|
|
@@ -0,0 +1,230 @@
|
|
|
+#include "all.h"
|
|
|
+
|
|
|
+Blk *
|
|
|
+blknew()
|
|
|
+{
|
|
|
+ static Blk z;
|
|
|
+ Blk *b;
|
|
|
+
|
|
|
+ b = alloc(sizeof *b);
|
|
|
+ *b = z;
|
|
|
+ return b;
|
|
|
+}
|
|
|
+
|
|
|
+void
|
|
|
+blkdel(Blk *b)
|
|
|
+{
|
|
|
+ Blk *s, **ps, *succ[3];
|
|
|
+ Phi *p;
|
|
|
+ uint a;
|
|
|
+
|
|
|
+ succ[0] = b->s1;
|
|
|
+ succ[1] = b->s2 == b->s1 ? 0 : b->s2;
|
|
|
+ succ[2] = 0;
|
|
|
+ for (ps=succ; (s=*ps); ps++) {
|
|
|
+ for (p=s->phi; p; p=p->link) {
|
|
|
+ for (a=0; p->blk[a]!=b; a++)
|
|
|
+ assert(a+1<p->narg);
|
|
|
+ p->narg--;
|
|
|
+ memmove(&p->blk[a], &p->blk[a+1],
|
|
|
+ sizeof p->blk[0] * (p->narg-a));
|
|
|
+ memmove(&p->arg[a], &p->arg[a+1],
|
|
|
+ sizeof p->arg[0] * (p->narg-a));
|
|
|
+ }
|
|
|
+ if (s->npred != 0) {
|
|
|
+ for (a=0; s->pred[a]!=b; a++)
|
|
|
+ assert(a+1<s->npred);
|
|
|
+ s->npred--;
|
|
|
+ memmove(&s->pred[a], &s->pred[a+1],
|
|
|
+ sizeof s->pred[0] * (s->npred-a));
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+addpred(Blk *bp, Blk *bc)
|
|
|
+{
|
|
|
+ if (!bc->pred) {
|
|
|
+ bc->pred = alloc(bc->npred * sizeof bc->pred[0]);
|
|
|
+ bc->visit = 0;
|
|
|
+ }
|
|
|
+ bc->pred[bc->visit++] = bp;
|
|
|
+}
|
|
|
+
|
|
|
+/* fill predecessors information in blocks */
|
|
|
+void
|
|
|
+fillpreds(Fn *f)
|
|
|
+{
|
|
|
+ Blk *b;
|
|
|
+
|
|
|
+ for (b=f->start; b; b=b->link) {
|
|
|
+ b->npred = 0;
|
|
|
+ b->pred = 0;
|
|
|
+ }
|
|
|
+ for (b=f->start; b; b=b->link) {
|
|
|
+ if (b->s1)
|
|
|
+ b->s1->npred++;
|
|
|
+ if (b->s2 && b->s2 != b->s1)
|
|
|
+ b->s2->npred++;
|
|
|
+ }
|
|
|
+ for (b=f->start; b; b=b->link) {
|
|
|
+ if (b->s1)
|
|
|
+ addpred(b, b->s1);
|
|
|
+ if (b->s2 && b->s2 != b->s1)
|
|
|
+ addpred(b, b->s2);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static int
|
|
|
+rporec(Blk *b, int x)
|
|
|
+{
|
|
|
+ Blk *s1, *s2;
|
|
|
+
|
|
|
+ if (!b || b->id >= 0)
|
|
|
+ return x;
|
|
|
+ b->id = 1;
|
|
|
+ s1 = b->s1;
|
|
|
+ s2 = b->s2;
|
|
|
+ if (s1 && s2 && s1->loop > s2->loop) {
|
|
|
+ s1 = b->s2;
|
|
|
+ s2 = b->s1;
|
|
|
+ }
|
|
|
+ x = rporec(s1, x);
|
|
|
+ x = rporec(s2, x);
|
|
|
+ b->id = x;
|
|
|
+ assert(x >= 0);
|
|
|
+ return x - 1;
|
|
|
+}
|
|
|
+
|
|
|
+/* fill the rpo information */
|
|
|
+void
|
|
|
+fillrpo(Fn *f)
|
|
|
+{
|
|
|
+ int n;
|
|
|
+ Blk *b, **p;
|
|
|
+
|
|
|
+ for (b=f->start; b; b=b->link)
|
|
|
+ b->id = -1;
|
|
|
+ n = 1 + rporec(f->start, f->nblk-1);
|
|
|
+ f->nblk -= n;
|
|
|
+ f->rpo = alloc(f->nblk * sizeof f->rpo[0]);
|
|
|
+ for (p=&f->start; (b=*p);) {
|
|
|
+ if (b->id == -1) {
|
|
|
+ blkdel(b);
|
|
|
+ *p = b->link;
|
|
|
+ } else {
|
|
|
+ b->id -= n;
|
|
|
+ f->rpo[b->id] = b;
|
|
|
+ p = &b->link;
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/* for dominators computation, read
|
|
|
+ * "A Simple, Fast Dominance Algorithm"
|
|
|
+ * by K. Cooper, T. Harvey, and K. Kennedy.
|
|
|
+ */
|
|
|
+
|
|
|
+static Blk *
|
|
|
+inter(Blk *b1, Blk *b2)
|
|
|
+{
|
|
|
+ Blk *bt;
|
|
|
+
|
|
|
+ if (b1 == 0)
|
|
|
+ return b2;
|
|
|
+ while (b1 != b2) {
|
|
|
+ if (b1->id < b2->id) {
|
|
|
+ bt = b1;
|
|
|
+ b1 = b2;
|
|
|
+ b2 = bt;
|
|
|
+ }
|
|
|
+ while (b1->id > b2->id) {
|
|
|
+ b1 = b1->idom;
|
|
|
+ assert(b1);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return b1;
|
|
|
+}
|
|
|
+
|
|
|
+void
|
|
|
+filldom(Fn *fn)
|
|
|
+{
|
|
|
+ Blk *b, *d;
|
|
|
+ int ch, n;
|
|
|
+ uint p;
|
|
|
+
|
|
|
+ for (b=fn->start; b; b=b->link) {
|
|
|
+ b->idom = 0;
|
|
|
+ b->dom = 0;
|
|
|
+ b->dlink = 0;
|
|
|
+ }
|
|
|
+ do {
|
|
|
+ ch = 0;
|
|
|
+ for (n=1; n<fn->nblk; n++) {
|
|
|
+ b = fn->rpo[n];
|
|
|
+ d = 0;
|
|
|
+ for (p=0; p<b->npred; p++)
|
|
|
+ if (b->pred[p]->idom
|
|
|
+ || b->pred[p] == fn->start)
|
|
|
+ d = inter(d, b->pred[p]);
|
|
|
+ if (d != b->idom) {
|
|
|
+ ch++;
|
|
|
+ b->idom = d;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } while (ch);
|
|
|
+ for (b=fn->start; b; b=b->link)
|
|
|
+ if ((d=b->idom)) {
|
|
|
+ assert(d != b);
|
|
|
+ b->dlink = d->dom;
|
|
|
+ d->dom = b;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+int
|
|
|
+sdom(Blk *b1, Blk *b2)
|
|
|
+{
|
|
|
+ assert(b1 && b2);
|
|
|
+ if (b1 == b2)
|
|
|
+ return 0;
|
|
|
+ while (b2->id > b1->id)
|
|
|
+ b2 = b2->idom;
|
|
|
+ return b1 == b2;
|
|
|
+}
|
|
|
+
|
|
|
+int
|
|
|
+dom(Blk *b1, Blk *b2)
|
|
|
+{
|
|
|
+ return b1 == b2 || sdom(b1, b2);
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+addfron(Blk *a, Blk *b)
|
|
|
+{
|
|
|
+ int n;
|
|
|
+
|
|
|
+ for (n=0; n<a->nfron; n++)
|
|
|
+ if (a->fron[n] == b)
|
|
|
+ return;
|
|
|
+ if (!a->nfron)
|
|
|
+ a->fron = vnew(++a->nfron, sizeof a->fron[0], alloc);
|
|
|
+ else
|
|
|
+ vgrow(&a->fron, ++a->nfron);
|
|
|
+ a->fron[a->nfron-1] = b;
|
|
|
+}
|
|
|
+
|
|
|
+/* fill the dominance frontier */
|
|
|
+void
|
|
|
+fillfron(Fn *fn)
|
|
|
+{
|
|
|
+ Blk *a, *b;
|
|
|
+
|
|
|
+ for (b=fn->start; b; b=b->link) {
|
|
|
+ if (b->s1)
|
|
|
+ for (a=b; !sdom(a, b->s1); a=a->idom)
|
|
|
+ addfron(a, b->s1);
|
|
|
+ if (b->s2)
|
|
|
+ for (a=b; !sdom(a, b->s2); a=a->idom)
|
|
|
+ addfron(a, b->s2);
|
|
|
+ }
|
|
|
+}
|