mem.odin 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314
  1. import "core:raw.odin"
  2. foreign __llvm_core {
  3. @(link_name = "llvm.bswap.i16") swap16 :: proc(b: u16) -> u16 ---;
  4. @(link_name = "llvm.bswap.i32") swap32 :: proc(b: u32) -> u32 ---;
  5. @(link_name = "llvm.bswap.i64") swap64 :: proc(b: u64) -> u64 ---;
  6. }
  7. swap :: proc[swap16, swap32, swap64];
  8. set :: proc "contextless" (data: rawptr, value: i32, len: int) -> rawptr {
  9. return __mem_set(data, value, len);
  10. }
  11. zero :: proc "contextless" (data: rawptr, len: int) -> rawptr {
  12. return __mem_zero(data, len);
  13. }
  14. copy :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
  15. return __mem_copy(dst, src, len);
  16. }
  17. copy_non_overlapping :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
  18. return __mem_copy_non_overlapping(dst, src, len);
  19. }
  20. compare :: proc "contextless" (a, b: []byte) -> int {
  21. return __mem_compare(&a[0], &b[0], min(len(a), len(b)));
  22. }
  23. slice_ptr :: proc "contextless" (ptr: ^$T, len: int) -> []T {
  24. assert(len >= 0);
  25. slice := raw.Slice{data = ptr, len = len};
  26. return transmute([]T)slice;
  27. }
  28. slice_to_bytes :: proc "contextless" (slice: $E/[]$T) -> []byte {
  29. s := transmute(raw.Slice)slice;
  30. s.len *= size_of(T);
  31. return transmute([]byte)s;
  32. }
  33. ptr_to_bytes :: proc "contextless" (ptr: ^$T, len := 1) -> []byte {
  34. assert(len >= 0);
  35. return transmute([]byte)raw.Slice{ptr, len*size_of(T)};
  36. }
  37. kilobytes :: inline proc "contextless" (x: int) -> int do return (x) * 1024;
  38. megabytes :: inline proc "contextless" (x: int) -> int do return kilobytes(x) * 1024;
  39. gigabytes :: inline proc "contextless" (x: int) -> int do return megabytes(x) * 1024;
  40. terabytes :: inline proc "contextless" (x: int) -> int do return gigabytes(x) * 1024;
  41. is_power_of_two :: proc(x: uintptr) -> bool {
  42. if x <= 0 do return false;
  43. return (x & (x-1)) == 0;
  44. }
  45. align_forward :: proc(ptr: rawptr, align: uintptr) -> rawptr {
  46. assert(is_power_of_two(align));
  47. a := uintptr(align);
  48. p := uintptr(ptr);
  49. modulo := p & (a-1);
  50. if modulo != 0 do p += a - modulo;
  51. return rawptr(p);
  52. }
  53. AllocationHeader :: struct {size: int};
  54. allocation_header_fill :: proc(header: ^AllocationHeader, data: rawptr, size: int) {
  55. header.size = size;
  56. ptr := cast(^uint)(header+1);
  57. n := cast(^uint)data - ptr;
  58. for i in 0..n {
  59. (ptr+i)^ = ~uint(0);
  60. }
  61. }
  62. allocation_header :: proc(data: rawptr) -> ^AllocationHeader {
  63. if data == nil do return nil;
  64. p := cast(^uint)data;
  65. for (p-1)^ == ~uint(0) do p = (p-1);
  66. return cast(^AllocationHeader)(p-1);
  67. }
  68. Fixed_Byte_Buffer :: distinct [dynamic]byte;
  69. make_fixed_byte_buffer :: proc(backing: []byte) -> Fixed_Byte_Buffer {
  70. s := transmute(raw.Slice)backing;
  71. d: raw.Dynamic_Array;
  72. d.data = s.data;
  73. d.len = 0;
  74. d.cap = s.len;
  75. d.allocator = nil_allocator();
  76. return transmute(Fixed_Byte_Buffer)d;
  77. }
  78. // Custom allocators
  79. Arena :: struct {
  80. backing: Allocator,
  81. memory: Fixed_Byte_Buffer,
  82. temp_count: int,
  83. }
  84. ArenaTempMemory :: struct {
  85. arena: ^Arena,
  86. original_count: int,
  87. }
  88. init_arena_from_memory :: proc(using a: ^Arena, data: []byte) {
  89. backing = Allocator{};
  90. memory = make_fixed_byte_buffer(data);
  91. temp_count = 0;
  92. }
  93. init_arena_from_context :: proc(using a: ^Arena, size: int) {
  94. backing = context.allocator;
  95. memory = make_fixed_byte_buffer(make([]byte, size));
  96. temp_count = 0;
  97. }
  98. context_from_allocator :: proc(a: Allocator) -> Context {
  99. c := context;
  100. c.allocator = a;
  101. return c;
  102. }
  103. destroy_arena :: proc(using a: ^Arena) {
  104. if backing.procedure != nil {
  105. context <- context_from_allocator(backing) {
  106. if memory != nil {
  107. free(&memory[0]);
  108. }
  109. memory = nil;
  110. }
  111. }
  112. }
  113. arena_allocator :: proc(arena: ^Arena) -> Allocator {
  114. return Allocator{
  115. procedure = arena_allocator_proc,
  116. data = arena,
  117. };
  118. }
  119. arena_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
  120. size, alignment: int,
  121. old_memory: rawptr, old_size: int, flags: u64, location := #caller_location) -> rawptr {
  122. using Allocator_Mode;
  123. arena := cast(^Arena)allocator_data;
  124. switch mode {
  125. case Alloc:
  126. total_size := size + alignment;
  127. if len(arena.memory) + total_size > cap(arena.memory) {
  128. return nil;
  129. }
  130. #no_bounds_check end := &arena.memory[len(arena.memory)];
  131. ptr := align_forward(end, uintptr(alignment));
  132. (^raw.Slice)(&arena.memory).len += total_size;
  133. return zero(ptr, size);
  134. case Free:
  135. // NOTE(bill): Free all at once
  136. // Use ArenaTempMemory if you want to free a block
  137. case FreeAll:
  138. (^raw.Slice)(&arena.memory).len = 0;
  139. case Resize:
  140. return default_resize_align(old_memory, old_size, size, alignment);
  141. }
  142. return nil;
  143. }
  144. begin_arena_temp_memory :: proc(a: ^Arena) -> ArenaTempMemory {
  145. tmp: ArenaTempMemory;
  146. tmp.arena = a;
  147. tmp.original_count = len(a.memory);
  148. a.temp_count += 1;
  149. return tmp;
  150. }
  151. end_arena_temp_memory :: proc(using tmp: ArenaTempMemory) {
  152. assert(len(arena.memory) >= original_count);
  153. assert(arena.temp_count > 0);
  154. (^raw.Dynamic_Array)(&arena.memory).len = original_count;
  155. arena.temp_count -= 1;
  156. }
  157. align_of_type_info :: proc(type_info: ^Type_Info) -> int {
  158. prev_pow2 :: proc(n: i64) -> i64 {
  159. if n <= 0 do return 0;
  160. n |= n >> 1;
  161. n |= n >> 2;
  162. n |= n >> 4;
  163. n |= n >> 8;
  164. n |= n >> 16;
  165. n |= n >> 32;
  166. return n - (n >> 1);
  167. }
  168. WORD_SIZE :: size_of(int);
  169. MAX_ALIGN :: 2*align_of(rawptr); // TODO(bill): Should these constants be builtin constants?
  170. switch info in type_info.variant {
  171. case Type_Info_Named:
  172. return align_of_type_info(info.base);
  173. case Type_Info_Integer:
  174. return type_info.align;
  175. case Type_Info_Rune:
  176. return type_info.align;
  177. case Type_Info_Float:
  178. return type_info.align;
  179. case Type_Info_String:
  180. return WORD_SIZE;
  181. case Type_Info_Boolean:
  182. return 1;
  183. case Type_Info_Any:
  184. return WORD_SIZE;
  185. case Type_Info_Pointer:
  186. return WORD_SIZE;
  187. case Type_Info_Procedure:
  188. return WORD_SIZE;
  189. case Type_Info_Array:
  190. return align_of_type_info(info.elem);
  191. case Type_Info_Dynamic_Array:
  192. return WORD_SIZE;
  193. case Type_Info_Slice:
  194. return WORD_SIZE;
  195. case Type_Info_Tuple:
  196. return type_info.align;
  197. case Type_Info_Struct:
  198. return type_info.align;
  199. case Type_Info_Union:
  200. return type_info.align;
  201. case Type_Info_Enum:
  202. return align_of_type_info(info.base);
  203. case Type_Info_Map:
  204. return align_of_type_info(info.generated_struct);
  205. }
  206. return 0;
  207. }
  208. align_formula :: proc(size, align: int) -> int {
  209. result := size + align-1;
  210. return result - result%align;
  211. }
  212. size_of_type_info :: proc(type_info: ^Type_Info) -> int {
  213. WORD_SIZE :: size_of(int);
  214. switch info in type_info.variant {
  215. case Type_Info_Named:
  216. return size_of_type_info(info.base);
  217. case Type_Info_Integer:
  218. return type_info.size;
  219. case Type_Info_Rune:
  220. return type_info.size;
  221. case Type_Info_Float:
  222. return type_info.size;
  223. case Type_Info_String:
  224. return 2*WORD_SIZE;
  225. case Type_Info_Boolean:
  226. return 1;
  227. case Type_Info_Any:
  228. return 2*WORD_SIZE;
  229. case Type_Info_Pointer:
  230. return WORD_SIZE;
  231. case Type_Info_Procedure:
  232. return WORD_SIZE;
  233. case Type_Info_Array:
  234. count := info.count;
  235. if count == 0 do return 0;
  236. size := size_of_type_info(info.elem);
  237. align := align_of_type_info(info.elem);
  238. alignment := align_formula(size, align);
  239. return alignment*(count-1) + size;
  240. case Type_Info_Dynamic_Array:
  241. return size_of(rawptr) + 2*size_of(int) + size_of(Allocator);
  242. case Type_Info_Slice:
  243. return 2*WORD_SIZE;
  244. case Type_Info_Struct:
  245. return type_info.size;
  246. case Type_Info_Union:
  247. return type_info.size;
  248. case Type_Info_Enum:
  249. return size_of_type_info(info.base);
  250. case Type_Info_Map:
  251. return size_of_type_info(info.generated_struct);
  252. }
  253. return 0;
  254. }