|
@@ -2175,14 +2175,21 @@ void MeshTangents(Mesh *mesh)
|
|
|
Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
|
|
|
Vector3 tangent = tan1[i];
|
|
|
|
|
|
- //Vector3 tmp = (t - n * Vector3.Dot(n, t)).normalized;
|
|
|
- //tangents[i] = (Vector4){ tmp.x, tmp.y, tmp.z };
|
|
|
+ // TODO: Review, not sure if tangent computation is right, just used reference proposed maths...
|
|
|
+ #if defined(COMPUTE_TANGENTS_METHOD_01)
|
|
|
+ Vector3 tmp = Vector3Subtract(tangent, Vector3Multiply(normal, Vector3DotProduct(normal, tangent)));
|
|
|
+ tmp = Vector3Normalize(tmp);
|
|
|
+ mesh->tangents[i*4 + 0] = tmp.x;
|
|
|
+ mesh->tangents[i*4 + 1] = tmp.y;
|
|
|
+ mesh->tangents[i*4 + 2] = tmp.z;
|
|
|
+ mesh->tangents[i*4 + 3] = 1.0f;
|
|
|
+ #else
|
|
|
Vector3OrthoNormalize(&normal, &tangent);
|
|
|
-
|
|
|
mesh->tangents[i*4 + 0] = tangent.x;
|
|
|
mesh->tangents[i*4 + 1] = tangent.y;
|
|
|
mesh->tangents[i*4 + 2] = tangent.z;
|
|
|
mesh->tangents[i*4 + 3] = (Vector3DotProduct(Vector3CrossProduct(normal, tangent), tan2[i]) < 0.0f) ? -1.0f : 1.0f;
|
|
|
+ #endif
|
|
|
}
|
|
|
|
|
|
free(tan1);
|