Browse Source

REVIEWED: Coding conventions

Ray 9 months ago
parent
commit
1f45e7af76
7 changed files with 61 additions and 50 deletions
  1. 2 2
      src/raudio.c
  2. 6 6
      src/raymath.h
  3. 1 1
      src/rcamera.h
  4. 20 13
      src/rcore.c
  5. 23 20
      src/rmodels.c
  6. 1 1
      src/rtext.c
  7. 8 7
      src/rtextures.c

+ 2 - 2
src/raudio.c

@@ -1550,7 +1550,7 @@ Music LoadMusicStreamFromMemory(const char *fileType, const unsigned char *data,
     else if ((strcmp(fileType, ".ogg") == 0) || (strcmp(fileType, ".OGG") == 0))
     {
         // Open ogg audio stream
-        stb_vorbis* ctxOgg = stb_vorbis_open_memory((const unsigned char *)data, dataSize, NULL, NULL);
+        stb_vorbis *ctxOgg = stb_vorbis_open_memory((const unsigned char *)data, dataSize, NULL, NULL);
 
         if (ctxOgg != NULL)
         {
@@ -2462,7 +2462,7 @@ static ma_uint32 ReadAudioBufferFramesInMixingFormat(AudioBuffer *audioBuffer, f
         float *runningFramesOut = framesOut + (totalOutputFramesProcessed*audioBuffer->converter.channelsOut);
 
         // At this point we can convert the data to our mixing format
-        ma_uint64 inputFramesProcessedThisIteration = ReadAudioBufferFramesInInternalFormat(audioBuffer, inputBuffer, (ma_uint32)inputFramesToProcessThisIteration);    /* Safe cast. */
+        ma_uint64 inputFramesProcessedThisIteration = ReadAudioBufferFramesInInternalFormat(audioBuffer, inputBuffer, (ma_uint32)inputFramesToProcessThisIteration);
         ma_uint64 outputFramesProcessedThisIteration = outputFramesToProcessThisIteration;
         ma_data_converter_process_pcm_frames(&audioBuffer->converter, inputBuffer, &inputFramesProcessedThisIteration, runningFramesOut, &outputFramesProcessedThisIteration);
 

+ 6 - 6
src/raymath.h

@@ -2665,12 +2665,12 @@ inline const Vector2& operator *= (Vector2& lhs, const Matrix& rhs)
 
 inline Vector2 operator / (const Vector2& lhs, const float& rhs)
 {
-    return Vector2Scale(lhs, 1.0f / rhs);
+    return Vector2Scale(lhs, 1.0f/rhs);
 }
 
 inline const Vector2& operator /= (Vector2& lhs, const float& rhs)
 {
-    lhs = Vector2Scale(lhs, 1.0f / rhs);
+    lhs = Vector2Scale(lhs, 1.0f/rhs);
     return lhs;
 }
 
@@ -2759,12 +2759,12 @@ inline const Vector3& operator *= (Vector3& lhs, const Matrix& rhs)
 
 inline Vector3 operator / (const Vector3& lhs, const float& rhs)
 {
-    return Vector3Scale(lhs, 1.0f / rhs);
+    return Vector3Scale(lhs, 1.0f/rhs);
 }
 
 inline const Vector3& operator /= (Vector3& lhs, const float& rhs)
 {
-    lhs = Vector3Scale(lhs, 1.0f / rhs);
+    lhs = Vector3Scale(lhs, 1.0f/rhs);
     return lhs;
 }
 
@@ -2843,12 +2843,12 @@ inline const Vector4& operator *= (Vector4& lhs, const Vector4& rhs)
 
 inline Vector4 operator / (const Vector4& lhs, const float& rhs)
 {
-    return Vector4Scale(lhs, 1.0f / rhs);
+    return Vector4Scale(lhs, 1.0f/rhs);
 }
 
 inline const Vector4& operator /= (Vector4& lhs, const float& rhs)
 {
-    lhs = Vector4Scale(lhs, 1.0f / rhs);
+    lhs = Vector4Scale(lhs, 1.0f/rhs);
     return lhs;
 }
 

+ 1 - 1
src/rcamera.h

@@ -154,7 +154,7 @@ RLAPI void CameraPitch(Camera *camera, float angle, bool lockView, bool rotateAr
 RLAPI void CameraRoll(Camera *camera, float angle);
 
 RLAPI Matrix GetCameraViewMatrix(Camera *camera);
-RLAPI Matrix GetCameraProjectionMatrix(Camera* camera, float aspect);
+RLAPI Matrix GetCameraProjectionMatrix(Camera *camera, float aspect);
 
 #if defined(__cplusplus)
 }

+ 20 - 13
src/rcore.c

@@ -2765,7 +2765,8 @@ unsigned int *ComputeMD5(unsigned char *data, int dataSize)
 
 // Compute SHA-1 hash code
 // NOTE: Returns a static int[5] array (20 bytes)
-unsigned int *ComputeSHA1(unsigned char *data, int dataSize) {
+unsigned int *ComputeSHA1(unsigned char *data, int dataSize)
+{
     #define ROTATE_LEFT(x, c) (((x) << (c)) | ((x) >> (32 - (c))))
 
     static unsigned int hash[5] = { 0 };  // Hash to be returned
@@ -2800,17 +2801,16 @@ unsigned int *ComputeSHA1(unsigned char *data, int dataSize) {
     {
         // Break chunk into sixteen 32-bit words w[j], 0 <= j <= 15
         unsigned int w[80] = {0};
-        for (int i = 0; i < 16; i++) {
-            w[i] = (msg[offset + (i * 4) + 0] << 24) |
-                   (msg[offset + (i * 4) + 1] << 16) |
-                   (msg[offset + (i * 4) + 2] << 8) |
-                   (msg[offset + (i * 4) + 3]);
+        for (int i = 0; i < 16; i++)
+        {
+            w[i] = (msg[offset + (i*4) + 0] << 24) |
+                   (msg[offset + (i*4) + 1] << 16) |
+                   (msg[offset + (i*4) + 2] << 8) |
+                   (msg[offset + (i*4) + 3]);
         }
 
         // Message schedule: extend the sixteen 32-bit words into eighty 32-bit words:
-        for (int i = 16; i < 80; ++i) {
-            w[i] = ROTATE_LEFT(w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16], 1);
-        }
+        for (int i = 16; i < 80; i++) w[i] = ROTATE_LEFT(w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16], 1);
 
         // Initialize hash value for this chunk
         unsigned int a = hash[0];
@@ -2824,16 +2824,23 @@ unsigned int *ComputeSHA1(unsigned char *data, int dataSize) {
             unsigned int f = 0;
             unsigned int k = 0;
 
-            if (i < 20) {
+            if (i < 20)
+            {
                 f = (b & c) | ((~b) & d);
                 k = 0x5A827999;
-            } else if (i < 40) {
+            }
+            else if (i < 40)
+            {
                 f = b ^ c ^ d;
                 k = 0x6ED9EBA1;
-            } else if (i < 60) {
+            }
+            else if (i < 60)
+            {
                 f = (b & c) | (b & d) | (c & d);
                 k = 0x8F1BBCDC;
-            } else {
+            }
+            else
+            {
                 f = b ^ c ^ d;
                 k = 0xCA62C1D6;
             }

+ 23 - 20
src/rmodels.c

@@ -96,9 +96,9 @@
 #endif
 
 #if defined(SUPPORT_MESH_GENERATION)
-    #define PAR_MALLOC(T, N) ((T*)RL_MALLOC(N*sizeof(T)))
-    #define PAR_CALLOC(T, N) ((T*)RL_CALLOC(N*sizeof(T), 1))
-    #define PAR_REALLOC(T, BUF, N) ((T*)RL_REALLOC(BUF, sizeof(T)*(N)))
+    #define PAR_MALLOC(T, N) ((T *)RL_MALLOC(N*sizeof(T)))
+    #define PAR_CALLOC(T, N) ((T *)RL_CALLOC(N*sizeof(T), 1))
+    #define PAR_REALLOC(T, BUF, N) ((T *)RL_REALLOC(BUF, sizeof(T)*(N)))
     #define PAR_FREE RL_FREE
 
     #if defined(_MSC_VER)           // Disable some MSVC warning
@@ -2308,7 +2308,7 @@ void UpdateModelAnimationBones(Model model, ModelAnimation anim, int frame)
     }
 }
 
-// at least 2x speed up vs the old method 
+// at least 2x speed up vs the old method
 // Update model animated vertex data (positions and normals) for a given frame
 // NOTE: Updated data is uploaded to GPU
 void UpdateModelAnimation(Model model, ModelAnimation anim, int frame)
@@ -2340,14 +2340,16 @@ void UpdateModelAnimation(Model model, ModelAnimation anim, int frame)
             {
                 boneWeight = mesh.boneWeights[boneCounter];
                 boneId = mesh.boneIds[boneCounter];
+
                 // Early stop when no transformation will be applied
                 if (boneWeight == 0.0f) continue;
                 animVertex = (Vector3){ mesh.vertices[vCounter], mesh.vertices[vCounter + 1], mesh.vertices[vCounter + 2] };
                 animVertex = Vector3Transform(animVertex,model.meshes[m].boneMatrices[boneId]);
-                mesh.animVertices[vCounter] += animVertex.x * boneWeight;
-                mesh.animVertices[vCounter+1] += animVertex.y * boneWeight;
-                mesh.animVertices[vCounter+2] += animVertex.z * boneWeight;
+                mesh.animVertices[vCounter] += animVertex.x*boneWeight;
+                mesh.animVertices[vCounter+1] += animVertex.y*boneWeight;
+                mesh.animVertices[vCounter+2] += animVertex.z*boneWeight;
                 updated = true;
+
                 // Normals processing
                 // NOTE: We use meshes.baseNormals (default normal) to calculate meshes.normals (animated normals)
                 if (mesh.normals != NULL)
@@ -2360,6 +2362,7 @@ void UpdateModelAnimation(Model model, ModelAnimation anim, int frame)
                 }
             }
         }
+
         if (updated)
         {
             rlUpdateVertexBuffer(mesh.vboId[0], mesh.animVertices, mesh.vertexCount*3*sizeof(float), 0); // Update vertex position
@@ -2725,11 +2728,11 @@ Mesh GenMeshCube(float width, float height, float length)
 #else               // Use par_shapes library to generate cube mesh
 /*
 // Platonic solids:
-par_shapes_mesh* par_shapes_create_tetrahedron();       // 4 sides polyhedron (pyramid)
-par_shapes_mesh* par_shapes_create_cube();              // 6 sides polyhedron (cube)
-par_shapes_mesh* par_shapes_create_octahedron();        // 8 sides polyhedron (diamond)
-par_shapes_mesh* par_shapes_create_dodecahedron();      // 12 sides polyhedron
-par_shapes_mesh* par_shapes_create_icosahedron();       // 20 sides polyhedron
+par_shapes_mesh *par_shapes_create_tetrahedron();       // 4 sides polyhedron (pyramid)
+par_shapes_mesh *par_shapes_create_cube();              // 6 sides polyhedron (cube)
+par_shapes_mesh *par_shapes_create_octahedron();        // 8 sides polyhedron (diamond)
+par_shapes_mesh *par_shapes_create_dodecahedron();      // 12 sides polyhedron
+par_shapes_mesh *par_shapes_create_icosahedron();       // 20 sides polyhedron
 */
     // Platonic solid generation: cube (6 sides)
     // NOTE: No normals/texcoords generated by default
@@ -3840,7 +3843,7 @@ void DrawBillboardPro(Camera camera, Texture2D texture, Rectangle source, Vector
     for (int i = 0; i < 4; i++)
     {
         points[i] = Vector3Subtract(points[i], origin3D);
-        if (rotation != 0.0) points[i] = Vector3RotateByAxisAngle(points[i], forward, rotation * DEG2RAD);
+        if (rotation != 0.0) points[i] = Vector3RotateByAxisAngle(points[i], forward, rotation*DEG2RAD);
         points[i] = Vector3Add(points[i], position);
     }
 
@@ -4049,7 +4052,7 @@ RayCollision GetRayCollisionMesh(Ray ray, Mesh mesh, Matrix transform)
         for (int i = 0; i < triangleCount; i++)
         {
             Vector3 a, b, c;
-            Vector3* vertdata = (Vector3*)mesh.vertices;
+            Vector3 *vertdata = (Vector3 *)mesh.vertices;
 
             if (mesh.indices)
             {
@@ -4213,7 +4216,7 @@ static Model LoadOBJ(const char *fileName)
     if (CHDIR(workingDir) != 0) TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to change working directory", workingDir);
 
     unsigned int dataSize = (unsigned int)strlen(fileText);
-    
+
     unsigned int flags = TINYOBJ_FLAG_TRIANGULATE;
     int ret = tinyobj_parse_obj(&objAttributes, &objShapes, &objShapeCount, &objMaterials, &objMaterialCount, fileText, dataSize, flags);
 
@@ -4316,7 +4319,7 @@ static Model LoadOBJ(const char *fileName)
         faceVertIndex += objAttributes.face_num_verts[faceId];
         localMeshVertexCount += objAttributes.face_num_verts[faceId];
     }
-    
+
     localMeshVertexCounts[meshIndex] = localMeshVertexCount;
 
     for (int i = 0; i < model.meshCount; i++)
@@ -4325,7 +4328,7 @@ static Model LoadOBJ(const char *fileName)
         unsigned int vertexCount = localMeshVertexCounts[i];
 
         model.meshes[i].vertexCount = vertexCount;
-        model.meshes[i].triangleCount = vertexCount / 3;
+        model.meshes[i].triangleCount = vertexCount/3;
 
         model.meshes[i].vertices = (float *)MemAlloc(sizeof(float)*vertexCount*3);
         model.meshes[i].normals = (float *)MemAlloc(sizeof(float)*vertexCount*3);
@@ -4360,7 +4363,7 @@ static Model LoadOBJ(const char *fileName)
             else nextShapeEnd = objAttributes.num_face_num_verts; // This is actually the total number of face verts in the file, not faces
             newMesh = true;
         }
-        
+
         // If this is a new material, we need to allocate a new mesh
         if (lastMaterial != -1 && objAttributes.material_ids[faceId] != lastMaterial) newMesh = true;
         lastMaterial = objAttributes.material_ids[faceId];
@@ -5672,7 +5675,7 @@ static Model LoadGLTF(const char *fileName)
                     else if (attribute->component_type == cgltf_component_type_r_8u)
                     {
                         // Init raylib mesh indices to copy glTF attribute data
-                        model.meshes[meshIndex].indices = RL_MALLOC(attribute->count * sizeof(unsigned short));
+                        model.meshes[meshIndex].indices = RL_MALLOC(attribute->count*sizeof(unsigned short));
                         LOAD_ATTRIBUTE_CAST(attribute, 1, unsigned char, model.meshes[meshIndex].indices, unsigned short)
 
                     }
@@ -5727,7 +5730,7 @@ static Model LoadGLTF(const char *fileName)
 
             for (int i = 0; i < model.boneCount; i++)
             {
-                cgltf_node* node = skin.joints[i];
+                cgltf_node *node = skin.joints[i];
                 cgltf_float worldTransform[16];
                 cgltf_node_transform_world(node, worldTransform);
                 Matrix worldMatrix = {

+ 1 - 1
src/rtext.c

@@ -1282,7 +1282,7 @@ Vector2 MeasureTextEx(Font font, const char *text, float fontSize, float spacing
 {
     Vector2 textSize = { 0 };
 
-    if ((isGpuReady && (font.texture.id == 0)) || 
+    if ((isGpuReady && (font.texture.id == 0)) ||
         (text == NULL) || (text[0] == '\0')) return textSize; // Security check
 
     int size = TextLength(text);    // Get size in bytes of text

+ 8 - 7
src/rtextures.c

@@ -829,11 +829,11 @@ Image GenImageGradientLinear(int width, int height, int direction, Color start,
 
     // Calculate how far the top-left pixel is along the gradient direction from the center of said gradient
     float startingPos = 0.5f - (cosDir*width/2) - (sinDir*height/2);
-    // With directions that lie in the first or third quadrant (i.e. from top-left to 
+    // With directions that lie in the first or third quadrant (i.e. from top-left to
     // bottom-right or vice-versa), pixel (0, 0) is the farthest point on the gradient
     // (i.e. the pixel which should become one of the gradient's ends color); while for
     // directions that lie in the second or fourth quadrant, that point is pixel (width, 0).
-    float maxPosValue = 
+    float maxPosValue =
             ((signbit(sinDir) != 0) == (signbit(cosDir) != 0))
             ? fabsf(startingPos)
             : fabsf(startingPos+width*cosDir);
@@ -842,12 +842,12 @@ Image GenImageGradientLinear(int width, int height, int direction, Color start,
         for (int j = 0; j < height; j++)
         {
             // Calculate the relative position of the pixel along the gradient direction
-            float pos = (startingPos + (i*cosDir + j*sinDir)) / maxPosValue;
+            float pos = (startingPos + (i*cosDir + j*sinDir))/maxPosValue;
 
             float factor = pos;
             factor = (factor > 1.0f)? 1.0f : factor;  // Clamp to [-1,1]
             factor = (factor < -1.0f)? -1.0f : factor;  // Clamp to [-1,1]
-            factor = factor / 2 + 0.5f;
+            factor = factor/2.0f + 0.5f;
 
             // Generate the color for this pixel
             pixels[j*width + i].r = (int)((float)end.r*factor + (float)start.r*(1.0f - factor));
@@ -1007,7 +1007,8 @@ Image GenImagePerlinNoise(int width, int height, int offsetX, int offsetY, float
 {
     Color *pixels = (Color *)RL_MALLOC(width*height*sizeof(Color));
 
-    float aspectRatio = (float)width / (float)height;
+    float aspectRatio = (float)width/(float)height;
+
     for (int y = 0; y < height; y++)
     {
         for (int x = 0; x < width; x++)
@@ -5387,7 +5388,7 @@ static float HalfToFloat(unsigned short x)
     const unsigned int e = (x & 0x7C00) >> 10; // Exponent
     const unsigned int m = (x & 0x03FF) << 13; // Mantissa
     const float fm = (float)m;
-    const unsigned int v = (*(unsigned int*)&fm) >> 23; // Evil log2 bit hack to count leading zeros in denormalized format
+    const unsigned int v = (*(unsigned int *)&fm) >> 23; // Evil log2 bit hack to count leading zeros in denormalized format
     const unsigned int r = (x & 0x8000) << 16 | (e != 0)*((e + 112) << 23 | m) | ((e == 0)&(m != 0))*((v - 37) << 23 | ((m << (150 - v)) & 0x007FE000)); // sign : normalized : denormalized
 
     result = *(float *)&r;
@@ -5400,7 +5401,7 @@ static unsigned short FloatToHalf(float x)
 {
     unsigned short result = 0;
 
-    const unsigned int b = (*(unsigned int*) & x) + 0x00001000; // Round-to-nearest-even: add last bit after truncated mantissa
+    const unsigned int b = (*(unsigned int *) & x) + 0x00001000; // Round-to-nearest-even: add last bit after truncated mantissa
     const unsigned int e = (b & 0x7F800000) >> 23; // Exponent
     const unsigned int m = b & 0x007FFFFF; // Mantissa; in line below: 0x007FF000 = 0x00800000-0x00001000 = decimal indicator flag - initial rounding