|
@@ -0,0 +1,161 @@
|
|
|
+#version 100
|
|
|
+
|
|
|
+precision mediump float;
|
|
|
+
|
|
|
+varying vec3 fragPosition;
|
|
|
+varying vec2 fragTexCoord;
|
|
|
+varying vec4 fragColor;
|
|
|
+varying vec3 fragNormal;
|
|
|
+
|
|
|
+uniform sampler2D texture0;
|
|
|
+uniform sampler2D texture1;
|
|
|
+uniform sampler2D texture2;
|
|
|
+
|
|
|
+uniform vec4 colAmbient;
|
|
|
+uniform vec4 colDiffuse;
|
|
|
+uniform vec4 colSpecular;
|
|
|
+uniform float glossiness;
|
|
|
+
|
|
|
+uniform int useNormal;
|
|
|
+uniform int useSpecular;
|
|
|
+
|
|
|
+uniform mat4 modelMatrix;
|
|
|
+uniform vec3 viewDir;
|
|
|
+
|
|
|
+struct Light {
|
|
|
+ int enabled;
|
|
|
+ int type;
|
|
|
+ vec3 position;
|
|
|
+ vec3 direction;
|
|
|
+ vec4 diffuse;
|
|
|
+ float intensity;
|
|
|
+ float radius;
|
|
|
+ float coneAngle;
|
|
|
+};
|
|
|
+
|
|
|
+const int maxLights = 8;
|
|
|
+uniform Light lights[maxLights];
|
|
|
+
|
|
|
+vec3 ComputeLightPoint(Light l, vec3 n, vec3 v, float s)
|
|
|
+{
|
|
|
+/*
|
|
|
+ vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1.0));
|
|
|
+ vec3 surfaceToLight = l.position - surfacePos;
|
|
|
+
|
|
|
+ // Diffuse shading
|
|
|
+ float brightness = clamp(float(dot(n, surfaceToLight)/(length(surfaceToLight)*length(n))), 0.0, 1.0);
|
|
|
+ float diff = 1.0/dot(surfaceToLight/l.radius, surfaceToLight/l.radius)*brightness*l.intensity;
|
|
|
+
|
|
|
+ // Specular shading
|
|
|
+ float spec = 0.0;
|
|
|
+ if (diff > 0.0)
|
|
|
+ {
|
|
|
+ vec3 h = normalize(-l.direction + v);
|
|
|
+ spec = pow(dot(n, h), 3.0 + glossiness)*s;
|
|
|
+ }
|
|
|
+
|
|
|
+ return (diff*l.diffuse.rgb + spec*colSpecular.rgb);
|
|
|
+*/
|
|
|
+ return vec3(0.5);
|
|
|
+}
|
|
|
+
|
|
|
+vec3 ComputeLightDirectional(Light l, vec3 n, vec3 v, float s)
|
|
|
+{
|
|
|
+/*
|
|
|
+ vec3 lightDir = normalize(-l.direction);
|
|
|
+
|
|
|
+ // Diffuse shading
|
|
|
+ float diff = clamp(float(dot(n, lightDir)), 0.0, 1.0)*l.intensity;
|
|
|
+
|
|
|
+ // Specular shading
|
|
|
+ float spec = 0.0;
|
|
|
+ if (diff > 0.0)
|
|
|
+ {
|
|
|
+ vec3 h = normalize(lightDir + v);
|
|
|
+ spec = pow(dot(n, h), 3.0 + glossiness)*s;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Combine results
|
|
|
+ return (diff*l.intensity*l.diffuse.rgb + spec*colSpecular.rgb);
|
|
|
+*/
|
|
|
+ return vec3(0.5);
|
|
|
+}
|
|
|
+
|
|
|
+vec3 ComputeLightSpot(Light l, vec3 n, vec3 v, float s)
|
|
|
+{
|
|
|
+/*
|
|
|
+ vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1));
|
|
|
+ vec3 lightToSurface = normalize(surfacePos - l.position);
|
|
|
+ vec3 lightDir = normalize(-l.direction);
|
|
|
+
|
|
|
+ // Diffuse shading
|
|
|
+ float diff = clamp(float(dot(n, lightDir)), 0.0, 1.0)*l.intensity;
|
|
|
+
|
|
|
+ // Spot attenuation
|
|
|
+ float attenuation = clamp(float(dot(n, lightToSurface)), 0.0, 1.0);
|
|
|
+ attenuation = dot(lightToSurface, -lightDir);
|
|
|
+
|
|
|
+ float lightToSurfaceAngle = degrees(acos(attenuation));
|
|
|
+ if (lightToSurfaceAngle > l.coneAngle) attenuation = 0.0;
|
|
|
+
|
|
|
+ float falloff = (l.coneAngle - lightToSurfaceAngle)/l.coneAngle;
|
|
|
+
|
|
|
+ // Combine diffuse and attenuation
|
|
|
+ float diffAttenuation = diff*attenuation;
|
|
|
+
|
|
|
+ // Specular shading
|
|
|
+ float spec = 0.0;
|
|
|
+ if (diffAttenuation > 0.0)
|
|
|
+ {
|
|
|
+ vec3 h = normalize(lightDir + v);
|
|
|
+ spec = pow(dot(n, h), 3.0 + glossiness)*s;
|
|
|
+ }
|
|
|
+
|
|
|
+ return (falloff*(diffAttenuation*l.diffuse.rgb + spec*colSpecular.rgb));
|
|
|
+*/
|
|
|
+ return vec3(0.5);
|
|
|
+}
|
|
|
+
|
|
|
+void main()
|
|
|
+{
|
|
|
+ // Calculate fragment normal in screen space
|
|
|
+ // NOTE: important to multiply model matrix by fragment normal to apply model transformation (rotation and scale)
|
|
|
+ mat3 normalMatrix = mat3(modelMatrix);
|
|
|
+ vec3 normal = normalize(normalMatrix*fragNormal);
|
|
|
+
|
|
|
+ // Normalize normal and view direction vectors
|
|
|
+ vec3 n = normalize(normal);
|
|
|
+ vec3 v = normalize(viewDir);
|
|
|
+
|
|
|
+ // Calculate diffuse texture color fetching
|
|
|
+ vec4 texelColor = texture2D(texture0, fragTexCoord);
|
|
|
+ vec3 lighting = colAmbient.rgb;
|
|
|
+
|
|
|
+ // Calculate normal texture color fetching or set to maximum normal value by default
|
|
|
+ if (useNormal == 1)
|
|
|
+ {
|
|
|
+ n *= texture2D(texture1, fragTexCoord).rgb;
|
|
|
+ n = normalize(n);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Calculate specular texture color fetching or set to maximum specular value by default
|
|
|
+ float spec = 1.0;
|
|
|
+ if (useSpecular == 1) spec *= normalize(texture2D(texture2, fragTexCoord).r);
|
|
|
+
|
|
|
+ for (int i = 0; i < maxLights; i++)
|
|
|
+ {
|
|
|
+ // Check if light is enabled
|
|
|
+ if (lights[i].enabled == 1)
|
|
|
+ {
|
|
|
+ // Calculate lighting based on light type
|
|
|
+ if(lights[i].type == 0) lighting += ComputeLightPoint(lights[i], n, v, spec);
|
|
|
+ else if(lights[i].type == 1) lighting += ComputeLightDirectional(lights[i], n, v, spec);
|
|
|
+ else if(lights[i].type == 2) lighting += ComputeLightSpot(lights[i], n, v, spec);
|
|
|
+
|
|
|
+ // NOTE: It seems that too many ComputeLight*() operations inside for loop breaks the shader on RPI
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Calculate final fragment color
|
|
|
+ gl_FragColor = vec4(texelColor.rgb*lighting*colDiffuse.rgb, texelColor.a*colDiffuse.a);
|
|
|
+}
|