math.odin 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470
  1. TAU :: 6.28318530717958647692528676655900576;
  2. PI :: 3.14159265358979323846264338327950288;
  3. E :: 2.71828182845904523536;
  4. SQRT_TWO :: 1.41421356237309504880168872420969808;
  5. SQRT_THREE :: 1.73205080756887729352744634150587236;
  6. SQRT_FIVE :: 2.23606797749978969640917366873127623;
  7. LOG_TWO :: 0.693147180559945309417232121458176568;
  8. LOG_TEN :: 2.30258509299404568401799145468436421;
  9. EPSILON :: 1.19209290e-7;
  10. τ :: TAU;
  11. π :: PI;
  12. Vec2 :: distinct [2]f32;
  13. Vec3 :: distinct [3]f32;
  14. Vec4 :: distinct [4]f32;
  15. // Column major
  16. Mat2 :: distinct [2][2]f32;
  17. Mat3 :: distinct [3][3]f32;
  18. Mat4 :: distinct [4][4]f32;
  19. Quat :: struct {x, y, z: f32, w: f32 = 1};
  20. @(default_calling_convention="c")
  21. foreign __llvm_core {
  22. @(link_name="llvm.sqrt.f32")
  23. sqrt_f32 :: proc(x: f32) -> f32 ---;
  24. @(link_name="llvm.sqrt.f64")
  25. sqrt_f64 :: proc(x: f64) -> f64 ---;
  26. @(link_name="llvm.sin.f32")
  27. sin_f32 :: proc(θ: f32) -> f32 ---;
  28. @(link_name="llvm.sin.f64")
  29. sin_f64 :: proc(θ: f64) -> f64 ---;
  30. @(link_name="llvm.cos.f32")
  31. cos_f32 :: proc(θ: f32) -> f32 ---;
  32. @(link_name="llvm.cos.f64")
  33. cos_f64 :: proc(θ: f64) -> f64 ---;
  34. @(link_name="llvm.pow.f32")
  35. pow_f32 :: proc(x, power: f32) -> f32 ---;
  36. @(link_name="llvm.pow.f64")
  37. pow_f64 :: proc(x, power: f64) -> f64 ---;
  38. @(link_name="llvm.fmuladd.f32")
  39. fmuladd_f32 :: proc(a, b, c: f32) -> f32 ---;
  40. @(link_name="llvm.fmuladd.f64")
  41. fmuladd_f64 :: proc(a, b, c: f64) -> f64 ---;
  42. }
  43. tan_f32 :: proc "c" (θ: f32) -> f32 { return sin(θ)/cos(θ); }
  44. tan_f64 :: proc "c" (θ: f64) -> f64 { return sin(θ)/cos(θ); }
  45. lerp :: proc(a, b: $T, t: $E) -> (x: T) { return a*(1-t) + b*t; }
  46. unlerp_f32 :: proc(a, b, x: f32) -> (t: f32) { return (x-a)/(b-a); }
  47. unlerp_f64 :: proc(a, b, x: f64) -> (t: f64) { return (x-a)/(b-a); }
  48. sign_f32 :: proc(x: f32) -> f32 { return x >= 0 ? +1 : -1; }
  49. sign_f64 :: proc(x: f64) -> f64 { return x >= 0 ? +1 : -1; }
  50. copy_sign_f32 :: proc(x, y: f32) -> f32 {
  51. ix := transmute(u32)x;
  52. iy := transmute(u32)y;
  53. ix &= 0x7fff_ffff;
  54. ix |= iy & 0x8000_0000;
  55. return transmute(f32)ix;
  56. }
  57. copy_sign_f64 :: proc(x, y: f64) -> f64 {
  58. ix := transmute(u64)x;
  59. iy := transmute(u64)y;
  60. ix &= 0x7fff_ffff_ffff_ff;
  61. ix |= iy & 0x8000_0000_0000_0000;
  62. return transmute(f64)ix;
  63. }
  64. sqrt :: proc[sqrt_f32, sqrt_f64];
  65. sin :: proc[sin_f32, sin_f64];
  66. cos :: proc[cos_f32, cos_f64];
  67. tan :: proc[tan_f32, tan_f64];
  68. pow :: proc[pow_f32, pow_f64];
  69. fmuladd :: proc[fmuladd_f32, fmuladd_f64];
  70. sign :: proc[sign_f32, sign_f64];
  71. copy_sign :: proc[copy_sign_f32, copy_sign_f64];
  72. round_f32 :: proc(x: f32) -> f32 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); }
  73. round_f64 :: proc(x: f64) -> f64 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); }
  74. round :: proc[round_f32, round_f64];
  75. floor_f32 :: proc(x: f32) -> f32 { return x >= 0 ? f32(i64(x)) : f32(i64(x-0.5)); } // TODO: Get accurate versions
  76. floor_f64 :: proc(x: f64) -> f64 { return x >= 0 ? f64(i64(x)) : f64(i64(x-0.5)); } // TODO: Get accurate versions
  77. floor :: proc[floor_f32, floor_f64];
  78. ceil_f32 :: proc(x: f32) -> f32 { return x < 0 ? f32(i64(x)) : f32(i64(x+1)); }// TODO: Get accurate versions
  79. ceil_f64 :: proc(x: f64) -> f64 { return x < 0 ? f64(i64(x)) : f64(i64(x+1)); }// TODO: Get accurate versions
  80. ceil :: proc[ceil_f32, ceil_f64];
  81. remainder_f32 :: proc(x, y: f32) -> f32 { return x - round(x/y) * y; }
  82. remainder_f64 :: proc(x, y: f64) -> f64 { return x - round(x/y) * y; }
  83. remainder :: proc[remainder_f32, remainder_f64];
  84. mod_f32 :: proc(x, y: f32) -> f32 {
  85. result: f32;
  86. y = abs(y);
  87. result = remainder(abs(x), y);
  88. if sign(result) < 0 {
  89. result += y;
  90. }
  91. return copy_sign(result, x);
  92. }
  93. mod_f64 :: proc(x, y: f64) -> f64 {
  94. result: f64;
  95. y = abs(y);
  96. result = remainder(abs(x), y);
  97. if sign(result) < 0 {
  98. result += y;
  99. }
  100. return copy_sign(result, x);
  101. }
  102. mod :: proc[mod_f32, mod_f64];
  103. to_radians :: proc(degrees: f32) -> f32 { return degrees * TAU / 360; }
  104. to_degrees :: proc(radians: f32) -> f32 { return radians * 360 / TAU; }
  105. mul :: proc[
  106. mat4_mul, mat4_mul_vec4,
  107. quat_mul, quat_mulf,
  108. ];
  109. div :: proc[
  110. quat_div, quat_divf,
  111. ];
  112. inverse :: proc[mat4_inverse, quat_inverse];
  113. dot :: proc[vec_dot, quat_dot];
  114. cross :: proc[cross2, cross3];
  115. vec_dot :: proc(a, b: $T/[$N]$E) -> E {
  116. res: E;
  117. for i in 0..N {
  118. res += a[i] * b[i];
  119. }
  120. return res;
  121. }
  122. cross2 :: proc(a, b: $T/[2]$E) -> E {
  123. return a[0]*b[1] - a[1]*b[0];
  124. }
  125. cross3 :: proc(a, b: $T/[3]$E) -> T {
  126. i := swizzle(a, 1, 2, 0) * swizzle(b, 2, 0, 1);
  127. j := swizzle(a, 2, 0, 1) * swizzle(b, 1, 2, 0);
  128. return T(i - j);
  129. }
  130. length :: proc(v: $T/[$N]$E) -> E { return sqrt(dot(v, v)); }
  131. norm :: proc(v: $T/[$N]$E) -> T { return v / length(v); }
  132. norm0 :: proc(v: $T/[$N]$E) -> T {
  133. m := length(v);
  134. return m == 0 ? 0 : v/m;
  135. }
  136. identity :: proc(T: type/[$N][N]$E) -> T {
  137. m: T;
  138. for i in 0..N do m[i][i] = E(1);
  139. return m;
  140. }
  141. transpose :: proc(m: Mat4) -> Mat4 {
  142. for j in 0..4 {
  143. for i in 0..4 {
  144. m[i][j], m[j][i] = m[j][i], m[i][j];
  145. }
  146. }
  147. return m;
  148. }
  149. mat4_mul :: proc(a, b: Mat4) -> Mat4 {
  150. c: Mat4;
  151. for j in 0..4 {
  152. for i in 0..4 {
  153. c[j][i] = a[0][i]*b[j][0] +
  154. a[1][i]*b[j][1] +
  155. a[2][i]*b[j][2] +
  156. a[3][i]*b[j][3];
  157. }
  158. }
  159. return c;
  160. }
  161. mat4_mul_vec4 :: proc(m: Mat4, v: Vec4) -> Vec4 {
  162. return Vec4{
  163. m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0]*v[3],
  164. m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1]*v[3],
  165. m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2]*v[3],
  166. m[0][3]*v[0] + m[1][3]*v[1] + m[2][3]*v[2] + m[3][3]*v[3],
  167. };
  168. }
  169. mat4_inverse :: proc(m: Mat4) -> Mat4 {
  170. o: Mat4;
  171. sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3];
  172. sf01 := m[2][1] * m[3][3] - m[3][1] * m[2][3];
  173. sf02 := m[2][1] * m[3][2] - m[3][1] * m[2][2];
  174. sf03 := m[2][0] * m[3][3] - m[3][0] * m[2][3];
  175. sf04 := m[2][0] * m[3][2] - m[3][0] * m[2][2];
  176. sf05 := m[2][0] * m[3][1] - m[3][0] * m[2][1];
  177. sf06 := m[1][2] * m[3][3] - m[3][2] * m[1][3];
  178. sf07 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
  179. sf08 := m[1][1] * m[3][2] - m[3][1] * m[1][2];
  180. sf09 := m[1][0] * m[3][3] - m[3][0] * m[1][3];
  181. sf10 := m[1][0] * m[3][2] - m[3][0] * m[1][2];
  182. sf11 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
  183. sf12 := m[1][0] * m[3][1] - m[3][0] * m[1][1];
  184. sf13 := m[1][2] * m[2][3] - m[2][2] * m[1][3];
  185. sf14 := m[1][1] * m[2][3] - m[2][1] * m[1][3];
  186. sf15 := m[1][1] * m[2][2] - m[2][1] * m[1][2];
  187. sf16 := m[1][0] * m[2][3] - m[2][0] * m[1][3];
  188. sf17 := m[1][0] * m[2][2] - m[2][0] * m[1][2];
  189. sf18 := m[1][0] * m[2][1] - m[2][0] * m[1][1];
  190. o[0][0] = +(m[1][1] * sf00 - m[1][2] * sf01 + m[1][3] * sf02);
  191. o[0][1] = -(m[1][0] * sf00 - m[1][2] * sf03 + m[1][3] * sf04);
  192. o[0][2] = +(m[1][0] * sf01 - m[1][1] * sf03 + m[1][3] * sf05);
  193. o[0][3] = -(m[1][0] * sf02 - m[1][1] * sf04 + m[1][2] * sf05);
  194. o[1][0] = -(m[0][1] * sf00 - m[0][2] * sf01 + m[0][3] * sf02);
  195. o[1][1] = +(m[0][0] * sf00 - m[0][2] * sf03 + m[0][3] * sf04);
  196. o[1][2] = -(m[0][0] * sf01 - m[0][1] * sf03 + m[0][3] * sf05);
  197. o[1][3] = +(m[0][0] * sf02 - m[0][1] * sf04 + m[0][2] * sf05);
  198. o[2][0] = +(m[0][1] * sf06 - m[0][2] * sf07 + m[0][3] * sf08);
  199. o[2][1] = -(m[0][0] * sf06 - m[0][2] * sf09 + m[0][3] * sf10);
  200. o[2][2] = +(m[0][0] * sf11 - m[0][1] * sf09 + m[0][3] * sf12);
  201. o[2][3] = -(m[0][0] * sf08 - m[0][1] * sf10 + m[0][2] * sf12);
  202. o[3][0] = -(m[0][1] * sf13 - m[0][2] * sf14 + m[0][3] * sf15);
  203. o[3][1] = +(m[0][0] * sf13 - m[0][2] * sf16 + m[0][3] * sf17);
  204. o[3][2] = -(m[0][0] * sf14 - m[0][1] * sf16 + m[0][3] * sf18);
  205. o[3][3] = +(m[0][0] * sf15 - m[0][1] * sf17 + m[0][2] * sf18);
  206. ood := 1.0 / (m[0][0] * o[0][0] +
  207. m[0][1] * o[0][1] +
  208. m[0][2] * o[0][2] +
  209. m[0][3] * o[0][3]);
  210. o[0][0] *= ood;
  211. o[0][1] *= ood;
  212. o[0][2] *= ood;
  213. o[0][3] *= ood;
  214. o[1][0] *= ood;
  215. o[1][1] *= ood;
  216. o[1][2] *= ood;
  217. o[1][3] *= ood;
  218. o[2][0] *= ood;
  219. o[2][1] *= ood;
  220. o[2][2] *= ood;
  221. o[2][3] *= ood;
  222. o[3][0] *= ood;
  223. o[3][1] *= ood;
  224. o[3][2] *= ood;
  225. o[3][3] *= ood;
  226. return o;
  227. }
  228. mat4_translate :: proc(v: Vec3) -> Mat4 {
  229. m := identity(Mat4);
  230. m[3][0] = v[0];
  231. m[3][1] = v[1];
  232. m[3][2] = v[2];
  233. m[3][3] = 1;
  234. return m;
  235. }
  236. mat4_rotate :: proc(v: Vec3, angle_radians: f32) -> Mat4 {
  237. c := cos(angle_radians);
  238. s := sin(angle_radians);
  239. a := norm(v);
  240. t := a * (1-c);
  241. rot := identity(Mat4);
  242. rot[0][0] = c + t[0]*a[0];
  243. rot[0][1] = 0 + t[0]*a[1] + s*a[2];
  244. rot[0][2] = 0 + t[0]*a[2] - s*a[1];
  245. rot[0][3] = 0;
  246. rot[1][0] = 0 + t[1]*a[0] - s*a[2];
  247. rot[1][1] = c + t[1]*a[1];
  248. rot[1][2] = 0 + t[1]*a[2] + s*a[0];
  249. rot[1][3] = 0;
  250. rot[2][0] = 0 + t[2]*a[0] + s*a[1];
  251. rot[2][1] = 0 + t[2]*a[1] - s*a[0];
  252. rot[2][2] = c + t[2]*a[2];
  253. rot[2][3] = 0;
  254. return rot;
  255. }
  256. scale_vec3 :: proc(m: Mat4, v: Vec3) -> Mat4 {
  257. m[0][0] *= v[0];
  258. m[1][1] *= v[1];
  259. m[2][2] *= v[2];
  260. return m;
  261. }
  262. scale_f32 :: proc(m: Mat4, s: f32) -> Mat4 {
  263. m[0][0] *= s;
  264. m[1][1] *= s;
  265. m[2][2] *= s;
  266. return m;
  267. }
  268. scale :: proc[scale_vec3, scale_f32];
  269. look_at :: proc(eye, centre, up: Vec3) -> Mat4 {
  270. f := norm(centre - eye);
  271. s := norm(cross(f, up));
  272. u := cross(s, f);
  273. return Mat4{
  274. {+s.x, +u.x, -f.x, 0},
  275. {+s.y, +u.y, -f.y, 0},
  276. {+s.z, +u.z, -f.z, 0},
  277. {-dot(s, eye), -dot(u, eye), dot(f, eye), 1},
  278. };
  279. }
  280. perspective :: proc(fovy, aspect, near, far: f32) -> Mat4 {
  281. m: Mat4;
  282. tan_half_fovy := tan(0.5 * fovy);
  283. m[0][0] = 1.0 / (aspect*tan_half_fovy);
  284. m[1][1] = 1.0 / (tan_half_fovy);
  285. m[2][2] = -(far + near) / (far - near);
  286. m[2][3] = -1.0;
  287. m[3][2] = -2.0*far*near / (far - near);
  288. return m;
  289. }
  290. ortho3d :: proc(left, right, bottom, top, near, far: f32) -> Mat4 {
  291. m := identity(Mat4);
  292. m[0][0] = +2.0 / (right - left);
  293. m[1][1] = +2.0 / (top - bottom);
  294. m[2][2] = -2.0 / (far - near);
  295. m[3][0] = -(right + left) / (right - left);
  296. m[3][1] = -(top + bottom) / (top - bottom);
  297. m[3][2] = -(far + near) / (far - near);
  298. return m;
  299. }
  300. // Quaternion operations
  301. conj :: proc(q: Quat) -> Quat {
  302. return Quat{-q.x, -q.y, -q.z, q.w};
  303. }
  304. quat_mul :: proc(q0, q1: Quat) -> Quat {
  305. d: Quat;
  306. d.x = q0.w * q1.x + q0.x * q1.w + q0.y * q1.z - q0.z * q1.y;
  307. d.y = q0.w * q1.y - q0.x * q1.z + q0.y * q1.w + q0.z * q1.x;
  308. d.z = q0.w * q1.z + q0.x * q1.y - q0.y * q1.x + q0.z * q1.w;
  309. d.w = q0.w * q1.w - q0.x * q1.x - q0.y * q1.y - q0.z * q1.z;
  310. return d;
  311. }
  312. quat_mulf :: proc(q: Quat, f: f32) -> Quat { return Quat{q.x*f, q.y*f, q.z*f, q.w*f}; }
  313. quat_divf :: proc(q: Quat, f: f32) -> Quat { return Quat{q.x/f, q.y/f, q.z/f, q.w/f}; }
  314. quat_div :: proc(q0, q1: Quat) -> Quat { return mul(q0, quat_inverse(q1)); }
  315. quat_inverse :: proc(q: Quat) -> Quat { return div(conj(q), dot(q, q)); }
  316. quat_dot :: proc(q0, q1: Quat) -> f32 { return q0.x*q1.x + q0.y*q1.y + q0.z*q1.z + q0.w*q1.w; }
  317. quat_norm :: proc(q: Quat) -> Quat {
  318. m := sqrt(dot(q, q));
  319. return div(q, m);
  320. }
  321. axis_angle :: proc(axis: Vec3, angle_radians: f32) -> Quat {
  322. v := norm(axis) * sin(0.5*angle_radians);
  323. w := cos(0.5*angle_radians);
  324. return Quat{v.x, v.y, v.z, w};
  325. }
  326. euler_angles :: proc(pitch, yaw, roll: f32) -> Quat {
  327. p := axis_angle(Vec3{1, 0, 0}, pitch);
  328. y := axis_angle(Vec3{0, 1, 0}, pitch);
  329. r := axis_angle(Vec3{0, 0, 1}, pitch);
  330. return mul(mul(y, p), r);
  331. }
  332. quat_to_mat4 :: proc(q: Quat) -> Mat4 {
  333. a := quat_norm(q);
  334. xx := a.x*a.x; yy := a.y*a.y; zz := a.z*a.z;
  335. xy := a.x*a.y; xz := a.x*a.z; yz := a.y*a.z;
  336. wx := a.w*a.x; wy := a.w*a.y; wz := a.w*a.z;
  337. m := identity(Mat4);
  338. m[0][0] = 1 - 2*(yy + zz);
  339. m[0][1] = 2*(xy + wz);
  340. m[0][2] = 2*(xz - wy);
  341. m[1][0] = 2*(xy - wz);
  342. m[1][1] = 1 - 2*(xx + zz);
  343. m[1][2] = 2*(yz + wx);
  344. m[2][0] = 2*(xz + wy);
  345. m[2][1] = 2*(yz - wx);
  346. m[2][2] = 1 - 2*(xx + yy);
  347. return m;
  348. }
  349. F32_DIG :: 6;
  350. F32_EPSILON :: 1.192092896e-07;
  351. F32_GUARD :: 0;
  352. F32_MANT_DIG :: 24;
  353. F32_MAX :: 3.402823466e+38;
  354. F32_MAX_10_EXP :: 38;
  355. F32_MAX_EXP :: 128;
  356. F32_MIN :: 1.175494351e-38;
  357. F32_MIN_10_EXP :: -37;
  358. F32_MIN_EXP :: -125;
  359. F32_NORMALIZE :: 0;
  360. F32_RADIX :: 2;
  361. F32_ROUNDS :: 1;
  362. F64_DIG :: 15; // # of decimal digits of precision
  363. F64_EPSILON :: 2.2204460492503131e-016; // smallest such that 1.0+F64_EPSILON != 1.0
  364. F64_MANT_DIG :: 53; // # of bits in mantissa
  365. F64_MAX :: 1.7976931348623158e+308; // max value
  366. F64_MAX_10_EXP :: 308; // max decimal exponent
  367. F64_MAX_EXP :: 1024; // max binary exponent
  368. F64_MIN :: 2.2250738585072014e-308; // min positive value
  369. F64_MIN_10_EXP :: -307; // min decimal exponent
  370. F64_MIN_EXP :: -1021; // min binary exponent
  371. F64_RADIX :: 2; // exponent radix
  372. F64_ROUNDS :: 1; // addition rounding: near