal exponent
- F64_MIN_EXP :: -1021; // min binary exponent
- F64_RADIX :: 2; // exponent radix
- F64_ROUNDS :: 1; // addition rounding: near
|