| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259 |
- // STREAMLINES :: https://prideout.net/blog/par_streamlines/
- // Simple C library for triangulating wide lines, curves, and streamlines.
- //
- // Usage example:
- //
- // #define PAR_STREAMLINES_IMPLEMENTATION
- // #include "par_streamlines.h"
- //
- // parsl_context* ctx = parsl_create_context({ .thickness = 3 });
- // parsl_position vertices[] = { {0, 0}, {2, 1}, {4, 0} };
- // uint16_t spine_lengths[] = { 3 };
- // parsl_mesh* mesh = parsl_mesh_from_lines(ctx, {
- // .num_vertices = sizeof(vertices) / sizeof(parsl_position),
- // .num_spines = sizeof(spine_lengths) / sizeof(uint16_t),
- // .vertices = vertices,
- // .spine_lengths = spine_lengths
- // });
- // ...
- // parsl_destroy_context(ctx);
- //
- // Distributed under the MIT License, see bottom of file.
- #ifndef PAR_STREAMLINES_H
- #define PAR_STREAMLINES_H
- #ifdef __cplusplus
- extern "C" {
- #endif
- #include <stdint.h>
- #include <stdbool.h>
- // Configures how the library assigns UV coordinates.
- typedef enum {
- PAR_U_MODE_NORMALIZED_DISTANCE, // this is the default
- PAR_U_MODE_DISTANCE, // non-normalized distance along the curve
- PAR_U_MODE_SEGMENT_INDEX, // starts at zero for each curve, counts up
- PAR_U_MODE_SEGMENT_FRACTION, // 0.0, 1.0 / COUNT, 2.0 / COUNT, etc...
- } parsl_u_mode;
- // Layout for generated vertex attributes.
- typedef struct {
- float u_along_curve; // longitudinal coordinate (see parsl_u_mode)
- float v_across_curve; // either + or - depending on the side
- float spine_to_edge_x; // normalized vector from spine to edge
- float spine_to_edge_y; // normalized vector from spine to edge
- } parsl_annotation;
- // Simple two-tuple math type used for mesh and spine vertices.
- typedef struct {
- float x;
- float y;
- } parsl_position;
- // Triangle mesh generated by the library. The vertex data is owned by
- // streamlines context and becomes invalid on any subsequent call to the API.
- // The annotations, spine_lengths, and random_offsets fields are null unless
- // their corresponding flags have been set in parsl_config.
- typedef struct {
- uint32_t num_vertices;
- uint32_t num_triangles;
- uint32_t* triangle_indices;
- parsl_position* positions;
- parsl_annotation* annotations;
- float* spine_lengths;
- float* random_offsets;
- } parsl_mesh;
- // Viewport for streamline seed placement.
- typedef struct {
- float left;
- float top;
- float right;
- float bottom;
- } parsl_viewport;
- #define PARSL_FLAG_WIREFRAME (1 << 0) // enables 4 indices per triangle
- #define PARSL_FLAG_ANNOTATIONS (1 << 1) // populates mesh.annotations
- #define PARSL_FLAG_SPINE_LENGTHS (1 << 2) // populates mesh.lengths
- #define PARSL_FLAG_RANDOM_OFFSETS (1 << 3) // populates mesh.random_offsets
- #define PARSL_FLAG_CURVE_GUIDES (1 << 4) // draws control points
- // Immutable configuration for a streamlines context.
- typedef struct {
- float thickness;
- uint32_t flags;
- parsl_u_mode u_mode;
- float curves_max_flatness;
- float streamlines_seed_spacing;
- parsl_viewport streamlines_seed_viewport;
- float miter_limit;
- } parsl_config;
- // Client-owned list of line strips that will be tessellated.
- typedef struct {
- uint32_t num_vertices;
- uint16_t num_spines;
- parsl_position* vertices;
- uint16_t* spine_lengths;
- bool closed;
- } parsl_spine_list;
- // Opaque handle to a streamlines context and its memory arena.
- typedef struct parsl_context_s parsl_context;
- // Client function that moves a streamline particle by a single time step.
- typedef void (*parsl_advection_callback)(parsl_position* point, void* userdata);
- parsl_context* parsl_create_context(parsl_config config);
- void parsl_destroy_context(parsl_context* ctx);
- // Low-level function that simply generates two triangles for each line segment.
- parsl_mesh* parsl_mesh_from_lines(parsl_context* ctx, parsl_spine_list spines);
- // High-level function that can be used to visualize a vector field.
- parsl_mesh* parsl_mesh_from_streamlines(parsl_context* context,
- parsl_advection_callback advect, uint32_t first_tick, uint32_t num_ticks,
- void* userdata);
- // High-level function that tessellates a series of curves into triangles,
- // where each spine is a series of chained cubic Bézier curves.
- //
- // The first curve of each spine is defined by an endpoint, followed by two
- // control points, followed by an endpoint. Every subsequent curve in the spine
- // is defined by a single control point followed by an endpoint. Only one
- // control point is required because the first control point is computed via
- // reflection over the endpoint.
- //
- // The number of vertices in each spine should be 4+(n-1)*2 where n is the
- // number of piecewise curves.
- //
- // Each spine is equivalent to an SVG path that looks like M C S S S.
- parsl_mesh* parsl_mesh_from_curves_cubic(parsl_context* context,
- parsl_spine_list spines);
- // High-level function that tessellates a series of curves into triangles,
- // where each spine is a series of chained quadratic Bézier curves.
- //
- // The first curve of each spine is defined by an endpoint, followed by one
- // control point, followed by an endpoint. Every subsequent curve in the spine
- // is defined by a single control point followed by an endpoint.
- //
- // The number of vertices in each spine should be 3+(n-1)*2 where n is the
- // number of piecewise curves.
- //
- // Each spine is equivalent to an SVG path that looks like M Q M Q M Q.
- parsl_mesh* parsl_mesh_from_curves_quadratic(parsl_context* context,
- parsl_spine_list spines);
- #ifdef __cplusplus
- }
- #endif
- // -----------------------------------------------------------------------------
- // END PUBLIC API
- // -----------------------------------------------------------------------------
- #ifdef PAR_STREAMLINES_IMPLEMENTATION
- #include <assert.h>
- #include <limits.h>
- #include <math.h>
- #include <memory.h>
- #include <stdlib.h>
- static float parsl__dot(parsl_position a, parsl_position b) {
- return a.x * b.x + a.y * b.y;
- }
- static parsl_position parsl__sub(parsl_position a, parsl_position b) {
- return (parsl_position) { a.x - b.x, a.y - b.y };
- }
- static parsl_position parsl__add(parsl_position a, parsl_position b) {
- return (parsl_position) { a.x + b.x, a.y + b.y };
- }
- static parsl_position parsl_mul(parsl_position v, float s) {
- return (parsl_position) { v.x * s, v.y * s };
- }
- #define PARSL_MAX_RECURSION 16
- #ifndef PAR_PI
- #define PAR_PI (3.14159265359)
- #define PAR_MIN(a, b) (a > b ? b : a)
- #define PAR_MAX(a, b) (a > b ? a : b)
- #define PAR_CLAMP(v, lo, hi) PAR_MAX(lo, PAR_MIN(hi, v))
- #define PAR_SWAP(T, A, B) { T tmp = B; B = A; A = tmp; }
- #define PAR_SQR(a) ((a) * (a))
- #endif
- #ifndef PAR_MALLOC
- #define PAR_MALLOC(T, N) ((T*) malloc(N * sizeof(T)))
- #define PAR_CALLOC(T, N) ((T*) calloc(N * sizeof(T), 1))
- #define PAR_REALLOC(T, BUF, N) ((T*) realloc(BUF, sizeof(T) * (N)))
- #define PAR_FREE(BUF) free(BUF)
- #endif
- #ifndef PAR_ARRAY
- #define PAR_ARRAY
- #define pa_free(a) ((a) ? PAR_FREE(pa___raw(a)), 0 : 0)
- #define pa_push(a, v) (pa___maybegrow(a, (int) 1), (a)[pa___n(a)++] = (v))
- #define pa_count(a) ((a) ? pa___n(a) : 0)
- #define pa_add(a, n) (pa___maybegrow(a, (int) n), pa___n(a) += (n))
- #define pa_last(a) ((a)[pa___n(a) - 1])
- #define pa_end(a) (a + pa_count(a))
- #define pa_clear(arr) if (arr) pa___n(arr) = 0
- #define pa___raw(a) ((int*) (a) -2)
- #define pa___m(a) pa___raw(a)[0]
- #define pa___n(a) pa___raw(a)[1]
- #define pa___needgrow(a, n) ((a) == 0 || pa___n(a) + ((int) n) >= pa___m(a))
- #define pa___maybegrow(a, n) (pa___needgrow(a, (n)) ? pa___grow(a, n) : 0)
- #define pa___grow(a, n) (*((void**)& (a)) = pa___growf((void*) (a), (n), \
- sizeof(*(a))))
- // ptr[-2] is capacity, ptr[-1] is size.
- static void* pa___growf(void* arr, int increment, int itemsize)
- {
- int dbl_cur = arr ? 2 * pa___m(arr) : 0;
- int min_needed = pa_count(arr) + increment;
- int m = dbl_cur > min_needed ? dbl_cur : min_needed;
- int* p = (int *) PAR_REALLOC(uint8_t, arr ? pa___raw(arr) : 0,
- itemsize * m + sizeof(int) * 2);
- if (p) {
- if (!arr) {
- p[1] = 0;
- }
- p[0] = m;
- return p + 2;
- }
- return (void*) (2 * sizeof(int));
- }
- #endif
- struct parsl_context_s {
- parsl_config config;
- parsl_mesh result;
- parsl_position* streamline_seeds;
- parsl_position* streamline_points;
- parsl_spine_list streamline_spines;
- parsl_spine_list curve_spines;
- uint16_t guideline_start;
- };
- parsl_context* parsl_create_context(parsl_config config)
- {
- parsl_context* context = PAR_CALLOC(parsl_context, 1);
- context->config = config;
- return context;
- }
- void parsl_destroy_context(parsl_context* context)
- {
- pa_free(context->result.triangle_indices);
- pa_free(context->result.spine_lengths);
- pa_free(context->result.annotations);
- pa_free(context->result.positions);
- pa_free(context->result.random_offsets);
- pa_free(context->streamline_seeds);
- pa_free(context->streamline_points);
- pa_free(context->streamline_spines.spine_lengths);
- pa_free(context->streamline_spines.vertices);
- pa_free(context->curve_spines.spine_lengths);
- pa_free(context->curve_spines.vertices);
- PAR_FREE(context);
- }
- parsl_mesh* parsl_mesh_from_lines(parsl_context* context,
- parsl_spine_list spines)
- {
- typedef parsl_position Position;
- typedef parsl_annotation Annotation;
- parsl_mesh* mesh = &context->result;
- const bool closed = spines.closed;
- const bool wireframe = context->config.flags & PARSL_FLAG_WIREFRAME;
- const bool has_annotations = context->config.flags & PARSL_FLAG_ANNOTATIONS;
- const bool has_lengths = context->config.flags & PARSL_FLAG_SPINE_LENGTHS;
- const float miter_limit = context->config.miter_limit ?
- context->config.miter_limit : (context->config.thickness * 2);
- const float miter_acos_max = +1.0;
- const float miter_acos_min = -1.0;
- const uint32_t ind_per_tri = wireframe ? 4 : 3;
- mesh->num_vertices = 0;
- mesh->num_triangles = 0;
- for (uint32_t spine = 0; spine < spines.num_spines; spine++) {
- assert(spines.spine_lengths[spine] > 1);
- mesh->num_vertices += 2 * spines.spine_lengths[spine];
- mesh->num_triangles += 2 * (spines.spine_lengths[spine] - 1);
- if (closed) {
- mesh->num_vertices += 2;
- mesh->num_triangles += 2;
- }
- }
- pa_clear(mesh->spine_lengths);
- pa_clear(mesh->annotations);
- pa_clear(mesh->positions);
- pa_clear(mesh->triangle_indices);
- if (has_lengths) {
- pa_add(mesh->spine_lengths, mesh->num_vertices);
- }
- if (has_annotations) {
- pa_add(mesh->annotations, mesh->num_vertices);
- }
- pa_add(mesh->positions, mesh->num_vertices);
- pa_add(mesh->triangle_indices, ind_per_tri * mesh->num_triangles);
- float* dst_lengths = mesh->spine_lengths;
- Annotation* dst_annotations = mesh->annotations;
- Position* dst_positions = mesh->positions;
- uint32_t* dst_indices = mesh->triangle_indices;
- const Position* src_position = spines.vertices;
- uint32_t base_index = 0;
- for (uint16_t spine = 0; spine < spines.num_spines; spine++) {
- const bool thin = context->guideline_start > 0 &&
- spine >= context->guideline_start;
- const float thickness = thin ? 1.0f : context->config.thickness;
- const uint16_t spine_length = spines.spine_lengths[spine];
- float dx = src_position[1].x - src_position[0].x;
- float dy = src_position[1].y - src_position[0].y;
- float segment_length = sqrtf(dx * dx + dy * dy);
- float invlen = segment_length ? 1.0f / segment_length : 0.0f;
- const float nx = -dy * invlen;
- const float ny = dx * invlen;
- const Position first_src_position = src_position[0];
- const Position last_src_position = src_position[spine_length - 1];
- float ex = nx * thickness / 2;
- float ey = ny * thickness / 2;
- if (closed) {
- const float dx = src_position[0].x - last_src_position.x;
- const float dy = src_position[0].y - last_src_position.y;
- const float segment_length = sqrtf(dx * dx + dy * dy);
- float invlen = segment_length ? 1.0f / segment_length : 0.0f;
- const float pnx = -dy * invlen;
- const float pny = dx * invlen;
- // NOTE: sin(pi / 2 - acos(X) / 2) == sqrt(1 + X) / sqrt(2)
- float extent = 0.5 * thickness;
- const float dotp = (pnx * nx + pny * ny);
- if (dotp < miter_acos_max && dotp > miter_acos_min) {
- const float phi = acos(dotp) / 2;
- const float theta = PAR_PI / 2 - phi;
- extent = PAR_CLAMP(extent / sin(theta), -miter_limit,
- miter_limit);
- }
- ex = pnx + nx;
- ey = pny + ny;
- const float len = sqrtf(ex * ex + ey * ey);
- invlen = len == 0.0 ? 0.0 : (1.0f / len);
- ex *= invlen * extent;
- ey *= invlen * extent;
- }
- dst_positions[0].x = src_position[0].x + ex;
- dst_positions[0].y = src_position[0].y + ey;
- dst_positions[1].x = src_position[0].x - ex;
- dst_positions[1].y = src_position[0].y - ey;
- float pnx = nx;
- float pny = ny;
- const Position first_dst_positions[2] = {
- dst_positions[0],
- dst_positions[1]
- };
- src_position++;
- dst_positions += 2;
- if (has_annotations) {
- dst_annotations[0].u_along_curve = 0;
- dst_annotations[1].u_along_curve = 0;
- dst_annotations[0].v_across_curve = 1;
- dst_annotations[1].v_across_curve = -1;
- dst_annotations[0].spine_to_edge_x = ex;
- dst_annotations[1].spine_to_edge_x = -ex;
- dst_annotations[0].spine_to_edge_y = ey;
- dst_annotations[1].spine_to_edge_y = -ey;
- dst_annotations += 2;
- }
- float distance_along_spine = segment_length;
- uint16_t segment_index = 1;
- for (; segment_index < spine_length - 1; segment_index++) {
- const float dx = src_position[1].x - src_position[0].x;
- const float dy = src_position[1].y - src_position[0].y;
- const float segment_length = sqrtf(dx * dx + dy * dy);
- float invlen = segment_length ? 1.0f / segment_length : 0.0f;
- const float nx = -dy * invlen;
- const float ny = dx * invlen;
- // NOTE: sin(pi / 2 - acos(X) / 2) == sqrt(1 + X) / sqrt(2)
- float extent = 0.5 * thickness;
- const float dotp = (pnx * nx + pny * ny);
- if (dotp < miter_acos_max && dotp > miter_acos_min) {
- const float phi = acos(dotp) / 2;
- const float theta = PAR_PI / 2 - phi;
- extent = PAR_CLAMP(extent / sin(theta), -miter_limit,
- miter_limit);
- }
- float ex = pnx + nx;
- float ey = pny + ny;
- const float len = sqrtf(ex * ex + ey * ey);
- invlen = len == 0.0 ? 0.0 : (1.0f / len);
- ex *= invlen * extent;
- ey *= invlen * extent;
- dst_positions[0].x = src_position[0].x + ex;
- dst_positions[0].y = src_position[0].y + ey;
- dst_positions[1].x = src_position[0].x - ex;
- dst_positions[1].y = src_position[0].y - ey;
- src_position++;
- dst_positions += 2;
- pnx = nx;
- pny = ny;
- if (has_annotations) {
- dst_annotations[0].u_along_curve = distance_along_spine;
- dst_annotations[1].u_along_curve = distance_along_spine;
- dst_annotations[0].v_across_curve = 1;
- dst_annotations[1].v_across_curve = -1;
- dst_annotations[0].spine_to_edge_x = ex;
- dst_annotations[1].spine_to_edge_x = -ex;
- dst_annotations[0].spine_to_edge_y = ey;
- dst_annotations[1].spine_to_edge_y = -ey;
- dst_annotations += 2;
- }
- distance_along_spine += segment_length;
- if (wireframe) {
- dst_indices[0] = base_index + (segment_index - 1) * 2;
- dst_indices[1] = base_index + (segment_index - 1) * 2 + 1;
- dst_indices[2] = base_index + (segment_index - 0) * 2;
- dst_indices[3] = base_index + (segment_index - 1) * 2;
- dst_indices[4] = base_index + (segment_index - 0) * 2;
- dst_indices[5] = base_index + (segment_index - 1) * 2 + 1;
- dst_indices[6] = base_index + (segment_index - 0) * 2 + 1;
- dst_indices[7] = base_index + (segment_index - 0) * 2;
- dst_indices += 8;
- } else {
- dst_indices[0] = base_index + (segment_index - 1) * 2;
- dst_indices[1] = base_index + (segment_index - 1) * 2 + 1;
- dst_indices[2] = base_index + (segment_index - 0) * 2;
- dst_indices[3] = base_index + (segment_index - 0) * 2;
- dst_indices[4] = base_index + (segment_index - 1) * 2 + 1;
- dst_indices[5] = base_index + (segment_index - 0) * 2 + 1;
- dst_indices += 6;
- }
- }
- ex = pnx * thickness / 2;
- ey = pny * thickness / 2;
- if (closed) {
- const float dx = first_src_position.x - src_position[0].x;
- const float dy = first_src_position.y - src_position[0].y;
- segment_length = sqrtf(dx * dx + dy * dy);
- float invlen = segment_length ? 1.0f / segment_length : 0.0f;
- const float nx = -dy * invlen;
- const float ny = dx * invlen;
- // NOTE: sin(pi / 2 - acos(X) / 2) == sqrt(1 + X) / sqrt(2)
- float extent = 0.5 * thickness;
- const float dotp = (pnx * nx + pny * ny);
- if (dotp < miter_acos_max && dotp > miter_acos_min) {
- const float phi = acos(dotp) / 2;
- const float theta = PAR_PI / 2 - phi;
- extent = PAR_CLAMP(extent / sin(theta), -miter_limit,
- miter_limit);
- }
- ex = pnx + nx;
- ey = pny + ny;
- const float len = sqrtf(ex * ex + ey * ey);
- invlen = len == 0.0 ? 0.0 : (1.0f / len);
- ex *= invlen * extent;
- ey *= invlen * extent;
- }
- dst_positions[0].x = src_position[0].x + ex;
- dst_positions[0].y = src_position[0].y + ey;
- dst_positions[1].x = src_position[0].x - ex;
- dst_positions[1].y = src_position[0].y - ey;
- src_position++;
- dst_positions += 2;
- pnx = nx;
- pny = ny;
- if (has_annotations) {
- dst_annotations[0].u_along_curve = distance_along_spine;
- dst_annotations[1].u_along_curve = distance_along_spine;
- dst_annotations[0].v_across_curve = 1;
- dst_annotations[1].v_across_curve = -1;
- dst_annotations[0].spine_to_edge_x = ex;
- dst_annotations[1].spine_to_edge_x = -ex;
- dst_annotations[0].spine_to_edge_y = ey;
- dst_annotations[1].spine_to_edge_y = -ey;
- dst_annotations += 2;
- }
- if (wireframe) {
- dst_indices[0] = base_index + (segment_index - 1) * 2;
- dst_indices[1] = base_index + (segment_index - 1) * 2 + 1;
- dst_indices[2] = base_index + (segment_index - 0) * 2;
- dst_indices[3] = base_index + (segment_index - 1) * 2;
- dst_indices[4] = base_index + (segment_index - 0) * 2;
- dst_indices[5] = base_index + (segment_index - 1) * 2 + 1;
- dst_indices[6] = base_index + (segment_index - 0) * 2 + 1;
- dst_indices[7] = base_index + (segment_index - 0) * 2;
- dst_indices += 8;
- } else {
- dst_indices[0] = base_index + (segment_index - 1) * 2;
- dst_indices[1] = base_index + (segment_index - 1) * 2 + 1;
- dst_indices[2] = base_index + (segment_index - 0) * 2;
- dst_indices[3] = base_index + (segment_index - 0) * 2;
- dst_indices[4] = base_index + (segment_index - 1) * 2 + 1;
- dst_indices[5] = base_index + (segment_index - 0) * 2 + 1;
- dst_indices += 6;
- }
- if (closed) {
- segment_index++;
- distance_along_spine += segment_length;
- dst_positions[0] = first_dst_positions[0];
- dst_positions[1] = first_dst_positions[1];
- dst_positions += 2;
- if (has_annotations) {
- dst_annotations[0].u_along_curve = distance_along_spine;
- dst_annotations[1].u_along_curve = distance_along_spine;
- dst_annotations[0].v_across_curve = 1;
- dst_annotations[1].v_across_curve = -1;
- dst_annotations[0].spine_to_edge_x = ex;
- dst_annotations[1].spine_to_edge_x = -ex;
- dst_annotations[0].spine_to_edge_y = ey;
- dst_annotations[1].spine_to_edge_y = -ey;
- dst_annotations += 2;
- }
- if (wireframe) {
- dst_indices[0] = base_index + (segment_index - 1) * 2;
- dst_indices[1] = base_index + (segment_index - 1) * 2 + 1;
- dst_indices[2] = base_index + (segment_index - 0) * 2;
- dst_indices[3] = base_index + (segment_index - 1) * 2;
- dst_indices[4] = base_index + (segment_index - 0) * 2;
- dst_indices[5] = base_index + (segment_index - 1) * 2 + 1;
- dst_indices[6] = base_index + (segment_index - 0) * 2 + 1;
- dst_indices[7] = base_index + (segment_index - 0) * 2;
- dst_indices += 8;
- } else {
- dst_indices[0] = base_index + (segment_index - 1) * 2;
- dst_indices[1] = base_index + (segment_index - 1) * 2 + 1;
- dst_indices[2] = base_index + (segment_index - 0) * 2;
- dst_indices[3] = base_index + (segment_index - 0) * 2;
- dst_indices[4] = base_index + (segment_index - 1) * 2 + 1;
- dst_indices[5] = base_index + (segment_index - 0) * 2 + 1;
- dst_indices += 6;
- }
- }
- base_index += spine_length * 2 + (closed ? 2 : 0);
- const uint16_t nverts = spine_length + (closed ? 1 : 0);
- if (has_lengths) {
- for (uint16_t i = 0; i < nverts; i++) {
- dst_lengths[0] = distance_along_spine;
- dst_lengths[1] = distance_along_spine;
- dst_lengths += 2;
- }
- }
- // Go back through the curve and fix up the U coordinates.
- if (has_annotations) {
- const float invlength = 1.0f / distance_along_spine;
- const float invcount = 1.0f / spine_length;
- switch (context->config.u_mode) {
- case PAR_U_MODE_DISTANCE:
- break;
- case PAR_U_MODE_NORMALIZED_DISTANCE:
- dst_annotations -= nverts * 2;
- for (uint16_t i = 0; i < nverts; i++) {
- dst_annotations[0].u_along_curve *= invlength;
- dst_annotations[1].u_along_curve *= invlength;
- dst_annotations += 2;
- }
- break;
- case PAR_U_MODE_SEGMENT_INDEX:
- dst_annotations -= nverts * 2;
- for (uint16_t i = 0; i < nverts; i++) {
- dst_annotations[0].u_along_curve = i;
- dst_annotations[1].u_along_curve = i;
- dst_annotations += 2;
- }
- break;
- case PAR_U_MODE_SEGMENT_FRACTION:
- dst_annotations -= nverts * 2;
- for (uint16_t i = 0; i < nverts; i++) {
- dst_annotations[0].u_along_curve = invcount * i;
- dst_annotations[1].u_along_curve = invcount * i;
- dst_annotations += 2;
- }
- break;
- }
- }
- }
- assert(src_position - spines.vertices == spines.num_vertices);
- assert(dst_positions - mesh->positions == mesh->num_vertices);
- assert(dst_indices - mesh->triangle_indices ==
- mesh->num_triangles * ind_per_tri);
- if (context->config.flags & PARSL_FLAG_RANDOM_OFFSETS) {
- pa_clear(mesh->random_offsets);
- pa_add(mesh->random_offsets, mesh->num_vertices);
- float* pvertex = mesh->random_offsets;
- for (uint16_t spine = 0; spine < spines.num_spines; spine++) {
- const uint16_t num_segments = spines.spine_lengths[spine];
- const float r = (float) rand() / RAND_MAX;
- for (uint16_t segment = 0; segment < num_segments; segment++) {
- *pvertex++ = r;
- }
- }
- }
- return mesh;
- }
- // This function is designed to be called in two passes. In the first pass, the
- // points pointer is null, so this simply determines the number of required
- // points to fulfill the flatness criterion. On the second pass, points is
- // non-null it actually writes out the point positions.
- static void parsl__tesselate_cubic(
- parsl_position* points, uint32_t* num_points,
- float x0, float y0, float x1, float y1,
- float x2, float y2, float x3, float y3,
- float max_flatness_squared, int recursion_depth)
- {
- float dx0 = x1-x0;
- float dy0 = y1-y0;
- float dx1 = x2-x1;
- float dy1 = y2-y1;
- float dx2 = x3-x2;
- float dy2 = y3-y2;
- float dx = x3-x0;
- float dy = y3-y0;
- float longlen = (float) (sqrt(dx0*dx0 + dy0*dy0) + sqrt(dx1*dx1 + dy1*dy1) +
- sqrt(dx2*dx2 + dy2*dy2));
- float shortlen = (float) sqrt(dx*dx+dy*dy);
- float flatness_squared = longlen*longlen - shortlen*shortlen;
- if (recursion_depth > PARSL_MAX_RECURSION) {
- return;
- }
- if (flatness_squared > max_flatness_squared) {
- const float x01 = (x0+x1) / 2;
- const float y01 = (y0+y1) / 2;
- const float x12 = (x1+x2) / 2;
- const float y12 = (y1+y2) / 2;
- const float x23 = (x2+x3) / 2;
- const float y23 = (y2+y3) / 2;
- const float xa = (x01+x12) / 2;
- const float ya = (y01+y12) / 2;
- const float xb = (x12+x23) / 2;
- const float yb = (y12+y23) / 2;
- const float mx = (xa+xb) / 2;
- const float my = (ya+yb) / 2;
- parsl__tesselate_cubic(points, num_points, x0,y0, x01,y01, xa,ya, mx,my,
- max_flatness_squared, recursion_depth + 1);
- parsl__tesselate_cubic(points, num_points, mx,my, xb,yb, x23,y23, x3,y3,
- max_flatness_squared, recursion_depth + 1);
- return;
- }
- int n = *num_points;
- if (points) {
- points[n].x = x3;
- points[n].y = y3;
- }
- *num_points = n + 1;
- }
- // This function is designed to be called in two passes. In the first pass, the
- // points pointer is null, so this simply determines the number of required
- // points to fulfill the flatness criterion. On the second pass, points is
- // non-null it actually writes out the point positions.
- static void parsl__tesselate_quadratic(
- parsl_position* points, uint32_t* num_points,
- float x0, float y0, float x1, float y1, float x2, float y2,
- float max_flatness_squared, int recursion_depth)
- {
- const float mx = (x0 + 2 * x1 + x2) / 4;
- const float my = (y0 + 2 * y1 + y2) / 4;
- const float dx = (x0 + x2) / 2 - mx;
- const float dy = (y0 + y2) / 2 - my;
- const float flatness_squared = dx * dx + dy * dy;
- if (recursion_depth++ > PARSL_MAX_RECURSION) {
- return;
- }
- if (flatness_squared > max_flatness_squared) {
- parsl__tesselate_quadratic(points, num_points, x0,y0,
- (x0 + x1) / 2.0f, (y0 + y1) / 2.0f,
- mx, my,
- max_flatness_squared, recursion_depth);
- parsl__tesselate_quadratic(points, num_points, mx,my,
- (x1 + x2) / 2.0f, (y1 + y2) / 2.0f,
- x2, y2,
- max_flatness_squared, recursion_depth);
- return;
- }
- int n = *num_points;
- if (points) {
- points[n].x = x2;
- points[n].y = y2;
- }
- *num_points = n + 1;
- }
- parsl_mesh* parsl_mesh_from_curves_cubic(parsl_context* context,
- parsl_spine_list source_spines)
- {
- float max_flatness = context->config.curves_max_flatness;
- if (max_flatness == 0) {
- max_flatness = 1.0f;
- }
- const float max_flatness_squared = max_flatness * max_flatness;
- parsl_spine_list* target_spines = &context->curve_spines;
- const bool has_guides = context->config.flags & PARSL_FLAG_CURVE_GUIDES;
- // Determine the number of spines in the target list.
- target_spines->num_spines = source_spines.num_spines;
- if (has_guides) {
- for (uint32_t spine = 0; spine < source_spines.num_spines; spine++) {
- uint32_t spine_length = source_spines.spine_lengths[spine];
- uint32_t num_piecewise = 1 + (spine_length - 4) / 2;
- target_spines->num_spines += num_piecewise * 2;
- }
- }
- pa_clear(target_spines->spine_lengths);
- pa_add(target_spines->spine_lengths, target_spines->num_spines);
- // First pass: determine the number of required vertices.
- uint32_t total_required_spine_points = 0;
- const parsl_position* psource = source_spines.vertices;
- for (uint32_t spine = 0; spine < source_spines.num_spines; spine++) {
- // Source vertices look like: P1 C1 C2 P2 [C2 P2]*
- uint32_t spine_length = source_spines.spine_lengths[spine];
- assert(spine_length >= 4);
- assert((spine_length % 2) == 0);
- uint32_t num_piecewise = 1 + (spine_length - 4) / 2;
- // First piecewise curve.
- uint32_t num_required_spine_points = 1;
- parsl__tesselate_cubic(NULL, &num_required_spine_points,
- psource[0].x, psource[0].y, psource[1].x, psource[1].y,
- psource[2].x, psource[2].y, psource[3].x, psource[3].y,
- max_flatness_squared, 0);
- psource += 4;
- // Subsequent piecewise curves.
- for (uint32_t piecewise = 1; piecewise < num_piecewise; piecewise++) {
- parsl_position p1 = psource[-1];
- parsl_position previous_c2 = psource[-2];
- parsl_position c1 = parsl__sub(p1, parsl__sub(previous_c2, p1));
- parsl_position c2 = psource[0];
- parsl_position p2 = psource[1];
- parsl__tesselate_cubic(NULL, &num_required_spine_points,
- p1.x, p1.y, c1.x, c1.y, c2.x, c2.y, p2.x, p2.y,
- max_flatness_squared, 0);
- psource += 2;
- }
- target_spines->spine_lengths[spine] = num_required_spine_points;
- total_required_spine_points += num_required_spine_points;
- }
- if (has_guides) {
- uint32_t nsrcspines = source_spines.num_spines;
- uint16_t* guide_lengths = &target_spines->spine_lengths[nsrcspines];
- for (uint32_t spine = 0; spine < nsrcspines; spine++) {
- uint32_t spine_length = source_spines.spine_lengths[spine];
- uint32_t num_piecewise = 1 + (spine_length - 4) / 2;
- for (uint32_t pw = 0; pw < num_piecewise; pw++) {
- guide_lengths[0] = 2;
- guide_lengths[1] = 2;
- guide_lengths += 2;
- total_required_spine_points += 4;
- }
- }
- }
- // Allocate memory.
- target_spines->num_vertices = total_required_spine_points;
- pa_clear(target_spines->vertices);
- pa_add(target_spines->vertices, total_required_spine_points);
- // Second pass: write out the data.
- psource = source_spines.vertices;
- parsl_position* ptarget = target_spines->vertices;
- for (uint32_t spine = 0; spine < source_spines.num_spines; spine++) {
- // Source vertices look like: P1 C1 C2 P2 [C2 P2]*
- uint32_t spine_length = source_spines.spine_lengths[spine];
- uint32_t num_piecewise = 1 + (spine_length - 4) / 2;
- __attribute__((unused))
- parsl_position* target_spine_start = ptarget;
- // First piecewise curve.
- ptarget[0].x = psource[0].x;
- ptarget[0].y = psource[0].y;
- ptarget++;
- uint32_t num_written_points = 0;
- parsl__tesselate_cubic(ptarget, &num_written_points,
- psource[0].x, psource[0].y, psource[1].x, psource[1].y,
- psource[2].x, psource[2].y, psource[3].x, psource[3].y,
- max_flatness_squared, 0);
- psource += 4;
- ptarget += num_written_points;
- // Subsequent piecewise curves.
- for (uint32_t piecewise = 1; piecewise < num_piecewise; piecewise++) {
- parsl_position p1 = psource[-1];
- parsl_position previous_c2 = psource[-2];
- parsl_position c1 = parsl__sub(p1, parsl__sub(previous_c2, p1));
- parsl_position c2 = psource[0];
- parsl_position p2 = psource[1];
- num_written_points = 0;
- parsl__tesselate_cubic(ptarget, &num_written_points,
- p1.x, p1.y, c1.x, c1.y, c2.x, c2.y, p2.x, p2.y,
- max_flatness_squared, 0);
- psource += 2;
- ptarget += num_written_points;
- }
- __attribute__((unused))
- uint32_t num_written = ptarget - target_spine_start;
- assert(num_written == (uint32_t) target_spines->spine_lengths[spine]);
- }
- // Source vertices look like: P1 C1 C2 P2 [C2 P2]*
- if (has_guides) {
- uint32_t nsrcspines = source_spines.num_spines;
- context->guideline_start = nsrcspines;
- psource = source_spines.vertices;
- for (uint32_t spine = 0; spine < nsrcspines; spine++) {
- uint32_t spine_length = source_spines.spine_lengths[spine];
- uint32_t num_piecewise = 1 + (spine_length - 4) / 2;
- *ptarget++ = psource[0];
- *ptarget++ = psource[1];
- *ptarget++ = psource[2];
- *ptarget++ = psource[3];
- psource += 4;
- for (uint32_t pw = 1; pw < num_piecewise; pw++) {
- parsl_position p1 = psource[-1];
- parsl_position previous_c2 = psource[-2];
- parsl_position c1 = parsl__sub(p1, parsl__sub(previous_c2, p1));
- parsl_position c2 = psource[0];
- parsl_position p2 = psource[1];
- *ptarget++ = p1;
- *ptarget++ = c1;
- *ptarget++ = p2;
- *ptarget++ = c2;
- psource += 2;
- }
- }
- }
- assert(ptarget - target_spines->vertices == total_required_spine_points);
- parsl_mesh_from_lines(context, context->curve_spines);
- context->guideline_start = 0;
- return &context->result;
- }
- parsl_mesh* parsl_mesh_from_curves_quadratic(parsl_context* context,
- parsl_spine_list source_spines)
- {
- float max_flatness = context->config.curves_max_flatness;
- if (max_flatness == 0) {
- max_flatness = 1.0f;
- }
- const float max_flatness_squared = max_flatness * max_flatness;
- parsl_spine_list* target_spines = &context->curve_spines;
- const bool has_guides = context->config.flags & PARSL_FLAG_CURVE_GUIDES;
- // Determine the number of spines in the target list.
- target_spines->num_spines = source_spines.num_spines;
- if (has_guides) {
- target_spines->num_spines += source_spines.num_spines;
- }
- pa_clear(target_spines->spine_lengths);
- pa_add(target_spines->spine_lengths, target_spines->num_spines);
- // First pass: determine the number of required vertices.
- uint32_t total_required_spine_points = 0;
- const parsl_position* psource = source_spines.vertices;
- for (uint32_t spine = 0; spine < source_spines.num_spines; spine++) {
- // Source vertices look like: PT C PT [C PT]*
- uint32_t spine_length = source_spines.spine_lengths[spine];
- assert(spine_length >= 3);
- assert((spine_length % 2) == 1);
- uint32_t num_piecewise = 1 + (spine_length - 3) / 2;
- // First piecewise curve.
- uint32_t num_required_spine_points = 1;
- parsl__tesselate_quadratic(NULL, &num_required_spine_points,
- psource[0].x, psource[0].y, psource[1].x, psource[1].y,
- psource[2].x, psource[2].y, max_flatness_squared, 0);
- psource += 3;
- // Subsequent piecewise curves.
- for (uint32_t piecewise = 1; piecewise < num_piecewise; piecewise++) {
- parsl_position p1 = psource[-1];
- parsl_position c1 = psource[0];
- parsl_position p2 = psource[1];
- parsl__tesselate_quadratic(NULL, &num_required_spine_points,
- p1.x, p1.y, c1.x, c1.y, p2.x, p2.y, max_flatness_squared, 0);
- psource += 2;
- }
- target_spines->spine_lengths[spine] = num_required_spine_points;
- total_required_spine_points += num_required_spine_points;
- }
- if (has_guides) {
- uint32_t nsrcspines = source_spines.num_spines;
- uint16_t* guide_lengths = &target_spines->spine_lengths[nsrcspines];
- for (uint32_t spine = 0; spine < nsrcspines; spine++) {
- uint32_t spine_length = source_spines.spine_lengths[spine];
- uint32_t num_piecewise = 1 + (spine_length - 3) / 2;
- guide_lengths[0] = 3 + (num_piecewise - 1) * 2;
- total_required_spine_points += guide_lengths[0];
- guide_lengths++;
- }
- }
- // Allocate memory.
- target_spines->num_vertices = total_required_spine_points;
- pa_clear(target_spines->vertices);
- pa_add(target_spines->vertices, total_required_spine_points);
- // Second pass: write out the data.
- psource = source_spines.vertices;
- parsl_position* ptarget = target_spines->vertices;
- for (uint32_t spine = 0; spine < source_spines.num_spines; spine++) {
- // Source vertices look like: PT C PT [C PT]*
- uint32_t spine_length = source_spines.spine_lengths[spine];
- uint32_t num_piecewise = 1 + (spine_length - 3) / 2;
- __attribute__((unused))
- parsl_position* target_spine_start = ptarget;
- // First piecewise curve.
- ptarget[0].x = psource[0].x;
- ptarget[0].y = psource[0].y;
- ptarget++;
- uint32_t num_written_points = 0;
- parsl__tesselate_quadratic(ptarget, &num_written_points,
- psource[0].x, psource[0].y, psource[1].x, psource[1].y,
- psource[2].x, psource[2].y, max_flatness_squared, 0);
- psource += 3;
- ptarget += num_written_points;
- // Subsequent piecewise curves.
- for (uint32_t piecewise = 1; piecewise < num_piecewise; piecewise++) {
- parsl_position p1 = psource[-1];
- parsl_position c1 = psource[0];
- parsl_position p2 = psource[1];
- num_written_points = 0;
- parsl__tesselate_quadratic(ptarget, &num_written_points,
- p1.x, p1.y, c1.x, c1.y, p2.x, p2.y, max_flatness_squared, 0);
- psource += 2;
- ptarget += num_written_points;
- }
- __attribute__((unused))
- uint32_t num_written = ptarget - target_spine_start;
- assert(num_written == (uint32_t) target_spines->spine_lengths[spine]);
- }
- // Source vertices look like: PT C PT [C PT]*
- if (has_guides) {
- uint32_t nsrcspines = source_spines.num_spines;
- context->guideline_start = nsrcspines;
- psource = source_spines.vertices;
- for (uint32_t spine = 0; spine < nsrcspines; spine++) {
- uint32_t spine_length = source_spines.spine_lengths[spine];
- uint32_t num_piecewise = 1 + (spine_length - 3) / 2;
- *ptarget++ = psource[0];
- *ptarget++ = psource[1];
- *ptarget++ = psource[2];
- psource += 3;
- for (uint32_t pw = 1; pw < num_piecewise; pw++) {
- *ptarget++ = psource[0];
- *ptarget++ = psource[1];
- psource += 2;
- }
- }
- }
- assert(ptarget - target_spines->vertices == total_required_spine_points);
- parsl_mesh_from_lines(context, context->curve_spines);
- context->guideline_start = 0;
- return &context->result;
- }
- static unsigned int par__randhash(unsigned int seed) {
- unsigned int i = (seed ^ 12345391u) * 2654435769u;
- i ^= (i << 6) ^ (i >> 26);
- i *= 2654435769u;
- i += (i << 5) ^ (i >> 12);
- return i;
- }
- static float par__randhashf(unsigned int seed, float a, float b) {
- return (b - a) * par__randhash(seed) / (float) UINT_MAX + a;
- }
- static parsl_position par__sample_annulus(float radius, parsl_position center,
- int* seedptr) {
- unsigned int seed = *seedptr;
- parsl_position r;
- float rscale = 1.0f / UINT_MAX;
- while (1) {
- r.x = 4 * rscale * par__randhash(seed++) - 2;
- r.y = 4 * rscale * par__randhash(seed++) - 2;
- float r2 = parsl__dot(r, r);
- if (r2 > 1 && r2 <= 4) {
- break;
- }
- }
- *seedptr = seed;
- return (parsl_position) {
- r.x * radius + center.x,
- r.y * radius + center.y
- };
- }
- #define GRIDF(vec) \
- grid [(int) (vec.x * invcell) + ncols * (int) (vec.y * invcell)]
- #define GRIDI(vec) grid [(int) vec.y * ncols + (int) vec.x]
- static parsl_position* par__generate_pts(float width, float height,
- float radius, int seed, parsl_position* result) {
- int maxattempts = 30;
- float rscale = 1.0f / UINT_MAX;
- parsl_position rvec;
- rvec.x = rvec.y = radius;
- float r2 = radius * radius;
- // Acceleration grid.
- float cellsize = radius / sqrtf(2);
- float invcell = 1.0f / cellsize;
- int ncols = ceil(width * invcell);
- int nrows = ceil(height * invcell);
- int maxcol = ncols - 1;
- int maxrow = nrows - 1;
- int ncells = ncols * nrows;
- int* grid = (int*) PAR_MALLOC(int, ncells);
- for (int i = 0; i < ncells; i++) {
- grid[i] = -1;
- }
- // Active list and resulting sample list.
- int* actives = (int*) PAR_MALLOC(int, ncells);
- int nactives = 0;
- pa_clear(result);
- pa_add(result, ncells);
- parsl_position* samples = result;
- int nsamples = 0;
- // First sample.
- parsl_position pt;
- pt.x = width * par__randhash(seed++) * rscale;
- pt.y = height * par__randhash(seed++) * rscale;
- GRIDF(pt) = actives[nactives++] = nsamples;
- samples[nsamples++] = pt;
- while (nsamples < ncells) {
- int aindex = PAR_MIN(par__randhashf(seed++, 0, nactives),
- nactives - 1.0f);
- int sindex = actives[aindex];
- int found = 0;
- parsl_position j, minj, maxj, delta;
- int attempt;
- for (attempt = 0; attempt < maxattempts && !found; attempt++) {
- pt = par__sample_annulus(radius, samples[sindex], &seed);
- // Check that this sample is within bounds.
- if (pt.x < 0 || pt.x >= width || pt.y < 0 || pt.y >= height) {
- continue;
- }
- // Test proximity to nearby samples.
- maxj = parsl_mul(parsl__add(pt, rvec), invcell);
- minj = parsl_mul(parsl__sub(pt, rvec), invcell);
- minj.x = PAR_CLAMP((int) minj.x, 0, maxcol);
- minj.y = PAR_CLAMP((int) minj.y, 0, maxrow);
- maxj.x = PAR_CLAMP((int) maxj.x, 0, maxcol);
- maxj.y = PAR_CLAMP((int) maxj.y, 0, maxrow);
- int reject = 0;
- for (j.y = minj.y; j.y <= maxj.y && !reject; j.y++) {
- for (j.x = minj.x; j.x <= maxj.x && !reject; j.x++) {
- int entry = GRIDI(j);
- if (entry > -1 && entry != sindex) {
- delta = parsl__sub(samples[entry], pt);
- if (parsl__dot(delta, delta) < r2) {
- reject = 1;
- }
- }
- }
- }
- if (reject) {
- continue;
- }
- found = 1;
- }
- if (found) {
- GRIDF(pt) = actives[nactives++] = nsamples;
- samples[nsamples++] = pt;
- } else {
- if (--nactives <= 0) {
- break;
- }
- actives[aindex] = actives[nactives];
- }
- }
- pa___n(result) = nsamples * 2;
- PAR_FREE(grid);
- PAR_FREE(actives);
- return result;
- }
- #undef GRIDF
- #undef GRIDI
- parsl_mesh* parsl_mesh_from_streamlines(parsl_context* context,
- parsl_advection_callback advect, uint32_t first_tick, uint32_t num_ticks,
- void* userdata)
- {
- const int seed = 42;
- const parsl_viewport vp = context->config.streamlines_seed_viewport;
- const float radius = context->config.streamlines_seed_spacing;
- float width = vp.right - vp.left;
- float height = vp.bottom - vp.top;
- if (context->streamline_seeds == NULL) {
- context->streamline_seeds = par__generate_pts(width, height, radius,
- seed, context->streamline_seeds);
- uint32_t num_points = pa_count(context->streamline_seeds);
- for (uint32_t p = 0; p < num_points; ++p) {
- context->streamline_seeds[p].x += vp.left;
- context->streamline_seeds[p].y += vp.top;
- }
- }
- uint32_t num_points = pa_count(context->streamline_seeds);
- pa_clear(context->streamline_points);
- pa_add(context->streamline_points, num_points);
- parsl_position* points = context->streamline_points;
- memcpy(points, context->streamline_seeds,
- num_points * sizeof(parsl_position));
- context->streamline_spines.num_spines = num_points;
- pa_clear(context->streamline_spines.spine_lengths);
- pa_add(context->streamline_spines.spine_lengths, num_points);
- uint16_t* lengths = context->streamline_spines.spine_lengths;
- for (uint32_t i = 0; i < num_points; i++) {
- lengths[i] = num_ticks;
- }
- context->streamline_spines.num_vertices = num_points * num_ticks;
- pa_clear(context->streamline_spines.vertices);
- pa_add(context->streamline_spines.vertices, num_points * num_ticks);
- parsl_position* vertices = context->streamline_spines.vertices;
- for (uint32_t tick = 0; tick < first_tick; tick++) {
- for (uint32_t i = 0; i < num_points; i++) {
- advect(&points[i], userdata);
- }
- }
- parsl_position* pvertices = vertices;
- for (uint32_t i = 0; i < num_points; i++) {
- for (uint32_t tick = 0; tick < num_ticks; ++tick) {
- advect(&points[i], userdata);
- *pvertices++ = points[i];
- }
- }
- parsl_mesh_from_lines(context, context->streamline_spines);
- return &context->result;
- }
- #endif // PAR_STREAMLINES_IMPLEMENTATION
- #endif // PAR_STREAMLINES_H
- // par_streamlines is distributed under the MIT license:
- //
- // Copyright (c) 2019 Philip Rideout
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
|