math.odin 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494
  1. package math
  2. TAU :: 6.28318530717958647692528676655900576;
  3. PI :: 3.14159265358979323846264338327950288;
  4. E :: 2.71828182845904523536;
  5. SQRT_TWO :: 1.41421356237309504880168872420969808;
  6. SQRT_THREE :: 1.73205080756887729352744634150587236;
  7. SQRT_FIVE :: 2.23606797749978969640917366873127623;
  8. LOG_TWO :: 0.693147180559945309417232121458176568;
  9. LOG_TEN :: 2.30258509299404568401799145468436421;
  10. EPSILON :: 1.19209290e-7;
  11. τ :: TAU;
  12. π :: PI;
  13. Vec2 :: distinct [2]f32;
  14. Vec3 :: distinct [3]f32;
  15. Vec4 :: distinct [4]f32;
  16. // Column major
  17. Mat2 :: distinct [2][2]f32;
  18. Mat3 :: distinct [3][3]f32;
  19. Mat4 :: distinct [4][4]f32;
  20. Quat :: struct {x, y, z, w: f32};
  21. QUAT_IDENTITY := Quat{x = 0, y = 0, z = 0, w = 1};
  22. @(default_calling_convention="c")
  23. foreign _ {
  24. @(link_name="llvm.sqrt.f32")
  25. sqrt_f32 :: proc(x: f32) -> f32 ---;
  26. @(link_name="llvm.sqrt.f64")
  27. sqrt_f64 :: proc(x: f64) -> f64 ---;
  28. @(link_name="llvm.sin.f32")
  29. sin_f32 :: proc(θ: f32) -> f32 ---;
  30. @(link_name="llvm.sin.f64")
  31. sin_f64 :: proc(θ: f64) -> f64 ---;
  32. @(link_name="llvm.cos.f32")
  33. cos_f32 :: proc(θ: f32) -> f32 ---;
  34. @(link_name="llvm.cos.f64")
  35. cos_f64 :: proc(θ: f64) -> f64 ---;
  36. @(link_name="llvm.pow.f32")
  37. pow_f32 :: proc(x, power: f32) -> f32 ---;
  38. @(link_name="llvm.pow.f64")
  39. pow_f64 :: proc(x, power: f64) -> f64 ---;
  40. @(link_name="llvm.fmuladd.f32")
  41. fmuladd_f32 :: proc(a, b, c: f32) -> f32 ---;
  42. @(link_name="llvm.fmuladd.f64")
  43. fmuladd_f64 :: proc(a, b, c: f64) -> f64 ---;
  44. @(link_name="llvm.log.f32")
  45. log_f32 :: proc(x: f32) -> f32 ---;
  46. @(link_name="llvm.log.f64")
  47. log_f64 :: proc(x: f64) -> f64 ---;
  48. }
  49. log :: proc[log_f32, log_f64];
  50. tan_f32 :: proc "c" (θ: f32) -> f32 { return sin(θ)/cos(θ); }
  51. tan_f64 :: proc "c" (θ: f64) -> f64 { return sin(θ)/cos(θ); }
  52. lerp :: proc(a, b: $T, t: $E) -> (x: T) { return a*(1-t) + b*t; }
  53. unlerp_f32 :: proc(a, b, x: f32) -> (t: f32) { return (x-a)/(b-a); }
  54. unlerp_f64 :: proc(a, b, x: f64) -> (t: f64) { return (x-a)/(b-a); }
  55. sign_f32 :: proc(x: f32) -> f32 { return x >= 0 ? +1 : -1; }
  56. sign_f64 :: proc(x: f64) -> f64 { return x >= 0 ? +1 : -1; }
  57. copy_sign_f32 :: proc(x, y: f32) -> f32 {
  58. ix := transmute(u32)x;
  59. iy := transmute(u32)y;
  60. ix &= 0x7fff_ffff;
  61. ix |= iy & 0x8000_0000;
  62. return transmute(f32)ix;
  63. }
  64. copy_sign_f64 :: proc(x, y: f64) -> f64 {
  65. ix := transmute(u64)x;
  66. iy := transmute(u64)y;
  67. ix &= 0x7fff_ffff_ffff_ff;
  68. ix |= iy & 0x8000_0000_0000_0000;
  69. return transmute(f64)ix;
  70. }
  71. sqrt :: proc[sqrt_f32, sqrt_f64];
  72. sin :: proc[sin_f32, sin_f64];
  73. cos :: proc[cos_f32, cos_f64];
  74. tan :: proc[tan_f32, tan_f64];
  75. pow :: proc[pow_f32, pow_f64];
  76. fmuladd :: proc[fmuladd_f32, fmuladd_f64];
  77. sign :: proc[sign_f32, sign_f64];
  78. copy_sign :: proc[copy_sign_f32, copy_sign_f64];
  79. round_f32 :: proc(x: f32) -> f32 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); }
  80. round_f64 :: proc(x: f64) -> f64 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); }
  81. round :: proc[round_f32, round_f64];
  82. floor_f32 :: proc(x: f32) -> f32 { return x >= 0 ? f32(i64(x)) : f32(i64(x-0.5)); } // TODO: Get accurate versions
  83. floor_f64 :: proc(x: f64) -> f64 { return x >= 0 ? f64(i64(x)) : f64(i64(x-0.5)); } // TODO: Get accurate versions
  84. floor :: proc[floor_f32, floor_f64];
  85. ceil_f32 :: proc(x: f32) -> f32 { return x < 0 ? f32(i64(x)) : f32(i64(x+1)); }// TODO: Get accurate versions
  86. ceil_f64 :: proc(x: f64) -> f64 { return x < 0 ? f64(i64(x)) : f64(i64(x+1)); }// TODO: Get accurate versions
  87. ceil :: proc[ceil_f32, ceil_f64];
  88. remainder_f32 :: proc(x, y: f32) -> f32 { return x - round(x/y) * y; }
  89. remainder_f64 :: proc(x, y: f64) -> f64 { return x - round(x/y) * y; }
  90. remainder :: proc[remainder_f32, remainder_f64];
  91. mod_f32 :: proc(x, y: f32) -> f32 {
  92. result: f32;
  93. y = abs(y);
  94. result = remainder(abs(x), y);
  95. if sign(result) < 0 {
  96. result += y;
  97. }
  98. return copy_sign(result, x);
  99. }
  100. mod_f64 :: proc(x, y: f64) -> f64 {
  101. result: f64;
  102. y = abs(y);
  103. result = remainder(abs(x), y);
  104. if sign(result) < 0 {
  105. result += y;
  106. }
  107. return copy_sign(result, x);
  108. }
  109. mod :: proc[mod_f32, mod_f64];
  110. to_radians :: proc(degrees: f32) -> f32 { return degrees * TAU / 360; }
  111. to_degrees :: proc(radians: f32) -> f32 { return radians * 360 / TAU; }
  112. mul :: proc[
  113. mat3_mul,
  114. mat4_mul, mat4_mul_vec4,
  115. quat_mul, quat_mulf,
  116. ];
  117. div :: proc[
  118. quat_div, quat_divf,
  119. ];
  120. inverse :: proc[mat4_inverse, quat_inverse];
  121. dot :: proc[vec_dot, quat_dot];
  122. cross :: proc[cross2, cross3];
  123. vec_dot :: proc(a, b: $T/[$N]$E) -> E {
  124. res: E;
  125. for i in 0..N-1 {
  126. res += a[i] * b[i];
  127. }
  128. return res;
  129. }
  130. cross2 :: proc(a, b: $T/[2]$E) -> E {
  131. return a[0]*b[1] - a[1]*b[0];
  132. }
  133. cross3 :: proc(a, b: $T/[3]$E) -> T {
  134. i := swizzle(a, 1, 2, 0) * swizzle(b, 2, 0, 1);
  135. j := swizzle(a, 2, 0, 1) * swizzle(b, 1, 2, 0);
  136. return T(i - j);
  137. }
  138. length :: proc(v: $T/[$N]$E) -> E { return sqrt(dot(v, v)); }
  139. norm :: proc(v: $T/[$N]$E) -> T { return v / length(v); }
  140. norm0 :: proc(v: $T/[$N]$E) -> T {
  141. m := length(v);
  142. return m == 0 ? 0 : v/m;
  143. }
  144. identity :: proc($T: typeid/[$N][N]$E) -> T {
  145. m: T;
  146. for i in 0..N-1 do m[i][i] = E(1);
  147. return m;
  148. }
  149. transpose :: proc(m: $M/[$N][N]f32) -> M {
  150. for j in 0..N-1 {
  151. for i in 0..N-1 {
  152. m[i][j], m[j][i] = m[j][i], m[i][j];
  153. }
  154. }
  155. return m;
  156. }
  157. mat3_mul :: proc(a, b: Mat3) -> Mat3 {
  158. c: Mat3;
  159. for j in 0..2 {
  160. for i in 0..2 {
  161. c[j][i] = a[0][i]*b[j][0] +
  162. a[1][i]*b[j][1] +
  163. a[2][i]*b[j][2];
  164. }
  165. }
  166. return c;
  167. }
  168. mat4_mul :: proc(a, b: Mat4) -> Mat4 {
  169. c: Mat4;
  170. for j in 0..3 {
  171. for i in 0..3 {
  172. c[j][i] = a[0][i]*b[j][0] +
  173. a[1][i]*b[j][1] +
  174. a[2][i]*b[j][2] +
  175. a[3][i]*b[j][3];
  176. }
  177. }
  178. return c;
  179. }
  180. mat4_mul_vec4 :: proc(m: Mat4, v: Vec4) -> Vec4 {
  181. return Vec4{
  182. m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0]*v[3],
  183. m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1]*v[3],
  184. m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2]*v[3],
  185. m[0][3]*v[0] + m[1][3]*v[1] + m[2][3]*v[2] + m[3][3]*v[3],
  186. };
  187. }
  188. mat4_inverse :: proc(m: Mat4) -> Mat4 {
  189. o: Mat4;
  190. sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3];
  191. sf01 := m[2][1] * m[3][3] - m[3][1] * m[2][3];
  192. sf02 := m[2][1] * m[3][2] - m[3][1] * m[2][2];
  193. sf03 := m[2][0] * m[3][3] - m[3][0] * m[2][3];
  194. sf04 := m[2][0] * m[3][2] - m[3][0] * m[2][2];
  195. sf05 := m[2][0] * m[3][1] - m[3][0] * m[2][1];
  196. sf06 := m[1][2] * m[3][3] - m[3][2] * m[1][3];
  197. sf07 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
  198. sf08 := m[1][1] * m[3][2] - m[3][1] * m[1][2];
  199. sf09 := m[1][0] * m[3][3] - m[3][0] * m[1][3];
  200. sf10 := m[1][0] * m[3][2] - m[3][0] * m[1][2];
  201. sf11 := m[1][1] * m[3][3] - m[3][1] * m[1][3];
  202. sf12 := m[1][0] * m[3][1] - m[3][0] * m[1][1];
  203. sf13 := m[1][2] * m[2][3] - m[2][2] * m[1][3];
  204. sf14 := m[1][1] * m[2][3] - m[2][1] * m[1][3];
  205. sf15 := m[1][1] * m[2][2] - m[2][1] * m[1][2];
  206. sf16 := m[1][0] * m[2][3] - m[2][0] * m[1][3];
  207. sf17 := m[1][0] * m[2][2] - m[2][0] * m[1][2];
  208. sf18 := m[1][0] * m[2][1] - m[2][0] * m[1][1];
  209. o[0][0] = +(m[1][1] * sf00 - m[1][2] * sf01 + m[1][3] * sf02);
  210. o[0][1] = -(m[1][0] * sf00 - m[1][2] * sf03 + m[1][3] * sf04);
  211. o[0][2] = +(m[1][0] * sf01 - m[1][1] * sf03 + m[1][3] * sf05);
  212. o[0][3] = -(m[1][0] * sf02 - m[1][1] * sf04 + m[1][2] * sf05);
  213. o[1][0] = -(m[0][1] * sf00 - m[0][2] * sf01 + m[0][3] * sf02);
  214. o[1][1] = +(m[0][0] * sf00 - m[0][2] * sf03 + m[0][3] * sf04);
  215. o[1][2] = -(m[0][0] * sf01 - m[0][1] * sf03 + m[0][3] * sf05);
  216. o[1][3] = +(m[0][0] * sf02 - m[0][1] * sf04 + m[0][2] * sf05);
  217. o[2][0] = +(m[0][1] * sf06 - m[0][2] * sf07 + m[0][3] * sf08);
  218. o[2][1] = -(m[0][0] * sf06 - m[0][2] * sf09 + m[0][3] * sf10);
  219. o[2][2] = +(m[0][0] * sf11 - m[0][1] * sf09 + m[0][3] * sf12);
  220. o[2][3] = -(m[0][0] * sf08 - m[0][1] * sf10 + m[0][2] * sf12);
  221. o[3][0] = -(m[0][1] * sf13 - m[0][2] * sf14 + m[0][3] * sf15);
  222. o[3][1] = +(m[0][0] * sf13 - m[0][2] * sf16 + m[0][3] * sf17);
  223. o[3][2] = -(m[0][0] * sf14 - m[0][1] * sf16 + m[0][3] * sf18);
  224. o[3][3] = +(m[0][0] * sf15 - m[0][1] * sf17 + m[0][2] * sf18);
  225. ood := 1.0 / (m[0][0] * o[0][0] +
  226. m[0][1] * o[0][1] +
  227. m[0][2] * o[0][2] +
  228. m[0][3] * o[0][3]);
  229. o[0][0] *= ood;
  230. o[0][1] *= ood;
  231. o[0][2] *= ood;
  232. o[0][3] *= ood;
  233. o[1][0] *= ood;
  234. o[1][1] *= ood;
  235. o[1][2] *= ood;
  236. o[1][3] *= ood;
  237. o[2][0] *= ood;
  238. o[2][1] *= ood;
  239. o[2][2] *= ood;
  240. o[2][3] *= ood;
  241. o[3][0] *= ood;
  242. o[3][1] *= ood;
  243. o[3][2] *= ood;
  244. o[3][3] *= ood;
  245. return o;
  246. }
  247. mat4_translate :: proc(v: Vec3) -> Mat4 {
  248. m := identity(Mat4);
  249. m[3][0] = v[0];
  250. m[3][1] = v[1];
  251. m[3][2] = v[2];
  252. m[3][3] = 1;
  253. return m;
  254. }
  255. mat4_rotate :: proc(v: Vec3, angle_radians: f32) -> Mat4 {
  256. c := cos(angle_radians);
  257. s := sin(angle_radians);
  258. a := norm(v);
  259. t := a * (1-c);
  260. rot := identity(Mat4);
  261. rot[0][0] = c + t[0]*a[0];
  262. rot[0][1] = 0 + t[0]*a[1] + s*a[2];
  263. rot[0][2] = 0 + t[0]*a[2] - s*a[1];
  264. rot[0][3] = 0;
  265. rot[1][0] = 0 + t[1]*a[0] - s*a[2];
  266. rot[1][1] = c + t[1]*a[1];
  267. rot[1][2] = 0 + t[1]*a[2] + s*a[0];
  268. rot[1][3] = 0;
  269. rot[2][0] = 0 + t[2]*a[0] + s*a[1];
  270. rot[2][1] = 0 + t[2]*a[1] - s*a[0];
  271. rot[2][2] = c + t[2]*a[2];
  272. rot[2][3] = 0;
  273. return rot;
  274. }
  275. scale_vec3 :: proc(m: Mat4, v: Vec3) -> Mat4 {
  276. m[0][0] *= v[0];
  277. m[1][1] *= v[1];
  278. m[2][2] *= v[2];
  279. return m;
  280. }
  281. scale_f32 :: proc(m: Mat4, s: f32) -> Mat4 {
  282. m[0][0] *= s;
  283. m[1][1] *= s;
  284. m[2][2] *= s;
  285. return m;
  286. }
  287. scale :: proc[scale_vec3, scale_f32];
  288. look_at :: proc(eye, centre, up: Vec3) -> Mat4 {
  289. f := norm(centre - eye);
  290. s := norm(cross(f, up));
  291. u := cross(s, f);
  292. return Mat4{
  293. {+s.x, +u.x, -f.x, 0},
  294. {+s.y, +u.y, -f.y, 0},
  295. {+s.z, +u.z, -f.z, 0},
  296. {-dot(s, eye), -dot(u, eye), dot(f, eye), 1},
  297. };
  298. }
  299. perspective :: proc(fovy, aspect, near, far: f32) -> Mat4 {
  300. m: Mat4;
  301. tan_half_fovy := tan(0.5 * fovy);
  302. m[0][0] = 1.0 / (aspect*tan_half_fovy);
  303. m[1][1] = 1.0 / (tan_half_fovy);
  304. m[2][2] = -(far + near) / (far - near);
  305. m[2][3] = -1.0;
  306. m[3][2] = -2.0*far*near / (far - near);
  307. return m;
  308. }
  309. ortho3d :: proc(left, right, bottom, top, near, far: f32) -> Mat4 {
  310. m := identity(Mat4);
  311. m[0][0] = +2.0 / (right - left);
  312. m[1][1] = +2.0 / (top - bottom);
  313. m[2][2] = -2.0 / (far - near);
  314. m[3][0] = -(right + left) / (right - left);
  315. m[3][1] = -(top + bottom) / (top - bottom);
  316. m[3][2] = -(far + near) / (far - near);
  317. return m;
  318. }
  319. // Quaternion operations
  320. conj :: proc(q: Quat) -> Quat {
  321. return Quat{-q.x, -q.y, -q.z, q.w};
  322. }
  323. quat_mul :: proc(q0, q1: Quat) -> Quat {
  324. d: Quat;
  325. d.x = q0.w * q1.x + q0.x * q1.w + q0.y * q1.z - q0.z * q1.y;
  326. d.y = q0.w * q1.y - q0.x * q1.z + q0.y * q1.w + q0.z * q1.x;
  327. d.z = q0.w * q1.z + q0.x * q1.y - q0.y * q1.x + q0.z * q1.w;
  328. d.w = q0.w * q1.w - q0.x * q1.x - q0.y * q1.y - q0.z * q1.z;
  329. return d;
  330. }
  331. quat_mulf :: proc(q: Quat, f: f32) -> Quat { return Quat{q.x*f, q.y*f, q.z*f, q.w*f}; }
  332. quat_divf :: proc(q: Quat, f: f32) -> Quat { return Quat{q.x/f, q.y/f, q.z/f, q.w/f}; }
  333. quat_div :: proc(q0, q1: Quat) -> Quat { return mul(q0, quat_inverse(q1)); }
  334. quat_inverse :: proc(q: Quat) -> Quat { return div(conj(q), dot(q, q)); }
  335. quat_dot :: proc(q0, q1: Quat) -> f32 { return q0.x*q1.x + q0.y*q1.y + q0.z*q1.z + q0.w*q1.w; }
  336. quat_norm :: proc(q: Quat) -> Quat {
  337. m := sqrt(dot(q, q));
  338. return div(q, m);
  339. }
  340. axis_angle :: proc(axis: Vec3, angle_radians: f32) -> Quat {
  341. v := norm(axis) * sin(0.5*angle_radians);
  342. w := cos(0.5*angle_radians);
  343. return Quat{v.x, v.y, v.z, w};
  344. }
  345. euler_angles :: proc(pitch, yaw, roll: f32) -> Quat {
  346. p := axis_angle(Vec3{1, 0, 0}, pitch);
  347. y := axis_angle(Vec3{0, 1, 0}, yaw);
  348. r := axis_angle(Vec3{0, 0, 1}, roll);
  349. return mul(mul(y, p), r);
  350. }
  351. quat_to_mat4 :: proc(q: Quat) -> Mat4 {
  352. a := quat_norm(q);
  353. xx := a.x*a.x; yy := a.y*a.y; zz := a.z*a.z;
  354. xy := a.x*a.y; xz := a.x*a.z; yz := a.y*a.z;
  355. wx := a.w*a.x; wy := a.w*a.y; wz := a.w*a.z;
  356. m := identity(Mat4);
  357. m[0][0] = 1 - 2*(yy + zz);
  358. m[0][1] = 2*(xy + wz);
  359. m[0][2] = 2*(xz - wy);
  360. m[1][0] = 2*(xy - wz);
  361. m[1][1] = 1 - 2*(xx + zz);
  362. m[1][2] = 2*(yz + wx);
  363. m[2][0] = 2*(xz + wy);
  364. m[2][1] = 2*(yz - wx);
  365. m[2][2] = 1 - 2*(xx + yy);
  366. return m;
  367. }
  368. F32_DIG :: 6;
  369. F32_EPSILON :: 1.192092896e-07;
  370. F32_GUARD :: 0;
  371. F32_MANT_DIG :: 24;
  372. F32_MAX :: 3.402823466e+38;
  373. F32_MAX_10_EXP :: 38;
  374. F32_MAX_EXP :: 128;
  375. F32_MIN :: 1.175494351e-38;
  376. F32_MIN_10_EXP :: -37;
  377. F32_MIN_EXP :: -125;
  378. F32_NORMALIZE :: 0;
  379. F32_RADIX :: 2;
  380. F32_ROUNDS :: 1;
  381. F64_DIG :: 15; // # of decimal digits of precision
  382. F64_EPSILON :: 2.2204460492503131e-016; // smallest such that 1.0+F64_EPSILON != 1.0
  383. F64_MANT_DIG :: 53; // # of bits in mantissa
  384. F64_MAX :: 1.7976931348623158e+308; // max value
  385. F64_MAX_10_EXP :: 308; // max decimal exponent
  386. F64_MAX_EXP :: 1024; // max binary exponent
  387. F64_MIN :: 2.2250738585072014e-308; // min positive value
  388. F64_MIN_10_EXP :: -307; // min decimal exponent
  389. F64_MIN_EXP :: -1021; // min binary exponent
  390. F64_RADIX :: 2; // exponent radix
  391. F64_ROUNDS :: 1; // addition rounding: near