math.odin 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374
  1. TAU :: 6.28318530717958647692528676655900576;
  2. PI :: 3.14159265358979323846264338327950288;
  3. ONE_OVER_TAU :: 0.636619772367581343075535053490057448;
  4. ONE_OVER_PI :: 0.159154943091895335768883763372514362;
  5. E :: 2.71828182845904523536;
  6. SQRT_TWO :: 1.41421356237309504880168872420969808;
  7. SQRT_THREE :: 1.73205080756887729352744634150587236;
  8. SQRT_FIVE :: 2.23606797749978969640917366873127623;
  9. LOG_TWO :: 0.693147180559945309417232121458176568;
  10. LOG_TEN :: 2.30258509299404568401799145468436421;
  11. EPSILON :: 1.19209290e-7;
  12. τ :: TAU;
  13. π :: PI;
  14. Vec2 :: [2]f32;
  15. Vec3 :: [3]f32;
  16. Vec4 :: [4]f32;
  17. // Column major
  18. Mat2 :: [2][2]f32;
  19. Mat3 :: [3][3]f32;
  20. Mat4 :: [4][4]f32;
  21. Complex :: complex64;
  22. @(default_calling_convention="c")
  23. foreign __llvm_core {
  24. @(link_name="llvm.sqrt.f32")
  25. sqrt :: proc(x: f32) -> f32 ---;
  26. @(link_name="llvm.sqrt.f64")
  27. sqrt :: proc(x: f64) -> f64 ---;
  28. @(link_name="llvm.sin.f32")
  29. sin :: proc(θ: f32) -> f32 ---;
  30. @(link_name="llvm.sin.f64")
  31. sin :: proc(θ: f64) -> f64 ---;
  32. @(link_name="llvm.cos.f32")
  33. cos :: proc(θ: f32) -> f32 ---;
  34. @(link_name="llvm.cos.f64")
  35. cos :: proc(θ: f64) -> f64 ---;
  36. @(link_name="llvm.pow.f32")
  37. pow :: proc(x, power: f32) -> f32 ---;
  38. @(link_name="llvm.pow.f64")
  39. pow :: proc(x, power: f64) -> f64 ---;
  40. @(link_name="llvm.fmuladd.f32")
  41. fmuladd :: proc(a, b, c: f32) -> f32 ---;
  42. @(link_name="llvm.fmuladd.f64")
  43. fmuladd :: proc(a, b, c: f64) -> f64 ---;
  44. }
  45. tan :: proc "c" (θ: f32) -> f32 do return sin(θ)/cos(θ);
  46. tan :: proc "c" (θ: f64) -> f64 do return sin(θ)/cos(θ);
  47. lerp :: proc(a, b: $T, t: $E) -> (x: T) do return a*(1-t) + b*t;
  48. unlerp :: proc(a, b, x: f32) -> (t: f32) do return (x-a)/(b-a);
  49. unlerp :: proc(a, b, x: f64) -> (t: f64) do return (x-a)/(b-a);
  50. sign :: proc(x: f32) -> f32 { return x >= 0 ? +1 : -1; }
  51. sign :: proc(x: f64) -> f64 { return x >= 0 ? +1 : -1; }
  52. copy_sign :: proc(x, y: f32) -> f32 {
  53. ix := transmute(u32)x;
  54. iy := transmute(u32)y;
  55. ix &= 0x7fff_ffff;
  56. ix |= iy & 0x8000_0000;
  57. return transmute(f32)ix;
  58. }
  59. copy_sign :: proc(x, y: f64) -> f64 {
  60. ix := transmute(u64)x;
  61. iy := transmute(u64)y;
  62. ix &= 0x7fff_ffff_ffff_ff;
  63. ix |= iy & 0x8000_0000_0000_0000;
  64. return transmute(f64)ix;
  65. }
  66. round :: proc(x: f32) -> f32 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); }
  67. round :: proc(x: f64) -> f64 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); }
  68. floor :: proc(x: f32) -> f32 { return x >= 0 ? f32(i64(x)) : f32(i64(x-0.5)); } // TODO: Get accurate versions
  69. floor :: proc(x: f64) -> f64 { return x >= 0 ? f64(i64(x)) : f64(i64(x-0.5)); } // TODO: Get accurate versions
  70. ceil :: proc(x: f32) -> f32 { return x < 0 ? f32(i64(x)) : f32(i64(x+1)); }// TODO: Get accurate versions
  71. ceil :: proc(x: f64) -> f64 { return x < 0 ? f64(i64(x)) : f64(i64(x+1)); }// TODO: Get accurate versions
  72. remainder :: proc(x, y: f32) -> f32 do return x - round(x/y) * y;
  73. remainder :: proc(x, y: f64) -> f64 do return x - round(x/y) * y;
  74. mod :: proc(x, y: f32) -> f32 {
  75. result: f32;
  76. y = abs(y);
  77. result = remainder(abs(x), y);
  78. if sign(result) < 0 {
  79. result += y;
  80. }
  81. return copy_sign(result, x);
  82. }
  83. mod :: proc(x, y: f64) -> f64 {
  84. result: f64;
  85. y = abs(y);
  86. result = remainder(abs(x), y);
  87. if sign(result) < 0 {
  88. result += y;
  89. }
  90. return copy_sign(result, x);
  91. }
  92. to_radians :: proc(degrees: f32) -> f32 do return degrees * TAU / 360;
  93. to_degrees :: proc(radians: f32) -> f32 do return radians * 360 / TAU;
  94. dot :: proc(a, b: $T/[$N]$E) -> E {
  95. res: E;
  96. for i in 0..N do res += a[i] * b[i];
  97. return res;
  98. }
  99. cross :: proc(x, y: $T/[3]$E) -> T {
  100. a := swizzle(x, 1, 2, 0) * swizzle(y, 2, 0, 1);
  101. b := swizzle(x, 2, 0, 1) * swizzle(y, 1, 2, 0);
  102. return T(a - b);
  103. }
  104. mag :: proc(v: $T/[$N]$E) -> E do return sqrt(dot(v, v));
  105. norm :: proc(v: $T/[$N]$E) -> T do return v / mag(v);
  106. norm0 :: proc(v: $T/[$N]$E) -> T {
  107. m := mag(v);
  108. return m == 0 ? 0 : v/m;
  109. }
  110. mat4_identity :: proc() -> Mat4 {
  111. return Mat4{
  112. {1, 0, 0, 0},
  113. {0, 1, 0, 0},
  114. {0, 0, 1, 0},
  115. {0, 0, 0, 1},
  116. };
  117. }
  118. mat4_transpose :: proc(m: Mat4) -> Mat4 {
  119. for j in 0..4 {
  120. for i in 0..4 {
  121. m[i][j], m[j][i] = m[j][i], m[i][j];
  122. }
  123. }
  124. return m;
  125. }
  126. mul :: proc(a, b: Mat4) -> Mat4 {
  127. c: Mat4;
  128. for j in 0..4 {
  129. for i in 0..4 {
  130. c[j][i] = a[0][i]*b[j][0] +
  131. a[1][i]*b[j][1] +
  132. a[2][i]*b[j][2] +
  133. a[3][i]*b[j][3];
  134. }
  135. }
  136. return c;
  137. }
  138. mul :: proc(m: Mat4, v: Vec4) -> Vec4 {
  139. return Vec4{
  140. m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0]*v[3],
  141. m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1]*v[3],
  142. m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2]*v[3],
  143. m[0][3]*v[0] + m[1][3]*v[1] + m[2][3]*v[2] + m[3][3]*v[3],
  144. };
  145. }
  146. inverse :: proc(m: Mat4) -> Mat4 {
  147. o: Mat4;
  148. sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3];
  149. sf01 := m[2][1] * m[3][3] - m[3][1] * m[2][3];
  150. sf02 := m[2][1] * m[3][2] - m[3][1] * m[2][2];
  151. sf03 := m[2][0] * m[3][3] - m[3][0] * m[2][3];
  152. sf04 := m[2][0] * m[3][2] - m[3][0] * m[2][2];
  153. sf05 := m[2][0] * m[3][1] - m[3][0] * m[2][1];
  154. sf06 := m[1][2] * m[3][3] - m[3][2] * m[1][3];
  155. sf07 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
  156. sf08 := m[1][1] * m[3][2] - m[3][1] * m[1][2];
  157. sf09 := m[1][0] * m[3][3] - m[3][0] * m[1][3];
  158. sf10 := m[1][0] * m[3][2] - m[3][0] * m[1][2];
  159. sf11 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
  160. sf12 := m[1][0] * m[3][1] - m[3][0] * m[1][1];
  161. sf13 := m[1][2] * m[2][3] - m[2][2] * m[1][3];
  162. sf14 := m[1][1] * m[2][3] - m[2][1] * m[1][3];
  163. sf15 := m[1][1] * m[2][2] - m[2][1] * m[1][2];
  164. sf16 := m[1][0] * m[2][3] - m[2][0] * m[1][3];
  165. sf17 := m[1][0] * m[2][2] - m[2][0] * m[1][2];
  166. sf18 := m[1][0] * m[2][1] - m[2][0] * m[1][1];
  167. o[0][0] = +(m[1][1] * sf00 - m[1][2] * sf01 + m[1][3] * sf02);
  168. o[0][1] = -(m[1][0] * sf00 - m[1][2] * sf03 + m[1][3] * sf04);
  169. o[0][2] = +(m[1][0] * sf01 - m[1][1] * sf03 + m[1][3] * sf05);
  170. o[0][3] = -(m[1][0] * sf02 - m[1][1] * sf04 + m[1][2] * sf05);
  171. o[1][0] = -(m[0][1] * sf00 - m[0][2] * sf01 + m[0][3] * sf02);
  172. o[1][1] = +(m[0][0] * sf00 - m[0][2] * sf03 + m[0][3] * sf04);
  173. o[1][2] = -(m[0][0] * sf01 - m[0][1] * sf03 + m[0][3] * sf05);
  174. o[1][3] = +(m[0][0] * sf02 - m[0][1] * sf04 + m[0][2] * sf05);
  175. o[2][0] = +(m[0][1] * sf06 - m[0][2] * sf07 + m[0][3] * sf08);
  176. o[2][1] = -(m[0][0] * sf06 - m[0][2] * sf09 + m[0][3] * sf10);
  177. o[2][2] = +(m[0][0] * sf11 - m[0][1] * sf09 + m[0][3] * sf12);
  178. o[2][3] = -(m[0][0] * sf08 - m[0][1] * sf10 + m[0][2] * sf12);
  179. o[3][0] = -(m[0][1] * sf13 - m[0][2] * sf14 + m[0][3] * sf15);
  180. o[3][1] = +(m[0][0] * sf13 - m[0][2] * sf16 + m[0][3] * sf17);
  181. o[3][2] = -(m[0][0] * sf14 - m[0][1] * sf16 + m[0][3] * sf18);
  182. o[3][3] = +(m[0][0] * sf15 - m[0][1] * sf17 + m[0][2] * sf18);
  183. ood := 1.0 / (m[0][0] * o[0][0] +
  184. m[0][1] * o[0][1] +
  185. m[0][2] * o[0][2] +
  186. m[0][3] * o[0][3]);
  187. o[0][0] *= ood;
  188. o[0][1] *= ood;
  189. o[0][2] *= ood;
  190. o[0][3] *= ood;
  191. o[1][0] *= ood;
  192. o[1][1] *= ood;
  193. o[1][2] *= ood;
  194. o[1][3] *= ood;
  195. o[2][0] *= ood;
  196. o[2][1] *= ood;
  197. o[2][2] *= ood;
  198. o[2][3] *= ood;
  199. o[3][0] *= ood;
  200. o[3][1] *= ood;
  201. o[3][2] *= ood;
  202. o[3][3] *= ood;
  203. return o;
  204. }
  205. mat4_translate :: proc(v: Vec3) -> Mat4 {
  206. m := mat4_identity();
  207. m[3][0] = v[0];
  208. m[3][1] = v[1];
  209. m[3][2] = v[2];
  210. m[3][3] = 1;
  211. return m;
  212. }
  213. mat4_rotate :: proc(v: Vec3, angle_radians: f32) -> Mat4 {
  214. c := cos(angle_radians);
  215. s := sin(angle_radians);
  216. a := norm(v);
  217. t := a * (1-c);
  218. rot := mat4_identity();
  219. rot[0][0] = c + t[0]*a[0];
  220. rot[0][1] = 0 + t[0]*a[1] + s*a[2];
  221. rot[0][2] = 0 + t[0]*a[2] - s*a[1];
  222. rot[0][3] = 0;
  223. rot[1][0] = 0 + t[1]*a[0] - s*a[2];
  224. rot[1][1] = c + t[1]*a[1];
  225. rot[1][2] = 0 + t[1]*a[2] + s*a[0];
  226. rot[1][3] = 0;
  227. rot[2][0] = 0 + t[2]*a[0] + s*a[1];
  228. rot[2][1] = 0 + t[2]*a[1] - s*a[0];
  229. rot[2][2] = c + t[2]*a[2];
  230. rot[2][3] = 0;
  231. return rot;
  232. }
  233. scale :: proc(m: Mat4, v: Vec3) -> Mat4 {
  234. m[0][0] *= v[0];
  235. m[1][1] *= v[1];
  236. m[2][2] *= v[2];
  237. return m;
  238. }
  239. scale :: proc(m: Mat4, s: f32) -> Mat4 {
  240. m[0][0] *= s;
  241. m[1][1] *= s;
  242. m[2][2] *= s;
  243. return m;
  244. }
  245. look_at :: proc(eye, centre, up: Vec3) -> Mat4 {
  246. f := norm(centre - eye);
  247. s := norm(cross(f, up));
  248. u := cross(s, f);
  249. return Mat4{
  250. {+s[0], +u[0], -f[0], 0},
  251. {+s[1], +u[1], -f[1], 0},
  252. {+s[2], +u[2], -f[2], 0},
  253. {-dot(s, eye), -dot(u, eye), dot(f, eye), 1},
  254. };
  255. }
  256. perspective :: proc(fovy, aspect, near, far: f32) -> Mat4 {
  257. m: Mat4;
  258. tan_half_fovy := tan(0.5 * fovy);
  259. m[0][0] = 1.0 / (aspect*tan_half_fovy);
  260. m[1][1] = 1.0 / (tan_half_fovy);
  261. m[2][2] = -(far + near) / (far - near);
  262. m[2][3] = -1.0;
  263. m[3][2] = -2.0*far*near / (far - near);
  264. return m;
  265. }
  266. ortho3d :: proc(left, right, bottom, top, near, far: f32) -> Mat4 {
  267. m := mat4_identity();
  268. m[0][0] = +2.0 / (right - left);
  269. m[1][1] = +2.0 / (top - bottom);
  270. m[2][2] = -2.0 / (far - near);
  271. m[3][0] = -(right + left) / (right - left);
  272. m[3][1] = -(top + bottom) / (top - bottom);
  273. m[3][2] = -(far + near) / (far - near);
  274. return m;
  275. }
  276. F32_DIG :: 6;
  277. F32_EPSILON :: 1.192092896e-07;
  278. F32_GUARD :: 0;
  279. F32_MANT_DIG :: 24;
  280. F32_MAX :: 3.402823466e+38;
  281. F32_MAX_10_EXP :: 38;
  282. F32_MAX_EXP :: 128;
  283. F32_MIN :: 1.175494351e-38;
  284. F32_MIN_10_EXP :: -37;
  285. F32_MIN_EXP :: -125;
  286. F32_NORMALIZE :: 0;
  287. F32_RADIX :: 2;
  288. F32_ROUNDS :: 1;
  289. F64_DIG :: 15; // # of decimal digits of precision
  290. F64_EPSILON :: 2.2204460492503131e-016; // smallest such that 1.0+F64_EPSILON != 1.0
  291. F64_MANT_DIG :: 53; // # of bits in mantissa
  292. F64_MAX :: 1.7976931348623158e+308; // max value
  293. F64_MAX_10_EXP :: 308; // max decimal exponent
  294. F64_MAX_EXP :: 1024; // max binary exponent
  295. F64_MIN :: 2.2250738585072014e-308; // min positive value
  296. F64_MIN_10_EXP :: -307; // min decimal exponent
  297. F64_MIN_EXP :: -1021; // min binary exponent
  298. F64_RADIX :: 2; // exponent radix
  299. F64_ROUNDS :: 1; // addition rounding: near