|
@@ -0,0 +1,80 @@
|
|
|
+#version 120
|
|
|
+
|
|
|
+// Input vertex attributes (from vertex shader)
|
|
|
+varying vec2 fragTexCoord;
|
|
|
+varying vec4 fragColor;
|
|
|
+
|
|
|
+uniform vec2 c; // c.x = real, c.y = imaginary component. Equation done is z^2 + c
|
|
|
+uniform vec2 offset; // Offset of the scale.
|
|
|
+uniform float zoom; // Zoom of the scale.
|
|
|
+
|
|
|
+// NOTE: Maximum number of shader for-loop iterations depend on GPU,
|
|
|
+// for example, on RasperryPi for this examply only supports up to 60
|
|
|
+const int maxIterations = 255; // Max iterations to do.
|
|
|
+const float colorCycles = 1.0; // Number of times the color palette repeats.
|
|
|
+
|
|
|
+// Square a complex number
|
|
|
+vec2 ComplexSquare(vec2 z)
|
|
|
+{
|
|
|
+ return vec2(z.x*z.x - z.y*z.y, z.x*z.y*2.0);
|
|
|
+}
|
|
|
+
|
|
|
+// Convert Hue Saturation Value (HSV) color into RGB
|
|
|
+vec3 Hsv2rgb(vec3 c)
|
|
|
+{
|
|
|
+ vec4 K = vec4(1.0, 2.0/3.0, 1.0/3.0, 3.0);
|
|
|
+ vec3 p = abs(fract(c.xxx + K.xyz)*6.0 - K.www);
|
|
|
+ return c.z*mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
|
|
|
+}
|
|
|
+
|
|
|
+void main()
|
|
|
+{
|
|
|
+ /**********************************************************************************************
|
|
|
+ Julia sets use a function z^2 + c, where c is a constant.
|
|
|
+ This function is iterated until the nature of the point is determined.
|
|
|
+
|
|
|
+ If the magnitude of the number becomes greater than 2, then from that point onward
|
|
|
+ the number will get bigger and bigger, and will never get smaller (tends towards infinity).
|
|
|
+ 2^2 = 4, 4^2 = 8 and so on.
|
|
|
+ So at 2 we stop iterating.
|
|
|
+
|
|
|
+ If the number is below 2, we keep iterating.
|
|
|
+ But when do we stop iterating if the number is always below 2 (it converges)?
|
|
|
+ That is what maxIterations is for.
|
|
|
+ Then we can divide the iterations by the maxIterations value to get a normalized value that we can
|
|
|
+ then map to a color.
|
|
|
+
|
|
|
+ We use dot product (z.x * z.x + z.y * z.y) to determine the magnitude (length) squared.
|
|
|
+ And once the magnitude squared is > 4, then magnitude > 2 is also true (saves computational power).
|
|
|
+ *************************************************************************************************/
|
|
|
+
|
|
|
+ // The pixel coordinates are scaled so they are on the mandelbrot scale
|
|
|
+ // NOTE: fragTexCoord already comes as normalized screen coordinates but offset must be normalized before scaling and zoom
|
|
|
+ vec2 z = vec2((fragTexCoord.x - 0.5)*2.5, (fragTexCoord.y - 0.5)*1.5)/zoom;
|
|
|
+ z.x += offset.x;
|
|
|
+ z.y += offset.y;
|
|
|
+
|
|
|
+ int iter = 0;
|
|
|
+ for (int iterations = 0; iterations < maxIterations; iterations++)
|
|
|
+ {
|
|
|
+ z = ComplexSquare(z) + c; // Iterate function
|
|
|
+ if (dot(z, z) > 4.0) break;
|
|
|
+
|
|
|
+ iter = iterations;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Another few iterations decreases errors in the smoothing calculation.
|
|
|
+ // See http://linas.org/art-gallery/escape/escape.html for more information.
|
|
|
+ z = ComplexSquare(z) + c;
|
|
|
+ z = ComplexSquare(z) + c;
|
|
|
+
|
|
|
+ // This last part smooths the color (again see link above).
|
|
|
+ float smoothVal = float(iter) + 1.0 - (log(log(length(z)))/log(2.0));
|
|
|
+
|
|
|
+ // Normalize the value so it is between 0 and 1.
|
|
|
+ float norm = smoothVal/float(maxIterations);
|
|
|
+
|
|
|
+ // If in set, color black. 0.999 allows for some float accuracy error.
|
|
|
+ if (norm > 0.999) gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0);
|
|
|
+ else gl_FragColor = vec4(Hsv2rgb(vec3(norm*colorCycles, 1.0, 1.0)), 1.0);
|
|
|
+}
|