123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494 |
- package math
- TAU :: 6.28318530717958647692528676655900576;
- PI :: 3.14159265358979323846264338327950288;
- E :: 2.71828182845904523536;
- SQRT_TWO :: 1.41421356237309504880168872420969808;
- SQRT_THREE :: 1.73205080756887729352744634150587236;
- SQRT_FIVE :: 2.23606797749978969640917366873127623;
- LOG_TWO :: 0.693147180559945309417232121458176568;
- LOG_TEN :: 2.30258509299404568401799145468436421;
- EPSILON :: 1.19209290e-7;
- τ :: TAU;
- π :: PI;
- Vec2 :: distinct [2]f32;
- Vec3 :: distinct [3]f32;
- Vec4 :: distinct [4]f32;
- // Column major
- Mat2 :: distinct [2][2]f32;
- Mat3 :: distinct [3][3]f32;
- Mat4 :: distinct [4][4]f32;
- Quat :: struct {x, y, z, w: f32};
- QUAT_IDENTITY := Quat{x = 0, y = 0, z = 0, w = 1};
- @(default_calling_convention="c")
- foreign _ {
- @(link_name="llvm.sqrt.f32")
- sqrt_f32 :: proc(x: f32) -> f32 ---;
- @(link_name="llvm.sqrt.f64")
- sqrt_f64 :: proc(x: f64) -> f64 ---;
- @(link_name="llvm.sin.f32")
- sin_f32 :: proc(θ: f32) -> f32 ---;
- @(link_name="llvm.sin.f64")
- sin_f64 :: proc(θ: f64) -> f64 ---;
- @(link_name="llvm.cos.f32")
- cos_f32 :: proc(θ: f32) -> f32 ---;
- @(link_name="llvm.cos.f64")
- cos_f64 :: proc(θ: f64) -> f64 ---;
- @(link_name="llvm.pow.f32")
- pow_f32 :: proc(x, power: f32) -> f32 ---;
- @(link_name="llvm.pow.f64")
- pow_f64 :: proc(x, power: f64) -> f64 ---;
- @(link_name="llvm.fmuladd.f32")
- fmuladd_f32 :: proc(a, b, c: f32) -> f32 ---;
- @(link_name="llvm.fmuladd.f64")
- fmuladd_f64 :: proc(a, b, c: f64) -> f64 ---;
- @(link_name="llvm.log.f32")
- log_f32 :: proc(x: f32) -> f32 ---;
- @(link_name="llvm.log.f64")
- log_f64 :: proc(x: f64) -> f64 ---;
- }
- log :: proc[log_f32, log_f64];
- tan_f32 :: proc "c" (θ: f32) -> f32 { return sin(θ)/cos(θ); }
- tan_f64 :: proc "c" (θ: f64) -> f64 { return sin(θ)/cos(θ); }
- lerp :: proc(a, b: $T, t: $E) -> (x: T) { return a*(1-t) + b*t; }
- unlerp_f32 :: proc(a, b, x: f32) -> (t: f32) { return (x-a)/(b-a); }
- unlerp_f64 :: proc(a, b, x: f64) -> (t: f64) { return (x-a)/(b-a); }
- sign_f32 :: proc(x: f32) -> f32 { return x >= 0 ? +1 : -1; }
- sign_f64 :: proc(x: f64) -> f64 { return x >= 0 ? +1 : -1; }
- copy_sign_f32 :: proc(x, y: f32) -> f32 {
- ix := transmute(u32)x;
- iy := transmute(u32)y;
- ix &= 0x7fff_ffff;
- ix |= iy & 0x8000_0000;
- return transmute(f32)ix;
- }
- copy_sign_f64 :: proc(x, y: f64) -> f64 {
- ix := transmute(u64)x;
- iy := transmute(u64)y;
- ix &= 0x7fff_ffff_ffff_ff;
- ix |= iy & 0x8000_0000_0000_0000;
- return transmute(f64)ix;
- }
- sqrt :: proc[sqrt_f32, sqrt_f64];
- sin :: proc[sin_f32, sin_f64];
- cos :: proc[cos_f32, cos_f64];
- tan :: proc[tan_f32, tan_f64];
- pow :: proc[pow_f32, pow_f64];
- fmuladd :: proc[fmuladd_f32, fmuladd_f64];
- sign :: proc[sign_f32, sign_f64];
- copy_sign :: proc[copy_sign_f32, copy_sign_f64];
- round_f32 :: proc(x: f32) -> f32 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); }
- round_f64 :: proc(x: f64) -> f64 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); }
- round :: proc[round_f32, round_f64];
- floor_f32 :: proc(x: f32) -> f32 { return x >= 0 ? f32(i64(x)) : f32(i64(x-0.5)); } // TODO: Get accurate versions
- floor_f64 :: proc(x: f64) -> f64 { return x >= 0 ? f64(i64(x)) : f64(i64(x-0.5)); } // TODO: Get accurate versions
- floor :: proc[floor_f32, floor_f64];
- ceil_f32 :: proc(x: f32) -> f32 { return x < 0 ? f32(i64(x)) : f32(i64(x+1)); }// TODO: Get accurate versions
- ceil_f64 :: proc(x: f64) -> f64 { return x < 0 ? f64(i64(x)) : f64(i64(x+1)); }// TODO: Get accurate versions
- ceil :: proc[ceil_f32, ceil_f64];
- remainder_f32 :: proc(x, y: f32) -> f32 { return x - round(x/y) * y; }
- remainder_f64 :: proc(x, y: f64) -> f64 { return x - round(x/y) * y; }
- remainder :: proc[remainder_f32, remainder_f64];
- mod_f32 :: proc(x, y: f32) -> f32 {
- result: f32;
- y = abs(y);
- result = remainder(abs(x), y);
- if sign(result) < 0 {
- result += y;
- }
- return copy_sign(result, x);
- }
- mod_f64 :: proc(x, y: f64) -> f64 {
- result: f64;
- y = abs(y);
- result = remainder(abs(x), y);
- if sign(result) < 0 {
- result += y;
- }
- return copy_sign(result, x);
- }
- mod :: proc[mod_f32, mod_f64];
- to_radians :: proc(degrees: f32) -> f32 { return degrees * TAU / 360; }
- to_degrees :: proc(radians: f32) -> f32 { return radians * 360 / TAU; }
- mul :: proc[
- mat3_mul,
- mat4_mul, mat4_mul_vec4,
- quat_mul, quat_mulf,
- ];
- div :: proc[
- quat_div, quat_divf,
- ];
- inverse :: proc[mat4_inverse, quat_inverse];
- dot :: proc[vec_dot, quat_dot];
- cross :: proc[cross2, cross3];
- vec_dot :: proc(a, b: $T/[$N]$E) -> E {
- res: E;
- for i in 0..N-1 {
- res += a[i] * b[i];
- }
- return res;
- }
- cross2 :: proc(a, b: $T/[2]$E) -> E {
- return a[0]*b[1] - a[1]*b[0];
- }
- cross3 :: proc(a, b: $T/[3]$E) -> T {
- i := swizzle(a, 1, 2, 0) * swizzle(b, 2, 0, 1);
- j := swizzle(a, 2, 0, 1) * swizzle(b, 1, 2, 0);
- return T(i - j);
- }
- length :: proc(v: $T/[$N]$E) -> E { return sqrt(dot(v, v)); }
- norm :: proc(v: $T/[$N]$E) -> T { return v / length(v); }
- norm0 :: proc(v: $T/[$N]$E) -> T {
- m := length(v);
- return m == 0 ? 0 : v/m;
- }
- identity :: proc($T: typeid/[$N][N]$E) -> T {
- m: T;
- for i in 0..N-1 do m[i][i] = E(1);
- return m;
- }
- transpose :: proc(m: $M/[$N][N]f32) -> M {
- for j in 0..N-1 {
- for i in 0..N-1 {
- m[i][j], m[j][i] = m[j][i], m[i][j];
- }
- }
- return m;
- }
- mat3_mul :: proc(a, b: Mat3) -> Mat3 {
- c: Mat3;
- for j in 0..2 {
- for i in 0..2 {
- c[j][i] = a[0][i]*b[j][0] +
- a[1][i]*b[j][1] +
- a[2][i]*b[j][2];
- }
- }
- return c;
- }
- mat4_mul :: proc(a, b: Mat4) -> Mat4 {
- c: Mat4;
- for j in 0..3 {
- for i in 0..3 {
- c[j][i] = a[0][i]*b[j][0] +
- a[1][i]*b[j][1] +
- a[2][i]*b[j][2] +
- a[3][i]*b[j][3];
- }
- }
- return c;
- }
- mat4_mul_vec4 :: proc(m: Mat4, v: Vec4) -> Vec4 {
- return Vec4{
- m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0]*v[3],
- m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1]*v[3],
- m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2]*v[3],
- m[0][3]*v[0] + m[1][3]*v[1] + m[2][3]*v[2] + m[3][3]*v[3],
- };
- }
- mat4_inverse :: proc(m: Mat4) -> Mat4 {
- o: Mat4;
- sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3];
- sf01 := m[2][1] * m[3][3] - m[3][1] * m[2][3];
- sf02 := m[2][1] * m[3][2] - m[3][1] * m[2][2];
- sf03 := m[2][0] * m[3][3] - m[3][0] * m[2][3];
- sf04 := m[2][0] * m[3][2] - m[3][0] * m[2][2];
- sf05 := m[2][0] * m[3][1] - m[3][0] * m[2][1];
- sf06 := m[1][2] * m[3][3] - m[3][2] * m[1][3];
- sf07 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
- sf08 := m[1][1] * m[3][2] - m[3][1] * m[1][2];
- sf09 := m[1][0] * m[3][3] - m[3][0] * m[1][3];
- sf10 := m[1][0] * m[3][2] - m[3][0] * m[1][2];
- sf11 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
- sf12 := m[1][0] * m[3][1] - m[3][0] * m[1][1];
- sf13 := m[1][2] * m[2][3] - m[2][2] * m[1][3];
- sf14 := m[1][1] * m[2][3] - m[2][1] * m[1][3];
- sf15 := m[1][1] * m[2][2] - m[2][1] * m[1][2];
- sf16 := m[1][0] * m[2][3] - m[2][0] * m[1][3];
- sf17 := m[1][0] * m[2][2] - m[2][0] * m[1][2];
- sf18 := m[1][0] * m[2][1] - m[2][0] * m[1][1];
- o[0][0] = +(m[1][1] * sf00 - m[1][2] * sf01 + m[1][3] * sf02);
- o[0][1] = -(m[1][0] * sf00 - m[1][2] * sf03 + m[1][3] * sf04);
- o[0][2] = +(m[1][0] * sf01 - m[1][1] * sf03 + m[1][3] * sf05);
- o[0][3] = -(m[1][0] * sf02 - m[1][1] * sf04 + m[1][2] * sf05);
- o[1][0] = -(m[0][1] * sf00 - m[0][2] * sf01 + m[0][3] * sf02);
- o[1][1] = +(m[0][0] * sf00 - m[0][2] * sf03 + m[0][3] * sf04);
- o[1][2] = -(m[0][0] * sf01 - m[0][1] * sf03 + m[0][3] * sf05);
- o[1][3] = +(m[0][0] * sf02 - m[0][1] * sf04 + m[0][2] * sf05);
- o[2][0] = +(m[0][1] * sf06 - m[0][2] * sf07 + m[0][3] * sf08);
- o[2][1] = -(m[0][0] * sf06 - m[0][2] * sf09 + m[0][3] * sf10);
- o[2][2] = +(m[0][0] * sf11 - m[0][1] * sf09 + m[0][3] * sf12);
- o[2][3] = -(m[0][0] * sf08 - m[0][1] * sf10 + m[0][2] * sf12);
- o[3][0] = -(m[0][1] * sf13 - m[0][2] * sf14 + m[0][3] * sf15);
- o[3][1] = +(m[0][0] * sf13 - m[0][2] * sf16 + m[0][3] * sf17);
- o[3][2] = -(m[0][0] * sf14 - m[0][1] * sf16 + m[0][3] * sf18);
- o[3][3] = +(m[0][0] * sf15 - m[0][1] * sf17 + m[0][2] * sf18);
- ood := 1.0 / (m[0][0] * o[0][0] +
- m[0][1] * o[0][1] +
- m[0][2] * o[0][2] +
- m[0][3] * o[0][3]);
- o[0][0] *= ood;
- o[0][1] *= ood;
- o[0][2] *= ood;
- o[0][3] *= ood;
- o[1][0] *= ood;
- o[1][1] *= ood;
- o[1][2] *= ood;
- o[1][3] *= ood;
- o[2][0] *= ood;
- o[2][1] *= ood;
- o[2][2] *= ood;
- o[2][3] *= ood;
- o[3][0] *= ood;
- o[3][1] *= ood;
- o[3][2] *= ood;
- o[3][3] *= ood;
- return o;
- }
- mat4_translate :: proc(v: Vec3) -> Mat4 {
- m := identity(Mat4);
- m[3][0] = v[0];
- m[3][1] = v[1];
- m[3][2] = v[2];
- m[3][3] = 1;
- return m;
- }
- mat4_rotate :: proc(v: Vec3, angle_radians: f32) -> Mat4 {
- c := cos(angle_radians);
- s := sin(angle_radians);
- a := norm(v);
- t := a * (1-c);
- rot := identity(Mat4);
- rot[0][0] = c + t[0]*a[0];
- rot[0][1] = 0 + t[0]*a[1] + s*a[2];
- rot[0][2] = 0 + t[0]*a[2] - s*a[1];
- rot[0][3] = 0;
- rot[1][0] = 0 + t[1]*a[0] - s*a[2];
- rot[1][1] = c + t[1]*a[1];
- rot[1][2] = 0 + t[1]*a[2] + s*a[0];
- rot[1][3] = 0;
- rot[2][0] = 0 + t[2]*a[0] + s*a[1];
- rot[2][1] = 0 + t[2]*a[1] - s*a[0];
- rot[2][2] = c + t[2]*a[2];
- rot[2][3] = 0;
- return rot;
- }
- scale_vec3 :: proc(m: Mat4, v: Vec3) -> Mat4 {
- m[0][0] *= v[0];
- m[1][1] *= v[1];
- m[2][2] *= v[2];
- return m;
- }
- scale_f32 :: proc(m: Mat4, s: f32) -> Mat4 {
- m[0][0] *= s;
- m[1][1] *= s;
- m[2][2] *= s;
- return m;
- }
- scale :: proc[scale_vec3, scale_f32];
- look_at :: proc(eye, centre, up: Vec3) -> Mat4 {
- f := norm(centre - eye);
- s := norm(cross(f, up));
- u := cross(s, f);
- return Mat4{
- {+s.x, +u.x, -f.x, 0},
- {+s.y, +u.y, -f.y, 0},
- {+s.z, +u.z, -f.z, 0},
- {-dot(s, eye), -dot(u, eye), dot(f, eye), 1},
- };
- }
- perspective :: proc(fovy, aspect, near, far: f32) -> Mat4 {
- m: Mat4;
- tan_half_fovy := tan(0.5 * fovy);
- m[0][0] = 1.0 / (aspect*tan_half_fovy);
- m[1][1] = 1.0 / (tan_half_fovy);
- m[2][2] = -(far + near) / (far - near);
- m[2][3] = -1.0;
- m[3][2] = -2.0*far*near / (far - near);
- return m;
- }
- ortho3d :: proc(left, right, bottom, top, near, far: f32) -> Mat4 {
- m := identity(Mat4);
- m[0][0] = +2.0 / (right - left);
- m[1][1] = +2.0 / (top - bottom);
- m[2][2] = -2.0 / (far - near);
- m[3][0] = -(right + left) / (right - left);
- m[3][1] = -(top + bottom) / (top - bottom);
- m[3][2] = -(far + near) / (far - near);
- return m;
- }
- // Quaternion operations
- conj :: proc(q: Quat) -> Quat {
- return Quat{-q.x, -q.y, -q.z, q.w};
- }
- quat_mul :: proc(q0, q1: Quat) -> Quat {
- d: Quat;
- d.x = q0.w * q1.x + q0.x * q1.w + q0.y * q1.z - q0.z * q1.y;
- d.y = q0.w * q1.y - q0.x * q1.z + q0.y * q1.w + q0.z * q1.x;
- d.z = q0.w * q1.z + q0.x * q1.y - q0.y * q1.x + q0.z * q1.w;
- d.w = q0.w * q1.w - q0.x * q1.x - q0.y * q1.y - q0.z * q1.z;
- return d;
- }
- quat_mulf :: proc(q: Quat, f: f32) -> Quat { return Quat{q.x*f, q.y*f, q.z*f, q.w*f}; }
- quat_divf :: proc(q: Quat, f: f32) -> Quat { return Quat{q.x/f, q.y/f, q.z/f, q.w/f}; }
- quat_div :: proc(q0, q1: Quat) -> Quat { return mul(q0, quat_inverse(q1)); }
- quat_inverse :: proc(q: Quat) -> Quat { return div(conj(q), dot(q, q)); }
- quat_dot :: proc(q0, q1: Quat) -> f32 { return q0.x*q1.x + q0.y*q1.y + q0.z*q1.z + q0.w*q1.w; }
- quat_norm :: proc(q: Quat) -> Quat {
- m := sqrt(dot(q, q));
- return div(q, m);
- }
- axis_angle :: proc(axis: Vec3, angle_radians: f32) -> Quat {
- v := norm(axis) * sin(0.5*angle_radians);
- w := cos(0.5*angle_radians);
- return Quat{v.x, v.y, v.z, w};
- }
- euler_angles :: proc(pitch, yaw, roll: f32) -> Quat {
- p := axis_angle(Vec3{1, 0, 0}, pitch);
- y := axis_angle(Vec3{0, 1, 0}, yaw);
- r := axis_angle(Vec3{0, 0, 1}, roll);
- return mul(mul(y, p), r);
- }
- quat_to_mat4 :: proc(q: Quat) -> Mat4 {
- a := quat_norm(q);
- xx := a.x*a.x; yy := a.y*a.y; zz := a.z*a.z;
- xy := a.x*a.y; xz := a.x*a.z; yz := a.y*a.z;
- wx := a.w*a.x; wy := a.w*a.y; wz := a.w*a.z;
- m := identity(Mat4);
- m[0][0] = 1 - 2*(yy + zz);
- m[0][1] = 2*(xy + wz);
- m[0][2] = 2*(xz - wy);
- m[1][0] = 2*(xy - wz);
- m[1][1] = 1 - 2*(xx + zz);
- m[1][2] = 2*(yz + wx);
- m[2][0] = 2*(xz + wy);
- m[2][1] = 2*(yz - wx);
- m[2][2] = 1 - 2*(xx + yy);
- return m;
- }
- F32_DIG :: 6;
- F32_EPSILON :: 1.192092896e-07;
- F32_GUARD :: 0;
- F32_MANT_DIG :: 24;
- F32_MAX :: 3.402823466e+38;
- F32_MAX_10_EXP :: 38;
- F32_MAX_EXP :: 128;
- F32_MIN :: 1.175494351e-38;
- F32_MIN_10_EXP :: -37;
- F32_MIN_EXP :: -125;
- F32_NORMALIZE :: 0;
- F32_RADIX :: 2;
- F32_ROUNDS :: 1;
- F64_DIG :: 15; // # of decimal digits of precision
- F64_EPSILON :: 2.2204460492503131e-016; // smallest such that 1.0+F64_EPSILON != 1.0
- F64_MANT_DIG :: 53; // # of bits in mantissa
- F64_MAX :: 1.7976931348623158e+308; // max value
- F64_MAX_10_EXP :: 308; // max decimal exponent
- F64_MAX_EXP :: 1024; // max binary exponent
- F64_MIN :: 2.2250738585072014e-308; // min positive value
- F64_MIN_10_EXP :: -307; // min decimal exponent
- F64_MIN_EXP :: -1021; // min binary exponent
- F64_RADIX :: 2; // exponent radix
- F64_ROUNDS :: 1; // addition rounding: near
|