generic_float.odin 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281
  1. package strconv
  2. import "decimal"
  3. Decimal_Slice :: struct {
  4. digits: []byte,
  5. count: int,
  6. decimal_point: int,
  7. neg: bool,
  8. }
  9. Float_Info :: struct {
  10. mantbits: uint,
  11. expbits: uint,
  12. bias: int,
  13. }
  14. _f16_info := Float_Info{10, 5, -15};
  15. _f32_info := Float_Info{23, 8, -127};
  16. _f64_info := Float_Info{52, 11, -1023};
  17. generic_ftoa :: proc(buf: []byte, val: f64, fmt: byte, precision, bit_size: int) -> []byte {
  18. bits: u64;
  19. flt: ^Float_Info;
  20. switch bit_size {
  21. case 32:
  22. bits = u64(transmute(u32)f32(val));
  23. flt = &_f32_info;
  24. case 64:
  25. bits = transmute(u64)val;
  26. flt = &_f64_info;
  27. case:
  28. panic("strconv: invalid bit_size");
  29. }
  30. neg := bits>>(flt.expbits+flt.mantbits) != 0;
  31. exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1);
  32. mant := bits & (u64(1) << flt.mantbits - 1);
  33. switch exp {
  34. case 1<<flt.expbits - 1:
  35. s: string;
  36. if mant != 0 {
  37. s = "NaN";
  38. } else if neg {
  39. s = "-Inf";
  40. } else {
  41. s = "+Inf";
  42. }
  43. n := copy(buf, s);
  44. return buf[:n];
  45. case 0: // denormalized
  46. exp += 1;
  47. case:
  48. mant |= u64(1) << flt.mantbits;
  49. }
  50. exp += flt.bias;
  51. d_: decimal.Decimal;
  52. d := &d_;
  53. decimal.assign(d, mant);
  54. decimal.shift(d, exp - int(flt.mantbits));
  55. digs: Decimal_Slice;
  56. prec := precision;
  57. shortest := prec < 0;
  58. if shortest {
  59. round_shortest(d, mant, exp, flt);
  60. digs = Decimal_Slice{digits = d.digits[:], count = d.count, decimal_point = d.decimal_point};
  61. switch fmt {
  62. case 'e', 'E': prec = digs.count-1;
  63. case 'f', 'F': prec = max(digs.count-digs.decimal_point, 0);
  64. case 'g', 'G': prec = digs.count;
  65. }
  66. } else {
  67. switch fmt {
  68. case 'e', 'E': decimal.round(d, prec+1);
  69. case 'f', 'F': decimal.round(d, d.decimal_point+prec);
  70. case 'g', 'G':
  71. if prec == 0 {
  72. prec = 1;
  73. }
  74. decimal.round(d, prec);
  75. }
  76. digs = Decimal_Slice{digits = d.digits[:], count = d.count, decimal_point = d.decimal_point};
  77. }
  78. return format_digits(buf, shortest, neg, digs, prec, fmt);
  79. }
  80. format_digits :: proc(buf: []byte, shortest: bool, neg: bool, digs: Decimal_Slice, precision: int, fmt: byte) -> []byte {
  81. Buffer :: struct {
  82. b: []byte,
  83. n: int,
  84. };
  85. to_bytes :: proc(b: Buffer) -> []byte do return b.b[:b.n];
  86. add_bytes :: proc(buf: ^Buffer, bytes: ..byte) {
  87. buf.n += copy(buf.b[buf.n:], bytes);
  88. }
  89. b := Buffer{b = buf};
  90. prec := precision;
  91. switch fmt {
  92. case 'f', 'F':
  93. add_bytes(&b, '-' if neg else '+');
  94. // integer, padded with zeros when needed
  95. if digs.decimal_point > 0 {
  96. m := min(digs.count, digs.decimal_point);
  97. add_bytes(&b, ..digs.digits[0:m]);
  98. for ; m < digs.decimal_point; m += 1 {
  99. add_bytes(&b, '0');
  100. }
  101. } else {
  102. add_bytes(&b, '0');
  103. }
  104. // fractional part
  105. if prec > 0 {
  106. add_bytes(&b, '.');
  107. for i in 0..<prec {
  108. c: byte = '0';
  109. if j := digs.decimal_point + i; 0 <= j && j < digs.count {
  110. c = digs.digits[j];
  111. }
  112. add_bytes(&b, c);
  113. }
  114. }
  115. return to_bytes(b);
  116. case 'e', 'E':
  117. add_bytes(&b, '-' if neg else '+');
  118. ch := byte('0');
  119. if digs.count != 0 {
  120. ch = digs.digits[0];
  121. }
  122. add_bytes(&b, ch);
  123. if prec > 0 {
  124. add_bytes(&b, '.');
  125. i := 1;
  126. m := min(digs.count, prec+1);
  127. if i < m {
  128. add_bytes(&b, ..digs.digits[i:m]);
  129. i = m;
  130. }
  131. for ; i <= prec; i += 1 {
  132. add_bytes(&b, '0');
  133. }
  134. }
  135. add_bytes(&b, fmt);
  136. exp := digs.decimal_point-1;
  137. if digs.count == 0 {
  138. // Zero has exponent of 0
  139. exp = 0;
  140. }
  141. ch = '+';
  142. if exp < 0 {
  143. ch = '-';
  144. exp = -exp;
  145. }
  146. add_bytes(&b, ch);
  147. switch {
  148. case exp < 10: add_bytes(&b, '0', byte(exp)+'0'); // add prefix 0
  149. case exp < 100: add_bytes(&b, byte(exp/10)+'0', byte(exp%10)+'0');
  150. case: add_bytes(&b, byte(exp/100)+'0', byte(exp/10)%10+'0', byte(exp%10)+'0');
  151. }
  152. return to_bytes(b);
  153. case 'g', 'G':
  154. eprec := prec;
  155. if eprec > digs.count && digs.count >= digs.decimal_point {
  156. eprec = digs.count;
  157. }
  158. if shortest {
  159. eprec = 6;
  160. }
  161. exp := digs.decimal_point - 1;
  162. if exp < -4 || exp >= eprec {
  163. if prec > digs.count {
  164. prec = digs.count;
  165. }
  166. return format_digits(buf, shortest, neg, digs, prec-1, fmt+'e'-'g'); // keep the same case
  167. }
  168. if prec > digs.decimal_point {
  169. prec = digs.count;
  170. }
  171. return format_digits(buf, shortest, neg, digs, max(prec-digs.decimal_point, 0), 'f');
  172. case:
  173. add_bytes(&b, '%', fmt);
  174. return to_bytes(b);
  175. }
  176. }
  177. round_shortest :: proc(d: ^decimal.Decimal, mant: u64, exp: int, flt: ^Float_Info) {
  178. if mant == 0 { // If mantissa is zero, the number is zero
  179. d.count = 0;
  180. return;
  181. }
  182. /*
  183. 10^(dp-nd) > 2^(exp-mantbits)
  184. log2(10) * (dp-nd) > exp-mantbits
  185. log(2) >~ 0.332
  186. 332*(dp-nd) >= 100*(exp-mantbits)
  187. */
  188. minexp := flt.bias+1;
  189. if exp > minexp && 332*(d.decimal_point-d.count) >= 100*(exp - int(flt.mantbits)) {
  190. // Number is already its shortest
  191. return;
  192. }
  193. upper_: decimal.Decimal; upper := &upper_;
  194. decimal.assign(upper, 2*mant - 1);
  195. decimal.shift(upper, exp - int(flt.mantbits) - 1);
  196. mantlo: u64;
  197. explo: int;
  198. if mant > 1<<flt.mantbits || exp == minexp {
  199. mantlo = mant-1;
  200. explo = exp;
  201. } else {
  202. mantlo = 2*mant - 1;
  203. explo = exp-1;
  204. }
  205. lower_: decimal.Decimal; lower := &lower_;
  206. decimal.assign(lower, 2*mantlo + 1);
  207. decimal.shift(lower, explo - int(flt.mantbits) - 1);
  208. inclusive := mant%2 == 0;
  209. for i in 0..<d.count {
  210. l: byte = '0'; // lower digit
  211. if i < lower.count {
  212. l = lower.digits[i];
  213. }
  214. m := d.digits[i]; // middle digit
  215. u: byte = '0'; // upper digit
  216. if i < upper.count {
  217. u = upper.digits[i];
  218. }
  219. ok_round_down := l != m || inclusive && i+1 == lower.count;
  220. ok_round_up := m != u && (inclusive || m+1 < u || i+1 < upper.count);
  221. if ok_round_down && ok_round_up {
  222. decimal.round(d, i+1);
  223. return;
  224. }
  225. if ok_round_down {
  226. decimal.round_down(d, i+1);
  227. return;
  228. }
  229. if ok_round_up {
  230. decimal.round_up(d, i+1);
  231. return;
  232. }
  233. }
  234. }