mem.odin 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322
  1. import "core:raw.odin"
  2. foreign __llvm_core {
  3. @(link_name = "llvm.bswap.i16") swap :: proc(b: u16) -> u16 ---;
  4. @(link_name = "llvm.bswap.i32") swap :: proc(b: u32) -> u32 ---;
  5. @(link_name = "llvm.bswap.i64") swap :: proc(b: u64) -> u64 ---;
  6. }
  7. set :: proc "contextless" (data: rawptr, value: i32, len: int) -> rawptr {
  8. return __mem_set(data, value, len);
  9. }
  10. zero :: proc "contextless" (data: rawptr, len: int) -> rawptr {
  11. return __mem_zero(data, len);
  12. }
  13. copy :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
  14. return __mem_copy(dst, src, len);
  15. }
  16. copy_non_overlapping :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
  17. return __mem_copy_non_overlapping(dst, src, len);
  18. }
  19. compare :: proc "contextless" (a, b: []u8) -> int {
  20. return __mem_compare(&a[0], &b[0], min(len(a), len(b)));
  21. }
  22. slice_ptr :: proc "contextless" (ptr: ^$T, len: int) -> []T {
  23. assert(len >= 0);
  24. slice := raw.Slice{data = ptr, len = len, cap = len};
  25. return transmute([]T)slice;
  26. }
  27. slice_ptr :: proc "contextless" (ptr: ^$T, len, cap: int) -> []T {
  28. assert(0 <= len && len <= cap);
  29. slice := raw.Slice{data = ptr, len = len, cap = cap};
  30. return transmute([]T)slice;
  31. }
  32. slice_to_bytes :: proc "contextless" (slice: $E/[]$T) -> []u8 {
  33. s := transmute(raw.Slice)slice;
  34. s.len *= size_of(T);
  35. s.cap *= size_of(T);
  36. return transmute([]u8)s;
  37. }
  38. ptr_to_bytes :: proc "contextless" (ptr: ^$T, len := 1) -> []u8 {
  39. assert(len >= 0);
  40. return transmute([]u8)raw.Slice{ptr, len*size_of(T), len*size_of(T)};
  41. }
  42. ptr_to_bytes :: proc "contextless" (ptr: ^$T, len, cap: int) -> []u8 {
  43. assert(0 <= len && len <= cap);
  44. return transmute([]u8)raw.Slice{ptr, len*size_of(T), cap*size_of(T)};
  45. }
  46. kilobytes :: inline proc "contextless" (x: int) -> int do return (x) * 1024;
  47. megabytes :: inline proc "contextless" (x: int) -> int do return kilobytes(x) * 1024;
  48. gigabytes :: inline proc "contextless" (x: int) -> int do return megabytes(x) * 1024;
  49. terabytes :: inline proc "contextless" (x: int) -> int do return gigabytes(x) * 1024;
  50. is_power_of_two :: proc(x: uintptr) -> bool {
  51. if x <= 0 do return false;
  52. return (x & (x-1)) == 0;
  53. }
  54. align_forward :: proc(ptr: rawptr, align: uintptr) -> rawptr {
  55. assert(is_power_of_two(align));
  56. a := uintptr(align);
  57. p := uintptr(ptr);
  58. modulo := p & (a-1);
  59. if modulo != 0 do p += a - modulo;
  60. return rawptr(p);
  61. }
  62. AllocationHeader :: struct {size: int};
  63. allocation_header_fill :: proc(header: ^AllocationHeader, data: rawptr, size: int) {
  64. header.size = size;
  65. ptr := cast(^uint)(header+1);
  66. n := cast(^uint)data - ptr;
  67. for i in 0..n {
  68. (ptr+i)^ = ~uint(0);
  69. }
  70. }
  71. allocation_header :: proc(data: rawptr) -> ^AllocationHeader {
  72. if data == nil do return nil;
  73. p := cast(^uint)data;
  74. for (p-1)^ == ~uint(0) do p = (p-1);
  75. return cast(^AllocationHeader)(p-1);
  76. }
  77. // Custom allocators
  78. Arena :: struct {
  79. backing: Allocator,
  80. memory: []u8,
  81. temp_count: int,
  82. }
  83. ArenaTempMemory :: struct {
  84. arena: ^Arena,
  85. original_count: int,
  86. }
  87. init_arena_from_memory :: proc(using a: ^Arena, data: []u8) {
  88. backing = Allocator{};
  89. memory = data[..0];
  90. temp_count = 0;
  91. }
  92. init_arena_from_context :: proc(using a: ^Arena, size: int) {
  93. backing = context.allocator;
  94. memory = make([]u8, 0, size);
  95. temp_count = 0;
  96. }
  97. context_from_allocator :: proc(a: Allocator) -> Context {
  98. c := context;
  99. c.allocator = a;
  100. return c;
  101. }
  102. destroy_arena :: proc(using a: ^Arena) {
  103. if backing.procedure != nil {
  104. context <- context_from_allocator(backing) {
  105. free(memory);
  106. memory = nil;
  107. }
  108. }
  109. }
  110. arena_allocator :: proc(arena: ^Arena) -> Allocator {
  111. return Allocator{
  112. procedure = arena_allocator_proc,
  113. data = arena,
  114. };
  115. }
  116. arena_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
  117. size, alignment: int,
  118. old_memory: rawptr, old_size: int, flags: u64, location := #caller_location) -> rawptr {
  119. using Allocator_Mode;
  120. arena := cast(^Arena)allocator_data;
  121. switch mode {
  122. case Alloc:
  123. total_size := size + alignment;
  124. if len(arena.memory) + total_size > cap(arena.memory) {
  125. return nil;
  126. }
  127. #no_bounds_check end := &arena.memory[len(arena.memory)];
  128. ptr := align_forward(end, uintptr(alignment));
  129. (^raw.Slice)(&arena.memory).len += total_size;
  130. return zero(ptr, size);
  131. case Free:
  132. // NOTE(bill): Free all at once
  133. // Use ArenaTempMemory if you want to free a block
  134. case FreeAll:
  135. (^raw.Slice)(&arena.memory).len = 0;
  136. case Resize:
  137. return default_resize_align(old_memory, old_size, size, alignment);
  138. }
  139. return nil;
  140. }
  141. begin_arena_temp_memory :: proc(a: ^Arena) -> ArenaTempMemory {
  142. tmp: ArenaTempMemory;
  143. tmp.arena = a;
  144. tmp.original_count = len(a.memory);
  145. a.temp_count += 1;
  146. return tmp;
  147. }
  148. end_arena_temp_memory :: proc(using tmp: ArenaTempMemory) {
  149. assert(len(arena.memory) >= original_count);
  150. assert(arena.temp_count > 0);
  151. arena.memory = arena.memory[..original_count];
  152. arena.temp_count -= 1;
  153. }
  154. align_of_type_info :: proc(type_info: ^Type_Info) -> int {
  155. prev_pow2 :: proc(n: i64) -> i64 {
  156. if n <= 0 do return 0;
  157. n |= n >> 1;
  158. n |= n >> 2;
  159. n |= n >> 4;
  160. n |= n >> 8;
  161. n |= n >> 16;
  162. n |= n >> 32;
  163. return n - (n >> 1);
  164. }
  165. WORD_SIZE :: size_of(int);
  166. MAX_ALIGN :: size_of([vector 64]f64); // TODO(bill): Should these constants be builtin constants?
  167. switch info in type_info.variant {
  168. case Type_Info_Named:
  169. return align_of_type_info(info.base);
  170. case Type_Info_Integer:
  171. return type_info.align;
  172. case Type_Info_Rune:
  173. return type_info.align;
  174. case Type_Info_Float:
  175. return type_info.align;
  176. case Type_Info_String:
  177. return WORD_SIZE;
  178. case Type_Info_Boolean:
  179. return 1;
  180. case Type_Info_Any:
  181. return WORD_SIZE;
  182. case Type_Info_Pointer:
  183. return WORD_SIZE;
  184. case Type_Info_Procedure:
  185. return WORD_SIZE;
  186. case Type_Info_Array:
  187. return align_of_type_info(info.elem);
  188. case Type_Info_Dynamic_Array:
  189. return WORD_SIZE;
  190. case Type_Info_Slice:
  191. return WORD_SIZE;
  192. case Type_Info_Vector:
  193. size := size_of_type_info(info.elem);
  194. count := int(max(prev_pow2(i64(info.count)), 1));
  195. total := size * count;
  196. return clamp(total, 1, MAX_ALIGN);
  197. case Type_Info_Tuple:
  198. return type_info.align;
  199. case Type_Info_Struct:
  200. return type_info.align;
  201. case Type_Info_Union:
  202. return type_info.align;
  203. case Type_Info_Enum:
  204. return align_of_type_info(info.base);
  205. case Type_Info_Map:
  206. return align_of_type_info(info.generated_struct);
  207. }
  208. return 0;
  209. }
  210. align_formula :: proc(size, align: int) -> int {
  211. result := size + align-1;
  212. return result - result%align;
  213. }
  214. size_of_type_info :: proc(type_info: ^Type_Info) -> int {
  215. WORD_SIZE :: size_of(int);
  216. switch info in type_info.variant {
  217. case Type_Info_Named:
  218. return size_of_type_info(info.base);
  219. case Type_Info_Integer:
  220. return type_info.size;
  221. case Type_Info_Rune:
  222. return type_info.size;
  223. case Type_Info_Float:
  224. return type_info.size;
  225. case Type_Info_String:
  226. return 2*WORD_SIZE;
  227. case Type_Info_Boolean:
  228. return 1;
  229. case Type_Info_Any:
  230. return 2*WORD_SIZE;
  231. case Type_Info_Pointer:
  232. return WORD_SIZE;
  233. case Type_Info_Procedure:
  234. return WORD_SIZE;
  235. case Type_Info_Array:
  236. count := info.count;
  237. if count == 0 do return 0;
  238. size := size_of_type_info(info.elem);
  239. align := align_of_type_info(info.elem);
  240. alignment := align_formula(size, align);
  241. return alignment*(count-1) + size;
  242. case Type_Info_Dynamic_Array:
  243. return size_of(rawptr) + 2*size_of(int) + size_of(Allocator);
  244. case Type_Info_Slice:
  245. return 2*WORD_SIZE;
  246. case Type_Info_Vector:
  247. count := info.count;
  248. if count == 0 do return 0;
  249. size := size_of_type_info(info.elem);
  250. align := align_of_type_info(info.elem);
  251. alignment := align_formula(size, align);
  252. return alignment*(count-1) + size;
  253. case Type_Info_Struct:
  254. return type_info.size;
  255. case Type_Info_Union:
  256. return type_info.size;
  257. case Type_Info_Enum:
  258. return size_of_type_info(info.base);
  259. case Type_Info_Map:
  260. return size_of_type_info(info.generated_struct);
  261. }
  262. return 0;
  263. }