Browse Source

Merge remote-tracking branch 'refs/remotes/raysan5/develop' into develop

victorfisac 9 years ago
parent
commit
5d186639c9
6 changed files with 748 additions and 718 deletions
  1. 12 9
      examples/physics_basic_rigidbody.c
  2. 14 13
      examples/physics_forces.c
  3. 0 594
      src/physac.c
  4. 667 17
      src/physac.h
  5. 55 36
      src/raygui.h
  6. 0 49
      src/raylib.h

+ 12 - 9
examples/physics_basic_rigidbody.c

@@ -11,6 +11,9 @@
 
 #include "raylib.h"
 
+#define PHYSAC_IMPLEMENTATION
+#include "physac.h"
+
 #define MOVE_VELOCITY    5
 #define JUMP_VELOCITY    30
 
@@ -22,35 +25,35 @@ int main()
     int screenHeight = 450;
 
     InitWindow(screenWidth, screenHeight, "raylib [physac] example - basic rigidbody");
-    InitPhysics((Vector2){ 0.0f, -9.81f/2 });      // Initialize physics module
     
-    SetTargetFPS(60);
+    InitPhysics((Vector2){ 0.0f, -9.81f/2 });      // Initialize physics module
     
     // Debug variables
     bool isDebug = false;
     
     // Create rectangle physic object
-    PhysicObject rectangle = CreatePhysicObject((Vector2){ screenWidth*0.25f, screenHeight/2 }, 0.0f, (Vector2){ 75, 50 });
+    PhysicBody rectangle = CreatePhysicBody((Vector2){ screenWidth*0.25f, screenHeight/2 }, 0.0f, (Vector2){ 75, 50 });
     rectangle->rigidbody.enabled = true;       // Enable physic object rigidbody behaviour
     rectangle->rigidbody.applyGravity = true;
     rectangle->rigidbody.friction = 0.1f;
     rectangle->rigidbody.bounciness = 6.0f;
     
     // Create square physic object
-    PhysicObject square = CreatePhysicObject((Vector2){ screenWidth*0.75f, screenHeight/2 }, 0.0f, (Vector2){ 50, 50 });
+    PhysicBody square = CreatePhysicBody((Vector2){ screenWidth*0.75f, screenHeight/2 }, 0.0f, (Vector2){ 50, 50 });
     square->rigidbody.enabled = true;      // Enable physic object rigidbody behaviour
     square->rigidbody.applyGravity = true;
     square->rigidbody.friction = 0.1f;
     
     // Create walls physic objects
-    PhysicObject floor = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight*0.95f }, 0.0f, (Vector2){ screenWidth*0.9f, 100 });
-    PhysicObject leftWall = CreatePhysicObject((Vector2){ 0.0f, screenHeight/2 }, 0.0f, (Vector2){ screenWidth*0.1f, screenHeight });
-    PhysicObject rightWall = CreatePhysicObject((Vector2){ screenWidth, screenHeight/2 }, 0.0f, (Vector2){ screenWidth*0.1f, screenHeight });
-    PhysicObject roof = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight*0.05f }, 0.0f, (Vector2){ screenWidth*0.9f, 100 });
+    PhysicBody floor = CreatePhysicBody((Vector2){ screenWidth/2, screenHeight*0.95f }, 0.0f, (Vector2){ screenWidth*0.9f, 100 });
+    PhysicBody leftWall = CreatePhysicBody((Vector2){ 0.0f, screenHeight/2 }, 0.0f, (Vector2){ screenWidth*0.1f, screenHeight });
+    PhysicBody rightWall = CreatePhysicBody((Vector2){ screenWidth, screenHeight/2 }, 0.0f, (Vector2){ screenWidth*0.1f, screenHeight });
+    PhysicBody roof = CreatePhysicBody((Vector2){ screenWidth/2, screenHeight*0.05f }, 0.0f, (Vector2){ screenWidth*0.9f, 100 });
     
     // Create pplatform physic object
-    PhysicObject platform = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight*0.7f }, 0.0f, (Vector2){ screenWidth*0.25f, 20 });
+    PhysicBody platform = CreatePhysicBody((Vector2){ screenWidth/2, screenHeight*0.7f }, 0.0f, (Vector2){ screenWidth*0.25f, 20 });
     
+    SetTargetFPS(60);
     //--------------------------------------------------------------------------------------
 
     // Main game loop

+ 14 - 13
examples/physics_forces.c

@@ -10,15 +10,15 @@
 ********************************************************************************************/
 
 #include "raylib.h"
-#include "math.h"
+
+#define PHYSAC_IMPLEMENTATION
+#include "physac.h"
 
 #define FORCE_AMOUNT        5.0f
 #define FORCE_RADIUS        150
 #define LINE_LENGTH         75
 #define TRIANGLE_LENGTH     12
 
-void DrawRigidbodyCircle(PhysicObject obj, Color color);
-
 int main()
 {
     // Initialization
@@ -27,29 +27,28 @@ int main()
     int screenHeight = 450;
 
     InitWindow(screenWidth, screenHeight, "raylib [physac] example - forces");
-    InitPhysics((Vector2){ 0.0f, -9.81f/2 });      // Initialize physics module
     
-    SetTargetFPS(60);
+    InitPhysics((Vector2){ 0.0f, -9.81f/2 });      // Initialize physics module
     
     // Global variables
     Vector2 mousePosition;
     bool isDebug = false;
     
     // Create rectangle physic objects
-    PhysicObject rectangles[3];
+    PhysicBody rectangles[3];
     for (int i = 0; i < 3; i++)
     {
-        rectangles[i] = CreatePhysicObject((Vector2){ screenWidth/4*(i+1), (((i % 2) == 0) ? (screenHeight/3) : (screenHeight/1.5f)) }, 0.0f, (Vector2){ 50, 50 });
+        rectangles[i] = CreatePhysicBody((Vector2){ screenWidth/4*(i+1), (((i % 2) == 0) ? (screenHeight/3) : (screenHeight/1.5f)) }, 0.0f, (Vector2){ 50, 50 });
         rectangles[i]->rigidbody.enabled = true;       // Enable physic object rigidbody behaviour
         rectangles[i]->rigidbody.friction = 0.1f;
     }
     
     // Create circles physic objects
     // NOTE: when creating circle physic objects, transform.scale must be { 0, 0 } and object radius must be defined in collider.radius and use this value to draw the circle.
-    PhysicObject circles[3];
+    PhysicBody circles[3];
     for (int i = 0; i < 3; i++)
     {
-        circles[i] = CreatePhysicObject((Vector2){ screenWidth/4*(i+1), (((i % 2) == 0) ? (screenHeight/1.5f) : (screenHeight/4)) }, 0.0f, (Vector2){ 0, 0 });
+        circles[i] = CreatePhysicBody((Vector2){ screenWidth/4*(i+1), (((i % 2) == 0) ? (screenHeight/1.5f) : (screenHeight/4)) }, 0.0f, (Vector2){ 0, 0 });
         circles[i]->rigidbody.enabled = true;       // Enable physic object rigidbody behaviour
         circles[i]->rigidbody.friction = 0.1f;
         circles[i]->collider.type = COLLIDER_CIRCLE;
@@ -57,11 +56,12 @@ int main()
     }
     
     // Create walls physic objects
-    PhysicObject leftWall = CreatePhysicObject((Vector2){ -25, screenHeight/2 }, 0.0f, (Vector2){ 50, screenHeight });
-    PhysicObject rightWall = CreatePhysicObject((Vector2){ screenWidth + 25, screenHeight/2 }, 0.0f, (Vector2){ 50, screenHeight });
-    PhysicObject topWall = CreatePhysicObject((Vector2){ screenWidth/2, -25 }, 0.0f, (Vector2){ screenWidth, 50 });
-    PhysicObject bottomWall = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight + 25 }, 0.0f, (Vector2){ screenWidth, 50 });
+    PhysicBody leftWall = CreatePhysicBody((Vector2){ -25, screenHeight/2 }, 0.0f, (Vector2){ 50, screenHeight });
+    PhysicBody rightWall = CreatePhysicBody((Vector2){ screenWidth + 25, screenHeight/2 }, 0.0f, (Vector2){ 50, screenHeight });
+    PhysicBody topWall = CreatePhysicBody((Vector2){ screenWidth/2, -25 }, 0.0f, (Vector2){ screenWidth, 50 });
+    PhysicBody bottomWall = CreatePhysicBody((Vector2){ screenWidth/2, screenHeight + 25 }, 0.0f, (Vector2){ screenWidth, 50 });
     
+    SetTargetFPS(60);
     //--------------------------------------------------------------------------------------
 
     // Main game loop
@@ -175,6 +175,7 @@ int main()
     // De-Initialization
     //--------------------------------------------------------------------------------------
     ClosePhysics();       // Unitialize physics module
+    
     CloseWindow();        // Close window and OpenGL context
     //--------------------------------------------------------------------------------------
 

+ 0 - 594
src/physac.c

@@ -1,594 +0,0 @@
-/**********************************************************************************************
-*
-*   [physac] raylib physics module - Basic functions to apply physics to 2D objects
-*
-*   Copyright (c) 2016 Victor Fisac and Ramon Santamaria
-*
-*   This software is provided "as-is", without any express or implied warranty. In no event
-*   will the authors be held liable for any damages arising from the use of this software.
-*
-*   Permission is granted to anyone to use this software for any purpose, including commercial
-*   applications, and to alter it and redistribute it freely, subject to the following restrictions:
-*
-*     1. The origin of this software must not be misrepresented; you must not claim that you
-*     wrote the original software. If you use this software in a product, an acknowledgment
-*     in the product documentation would be appreciated but is not required.
-*
-*     2. Altered source versions must be plainly marked as such, and must not be misrepresented
-*     as being the original software.
-*
-*     3. This notice may not be removed or altered from any source distribution.
-*
-**********************************************************************************************/
-
-//#define PHYSAC_STANDALONE     // NOTE: To use the physics module as standalone lib, just uncomment this line
-
-#if defined(PHYSAC_STANDALONE)
-    #include "physac.h"
-#else
-    #include "raylib.h"
-#endif
-
-#include <stdlib.h>         // Required for: malloc(), free()
-#include <math.h>           // Required for: cos(), sin(), abs(), fminf()
-
-//----------------------------------------------------------------------------------
-// Defines and Macros
-//----------------------------------------------------------------------------------
-#define MAX_PHYSIC_OBJECTS      256             // Maximum available physic object slots in objects pool
-#define PHYSICS_STEPS           450             // Physics update steps number (divided calculations in steps per frame) to get more accurately collisions detections
-#define PHYSICS_ACCURACY        0.0001f         // Velocity subtract operations round filter (friction)
-#define PHYSICS_ERRORPERCENT    0.001f          // Collision resolve position fix
-
-//----------------------------------------------------------------------------------
-// Types and Structures Definition
-// NOTE: Below types are required for PHYSAC_STANDALONE usage
-//----------------------------------------------------------------------------------
-// ...
-
-//----------------------------------------------------------------------------------
-// Global Variables Definition
-//----------------------------------------------------------------------------------
-static PhysicObject physicObjects[MAX_PHYSIC_OBJECTS];              // Physic objects pool
-static int physicObjectsCount;                                      // Counts current enabled physic objects
-static Vector2 gravityForce;                                        // Gravity force
-
-//----------------------------------------------------------------------------------
-// Module specific Functions Declaration
-//----------------------------------------------------------------------------------
-static float Vector2DotProduct(Vector2 v1, Vector2 v2);             // Returns the dot product of two Vector2
-static float Vector2Length(Vector2 v);                              // Returns the length of a Vector2
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition
-//----------------------------------------------------------------------------------
-
-// Initializes pointers array (just pointers, fixed size)
-void InitPhysics(Vector2 gravity)
-{
-    // Initialize physics variables
-    physicObjectsCount = 0;
-    gravityForce = gravity;
-}
-
-// Update physic objects, calculating physic behaviours and collisions detection
-void UpdatePhysics()
-{
-    // Reset all physic objects is grounded state
-    for (int i = 0; i < physicObjectsCount; i++) physicObjects[i]->rigidbody.isGrounded = false;
-    
-    for (int steps = 0; steps < PHYSICS_STEPS; steps++)
-    {
-        for (int i = 0; i < physicObjectsCount; i++)
-        {
-            if (physicObjects[i]->enabled)
-            {
-                // Update physic behaviour
-                if (physicObjects[i]->rigidbody.enabled)
-                {
-                    // Apply friction to acceleration in X axis
-                    if (physicObjects[i]->rigidbody.acceleration.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
-                    else if (physicObjects[i]->rigidbody.acceleration.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
-                    else physicObjects[i]->rigidbody.acceleration.x = 0.0f;
-                    
-                    // Apply friction to acceleration in Y axis
-                    if (physicObjects[i]->rigidbody.acceleration.y > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.y -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
-                    else if (physicObjects[i]->rigidbody.acceleration.y < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.y += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
-                    else physicObjects[i]->rigidbody.acceleration.y = 0.0f;
-                    
-                    // Apply friction to velocity in X axis
-                    if (physicObjects[i]->rigidbody.velocity.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
-                    else if (physicObjects[i]->rigidbody.velocity.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
-                    else physicObjects[i]->rigidbody.velocity.x = 0.0f;
-                    
-                    // Apply friction to velocity in Y axis
-                    if (physicObjects[i]->rigidbody.velocity.y > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.y -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
-                    else if (physicObjects[i]->rigidbody.velocity.y < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.y += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
-                    else physicObjects[i]->rigidbody.velocity.y = 0.0f;
-                    
-                    // Apply gravity to velocity
-                    if (physicObjects[i]->rigidbody.applyGravity)
-                    {
-                        physicObjects[i]->rigidbody.velocity.x += gravityForce.x/PHYSICS_STEPS;
-                        physicObjects[i]->rigidbody.velocity.y += gravityForce.y/PHYSICS_STEPS;
-                    }
-                    
-                    // Apply acceleration to velocity
-                    physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.acceleration.x/PHYSICS_STEPS;
-                    physicObjects[i]->rigidbody.velocity.y += physicObjects[i]->rigidbody.acceleration.y/PHYSICS_STEPS;
-                    
-                    // Apply velocity to position
-                    physicObjects[i]->transform.position.x += physicObjects[i]->rigidbody.velocity.x/PHYSICS_STEPS;
-                    physicObjects[i]->transform.position.y -= physicObjects[i]->rigidbody.velocity.y/PHYSICS_STEPS;
-                }
-                
-                // Update collision detection
-                if (physicObjects[i]->collider.enabled)
-                {
-                    // Update collider bounds
-                    physicObjects[i]->collider.bounds = TransformToRectangle(physicObjects[i]->transform);
-                    
-                    // Check collision with other colliders
-                    for (int k = 0; k < physicObjectsCount; k++)
-                    {
-                        if (physicObjects[k]->collider.enabled && i != k)
-                        {
-                            // Resolve physic collision
-                            // NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
-                            // and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
-                            
-                            // 1. Calculate collision normal
-                            // -------------------------------------------------------------------------------------------------------------------------------------
-                            
-                            // Define collision contact normal, direction and penetration depth
-                            Vector2 contactNormal = { 0.0f, 0.0f };
-                            Vector2 direction = { 0.0f, 0.0f };
-                            float penetrationDepth = 0.0f;
-                            
-                            switch (physicObjects[i]->collider.type)
-                            {
-                                case COLLIDER_RECTANGLE:
-                                {
-                                    switch (physicObjects[k]->collider.type)
-                                    {
-                                        case COLLIDER_RECTANGLE:
-                                        {
-                                            // Check if colliders are overlapped
-                                            if (CheckCollisionRecs(physicObjects[i]->collider.bounds, physicObjects[k]->collider.bounds))
-                                            {
-                                                // Calculate direction vector from i to k
-                                                direction.x = (physicObjects[k]->transform.position.x + physicObjects[k]->transform.scale.x/2) - (physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2);
-                                                direction.y = (physicObjects[k]->transform.position.y + physicObjects[k]->transform.scale.y/2) - (physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2);
-                                                
-                                                // Define overlapping and penetration attributes
-                                                Vector2 overlap;
-
-                                                // Calculate overlap on X axis
-                                                overlap.x = (physicObjects[i]->transform.scale.x + physicObjects[k]->transform.scale.x)/2 - abs(direction.x);
-                                                
-                                                // SAT test on X axis
-                                                if (overlap.x > 0.0f)
-                                                {
-                                                    // Calculate overlap on Y axis
-                                                    overlap.y = (physicObjects[i]->transform.scale.y + physicObjects[k]->transform.scale.y)/2 - abs(direction.y);
-                                                    
-                                                    // SAT test on Y axis
-                                                    if (overlap.y > 0.0f)
-                                                    {
-                                                        // Find out which axis is axis of least penetration
-                                                        if (overlap.y > overlap.x)
-                                                        {
-                                                            // Point towards k knowing that direction points from i to k
-                                                            if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
-                                                            else contactNormal = (Vector2){ 1.0f, 0.0f };
-                                                            
-                                                            // Update penetration depth for position correction
-                                                            penetrationDepth = overlap.x;
-                                                        }
-                                                        else
-                                                        {
-                                                            // Point towards k knowing that direction points from i to k
-                                                            if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
-                                                            else contactNormal = (Vector2){ 0.0f, -1.0f };
-                                                            
-                                                            // Update penetration depth for position correction
-                                                            penetrationDepth = overlap.y;
-                                                        }
-                                                    }
-                                                }
-                                            }
-                                        } break;
-                                        case COLLIDER_CIRCLE:
-                                        {
-                                            if (CheckCollisionCircleRec(physicObjects[k]->transform.position, physicObjects[k]->collider.radius, physicObjects[i]->collider.bounds))
-                                            {
-                                                // Calculate direction vector between circles
-                                                direction.x = physicObjects[k]->transform.position.x - physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2;
-                                                direction.y = physicObjects[k]->transform.position.y - physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2;
-                                                
-                                                // Calculate closest point on rectangle to circle
-                                                Vector2 closestPoint = { 0.0f, 0.0f };
-                                                if (direction.x > 0.0f) closestPoint.x = physicObjects[i]->collider.bounds.x + physicObjects[i]->collider.bounds.width;
-                                                else closestPoint.x = physicObjects[i]->collider.bounds.x;
-                                                
-                                                if (direction.y > 0.0f) closestPoint.y = physicObjects[i]->collider.bounds.y + physicObjects[i]->collider.bounds.height;
-                                                else closestPoint.y = physicObjects[i]->collider.bounds.y;
-                                                
-                                                // Check if the closest point is inside the circle
-                                                if (CheckCollisionPointCircle(closestPoint, physicObjects[k]->transform.position, physicObjects[k]->collider.radius))
-                                                {
-                                                    // Recalculate direction based on closest point position
-                                                    direction.x = physicObjects[k]->transform.position.x - closestPoint.x;
-                                                    direction.y = physicObjects[k]->transform.position.y - closestPoint.y;
-                                                    float distance = Vector2Length(direction);
-                                                    
-                                                    // Calculate final contact normal
-                                                    contactNormal.x = direction.x/distance;
-                                                    contactNormal.y = -direction.y/distance;
-                                                    
-                                                    // Calculate penetration depth
-                                                    penetrationDepth = physicObjects[k]->collider.radius - distance;
-                                                }
-                                                else
-                                                {
-                                                    if (abs(direction.y) < abs(direction.x))
-                                                    {
-                                                        // Calculate final contact normal
-                                                        if (direction.y > 0.0f)
-                                                        {
-                                                            contactNormal = (Vector2){ 0.0f, -1.0f };
-                                                            penetrationDepth = fabs(physicObjects[i]->collider.bounds.y - physicObjects[k]->transform.position.y - physicObjects[k]->collider.radius);
-                                                        }
-                                                        else 
-                                                        {
-                                                            contactNormal = (Vector2){ 0.0f, 1.0f };
-                                                            penetrationDepth = fabs(physicObjects[i]->collider.bounds.y - physicObjects[k]->transform.position.y + physicObjects[k]->collider.radius);
-                                                        }
-                                                    }
-                                                    else
-                                                    {
-                                                        // Calculate final contact normal
-                                                        if (direction.x > 0.0f)
-                                                        {
-                                                            contactNormal = (Vector2){ 1.0f, 0.0f };
-                                                            penetrationDepth = fabs(physicObjects[k]->transform.position.x + physicObjects[k]->collider.radius - physicObjects[i]->collider.bounds.x);
-                                                        }
-                                                        else 
-                                                        {
-                                                            contactNormal = (Vector2){ -1.0f, 0.0f };
-                                                            penetrationDepth = fabs(physicObjects[i]->collider.bounds.x + physicObjects[i]->collider.bounds.width - physicObjects[k]->transform.position.x - physicObjects[k]->collider.radius);
-                                                        }
-                                                    }
-                                                }
-                                            }
-                                        } break;
-                                    }
-                                } break;
-                                case COLLIDER_CIRCLE:
-                                {
-                                    switch (physicObjects[k]->collider.type)
-                                    {
-                                        case COLLIDER_RECTANGLE:
-                                        {
-                                            if (CheckCollisionCircleRec(physicObjects[i]->transform.position, physicObjects[i]->collider.radius, physicObjects[k]->collider.bounds))
-                                            {
-                                                // Calculate direction vector between circles
-                                                direction.x = physicObjects[k]->transform.position.x + physicObjects[i]->transform.scale.x/2 - physicObjects[i]->transform.position.x;
-                                                direction.y = physicObjects[k]->transform.position.y + physicObjects[i]->transform.scale.y/2 - physicObjects[i]->transform.position.y;
-                                                
-                                                // Calculate closest point on rectangle to circle
-                                                Vector2 closestPoint = { 0.0f, 0.0f };
-                                                if (direction.x > 0.0f) closestPoint.x = physicObjects[k]->collider.bounds.x + physicObjects[k]->collider.bounds.width;
-                                                else closestPoint.x = physicObjects[k]->collider.bounds.x;
-                                                
-                                                if (direction.y > 0.0f) closestPoint.y = physicObjects[k]->collider.bounds.y + physicObjects[k]->collider.bounds.height;
-                                                else closestPoint.y = physicObjects[k]->collider.bounds.y;
-                                                
-                                                // Check if the closest point is inside the circle
-                                                if (CheckCollisionPointCircle(closestPoint, physicObjects[i]->transform.position, physicObjects[i]->collider.radius))
-                                                {
-                                                    // Recalculate direction based on closest point position
-                                                    direction.x = physicObjects[i]->transform.position.x - closestPoint.x;
-                                                    direction.y = physicObjects[i]->transform.position.y - closestPoint.y;
-                                                    float distance = Vector2Length(direction);
-                                                    
-                                                    // Calculate final contact normal
-                                                    contactNormal.x = direction.x/distance;
-                                                    contactNormal.y = -direction.y/distance;
-                                                    
-                                                    // Calculate penetration depth
-                                                    penetrationDepth = physicObjects[k]->collider.radius - distance;
-                                                }
-                                                else
-                                                {
-                                                    if (abs(direction.y) < abs(direction.x))
-                                                    {
-                                                        // Calculate final contact normal
-                                                        if (direction.y > 0.0f)
-                                                        {
-                                                            contactNormal = (Vector2){ 0.0f, -1.0f };
-                                                            penetrationDepth = fabs(physicObjects[k]->collider.bounds.y - physicObjects[i]->transform.position.y - physicObjects[i]->collider.radius);
-                                                        }
-                                                        else 
-                                                        {
-                                                            contactNormal = (Vector2){ 0.0f, 1.0f };
-                                                            penetrationDepth = fabs(physicObjects[k]->collider.bounds.y - physicObjects[i]->transform.position.y + physicObjects[i]->collider.radius);
-                                                        }
-                                                    }
-                                                    else
-                                                    {
-                                                        // Calculate final contact normal and penetration depth
-                                                        if (direction.x > 0.0f)
-                                                        {
-                                                            contactNormal = (Vector2){ 1.0f, 0.0f };
-                                                            penetrationDepth = fabs(physicObjects[i]->transform.position.x + physicObjects[i]->collider.radius - physicObjects[k]->collider.bounds.x);
-                                                        }
-                                                        else 
-                                                        {
-                                                            contactNormal = (Vector2){ -1.0f, 0.0f };
-                                                            penetrationDepth = fabs(physicObjects[k]->collider.bounds.x + physicObjects[k]->collider.bounds.width - physicObjects[i]->transform.position.x - physicObjects[i]->collider.radius);
-                                                        }
-                                                    }
-                                                }
-                                            }
-                                        } break;
-                                        case COLLIDER_CIRCLE:
-                                        {
-                                            // Check if colliders are overlapped
-                                            if (CheckCollisionCircles(physicObjects[i]->transform.position, physicObjects[i]->collider.radius, physicObjects[k]->transform.position, physicObjects[k]->collider.radius))
-                                            {
-                                                // Calculate direction vector between circles
-                                                direction.x = physicObjects[k]->transform.position.x - physicObjects[i]->transform.position.x;
-                                                direction.y = physicObjects[k]->transform.position.y - physicObjects[i]->transform.position.y;
-                                                
-                                                // Calculate distance between circles
-                                                float distance = Vector2Length(direction);
-                                                
-                                                // Check if circles are not completely overlapped
-                                                if (distance != 0.0f)
-                                                {                                                    
-                                                    // Calculate contact normal direction (Y axis needs to be flipped)
-                                                    contactNormal.x = direction.x/distance;
-                                                    contactNormal.y = -direction.y/distance;
-                                                }
-                                                else contactNormal = (Vector2){ 1.0f, 0.0f };   // Choose random (but consistent) values
-                                            }
-                                        } break;
-                                        default: break;
-                                    }
-                                } break;
-                                default: break;
-                            }
-                            
-                            // Update rigidbody grounded state
-                            if (physicObjects[i]->rigidbody.enabled)
-                            {
-                                if (contactNormal.y < 0.0f) physicObjects[i]->rigidbody.isGrounded = true;
-                            }
-                            
-                            // 2. Calculate collision impulse
-                            // -------------------------------------------------------------------------------------------------------------------------------------
-                            
-                            // Calculate relative velocity
-                            Vector2 relVelocity = { 0.0f, 0.0f };
-                            relVelocity.x = physicObjects[k]->rigidbody.velocity.x - physicObjects[i]->rigidbody.velocity.x;
-                            relVelocity.y = physicObjects[k]->rigidbody.velocity.y - physicObjects[i]->rigidbody.velocity.y;
-
-                            // Calculate relative velocity in terms of the normal direction
-                            float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
-                        
-                            // Dot not resolve if velocities are separating
-                            if (velAlongNormal <= 0.0f)
-                            {
-                                // Calculate minimum bounciness value from both objects
-                                float e = fminf(physicObjects[i]->rigidbody.bounciness, physicObjects[k]->rigidbody.bounciness);
-                                
-                                // Calculate impulse scalar value
-                                float j = -(1.0f + e)*velAlongNormal;
-                                j /= 1.0f/physicObjects[i]->rigidbody.mass + 1.0f/physicObjects[k]->rigidbody.mass;
-                                
-                                // Calculate final impulse vector
-                                Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
-                                
-                                // Calculate collision mass ration
-                                float massSum = physicObjects[i]->rigidbody.mass + physicObjects[k]->rigidbody.mass;
-                                float ratio = 0.0f;
-                                
-                                // Apply impulse to current rigidbodies velocities if they are enabled
-                                if (physicObjects[i]->rigidbody.enabled) 
-                                {
-                                    // Calculate inverted mass ration
-                                    ratio = physicObjects[i]->rigidbody.mass/massSum;
-                                    
-                                    // Apply impulse direction to velocity
-                                    physicObjects[i]->rigidbody.velocity.x -= impulse.x*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
-                                    physicObjects[i]->rigidbody.velocity.y -= impulse.y*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
-                                }
-                                
-                                if (physicObjects[k]->rigidbody.enabled) 
-                                {
-                                    // Calculate inverted mass ration
-                                    ratio = physicObjects[k]->rigidbody.mass/massSum;
-                                    
-                                    // Apply impulse direction to velocity
-                                    physicObjects[k]->rigidbody.velocity.x += impulse.x*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
-                                    physicObjects[k]->rigidbody.velocity.y += impulse.y*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
-                                }
-                                
-                                // 3. Correct colliders overlaping (transform position)
-                                // ---------------------------------------------------------------------------------------------------------------------------------
-                                
-                                // Calculate transform position penetration correction
-                                Vector2 posCorrection;
-                                posCorrection.x = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
-                                posCorrection.y = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
-                                
-                                // Fix transform positions
-                                if (physicObjects[i]->rigidbody.enabled)
-                                {                                        
-                                    // Fix physic objects transform position
-                                    physicObjects[i]->transform.position.x -= 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.x;
-                                    physicObjects[i]->transform.position.y += 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.y;
-                                    
-                                    // Update collider bounds
-                                    physicObjects[i]->collider.bounds = TransformToRectangle(physicObjects[i]->transform);
-                                    
-                                    if (physicObjects[k]->rigidbody.enabled)
-                                    {
-                                        // Fix physic objects transform position
-                                        physicObjects[k]->transform.position.x += 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.x;
-                                        physicObjects[k]->transform.position.y -= 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.y;
-                                        
-                                        // Update collider bounds
-                                        physicObjects[k]->collider.bounds = TransformToRectangle(physicObjects[k]->transform);
-                                    }
-                                }
-                            }
-                        }
-                    }
-                }
-            }
-        }
-    }
-}
-
-// Unitialize all physic objects and empty the objects pool
-void ClosePhysics()
-{
-    // Free all dynamic memory allocations
-    for (int i = 0; i < physicObjectsCount; i++) free(physicObjects[i]);
-    
-    // Reset enabled physic objects count
-    physicObjectsCount = 0;
-}
-
-// Create a new physic object dinamically, initialize it and add to pool
-PhysicObject CreatePhysicObject(Vector2 position, float rotation, Vector2 scale)
-{
-    // Allocate dynamic memory
-    PhysicObject obj = (PhysicObject)malloc(sizeof(PhysicObjectData));
-    
-    // Initialize physic object values with generic values
-    obj->id = physicObjectsCount;
-    obj->enabled = true;
-    
-    obj->transform = (Transform){ (Vector2){ position.x - scale.x/2, position.y - scale.y/2 }, rotation, scale };
-    
-    obj->rigidbody.enabled = false;
-    obj->rigidbody.mass = 1.0f;
-    obj->rigidbody.acceleration = (Vector2){ 0.0f, 0.0f };
-    obj->rigidbody.velocity = (Vector2){ 0.0f, 0.0f };
-    obj->rigidbody.applyGravity = false;
-    obj->rigidbody.isGrounded = false;
-    obj->rigidbody.friction = 0.0f;
-    obj->rigidbody.bounciness = 0.0f;
-    
-    obj->collider.enabled = true;
-    obj->collider.type = COLLIDER_RECTANGLE;
-    obj->collider.bounds = TransformToRectangle(obj->transform);
-    obj->collider.radius = 0.0f;
-    
-    // Add new physic object to the pointers array
-    physicObjects[physicObjectsCount] = obj;
-    
-    // Increase enabled physic objects count
-    physicObjectsCount++;
-    
-    return obj;
-}
-
-// Destroy a specific physic object and take it out of the list
-void DestroyPhysicObject(PhysicObject pObj)
-{
-    // Free dynamic memory allocation
-    free(physicObjects[pObj->id]);
-    
-    // Remove *obj from the pointers array
-    for (int i = pObj->id; i < physicObjectsCount; i++)
-    {
-        // Resort all the following pointers of the array
-        if ((i + 1) < physicObjectsCount)
-        {
-            physicObjects[i] = physicObjects[i + 1];
-            physicObjects[i]->id = physicObjects[i + 1]->id;
-        }
-        else free(physicObjects[i]);
-    }
-    
-    // Decrease enabled physic objects count
-    physicObjectsCount--;
-}
-
-// Apply directional force to a physic object
-void ApplyForce(PhysicObject pObj, Vector2 force)
-{
-    if (pObj->rigidbody.enabled)
-    {
-        pObj->rigidbody.velocity.x += force.x/pObj->rigidbody.mass;
-        pObj->rigidbody.velocity.y += force.y/pObj->rigidbody.mass;
-    }
-}
-
-// Apply radial force to all physic objects in range
-void ApplyForceAtPosition(Vector2 position, float force, float radius)
-{
-    for (int i = 0; i < physicObjectsCount; i++)
-    {
-        if (physicObjects[i]->rigidbody.enabled)
-        {
-            // Calculate direction and distance between force and physic object pposition
-            Vector2 distance = (Vector2){ physicObjects[i]->transform.position.x - position.x, physicObjects[i]->transform.position.y - position.y };
-
-            if (physicObjects[i]->collider.type == COLLIDER_RECTANGLE)
-            {
-                distance.x += physicObjects[i]->transform.scale.x/2;
-                distance.y += physicObjects[i]->transform.scale.y/2;
-            }
-            
-            float distanceLength = Vector2Length(distance);
-            
-            // Check if physic object is in force range
-            if (distanceLength <= radius)
-            {
-                // Normalize force direction
-                distance.x /= distanceLength;
-                distance.y /= -distanceLength;
-                
-                // Calculate final force
-                Vector2 finalForce = { distance.x*force, distance.y*force };
-                
-                // Apply force to the physic object
-                ApplyForce(physicObjects[i], finalForce);
-            }
-        }
-    }
-}
-
-// Convert Transform data type to Rectangle (position and scale)
-Rectangle TransformToRectangle(Transform transform)
-{
-    return (Rectangle){transform.position.x, transform.position.y, transform.scale.x, transform.scale.y};
-}
-
-//----------------------------------------------------------------------------------
-// Module specific Functions Definition
-//----------------------------------------------------------------------------------
-
-// Returns the dot product of two Vector2
-static float Vector2DotProduct(Vector2 v1, Vector2 v2)
-{
-    float result;
-
-    result = v1.x*v2.x + v1.y*v2.y;
-
-    return result;
-}
-
-static float Vector2Length(Vector2 v)
-{
-    float result;
-    
-    result = sqrt(v.x*v.x + v.y*v.y);
-    
-    return result;
-}

+ 667 - 17
src/physac.h

@@ -1,8 +1,45 @@
 /**********************************************************************************************
 *
-*   [physac] raylib physics module - Basic functions to apply physics to 2D objects
+*   physac 1.0 - 2D Physics library for raylib (https://github.com/raysan5/raylib)
 *
-*   Copyright (c) 2016 Victor Fisac and Ramon Santamaria
+*   // TODO: Description...
+* 
+*   CONFIGURATION:
+*   
+*   #define PHYSAC_IMPLEMENTATION
+*       Generates the implementation of the library into the included file.
+*       If not defined, the library is in header only mode and can be included in other headers 
+*       or source files without problems. But only ONE file should hold the implementation.
+*
+*   #define PHYSAC_STATIC (defined by default)
+*       The generated implementation will stay private inside implementation file and all 
+*       internal symbols and functions will only be visible inside that file.
+*
+*   #define PHYSAC_STANDALONE
+*       Avoid raylib.h header inclusion in this file. Data types defined on raylib are defined
+*       internally in the library and input management and drawing functions must be provided by
+*       the user (check library implementation for further details).
+*
+*   #define PHYSAC_MALLOC()
+*   #define PHYSAC_FREE()
+*       You can define your own malloc/free implementation replacing stdlib.h malloc()/free() functions.
+*       Otherwise it will include stdlib.h and use the C standard library malloc()/free() function.
+*       
+*   LIMITATIONS:
+*
+*       // TODO.
+*
+*   VERSIONS:
+*
+*   1.0 (09-Jun-2016) Module names review and converted to header-only.
+*   0.9 (23-Mar-2016) Complete module redesign, steps-based for better physics resolution.
+*   0.3 (13-Feb-2016) Reviewed to add PhysicObjects pool.
+*   0.2 (03-Jan-2016) Improved physics calculations.
+*   0.1 (30-Dec-2015) Initial release.
+*
+*   LICENSE: zlib/libpng
+*
+*   Copyright (c) 2016 Victor Fisac (main developer) and Ramon Santamaria
 *
 *   This software is provided "as-is", without any express or implied warranty. In no event
 *   will the authors be held liable for any damages arising from the use of this software.
@@ -24,6 +61,21 @@
 #ifndef PHYSAC_H
 #define PHYSAC_H
 
+#if !defined(RAYGUI_STANDALONE)
+    #include "raylib.h"
+#endif
+
+#define PHYSAC_STATIC
+#ifdef PHYSAC_STATIC
+    #define PHYSACDEF static            // Functions just visible to module including this file
+#else
+    #ifdef __cplusplus
+        #define PHYSACDEF extern "C"    // Functions visible from other files (no name mangling of functions in C++)
+    #else
+        #define PHYSACDEF extern        // Functions visible from other files
+    #endif
+#endif
+
 //----------------------------------------------------------------------------------
 // Defines and Macros
 //----------------------------------------------------------------------------------
@@ -33,12 +85,28 @@
 // Types and Structures Definition
 // NOTE: Below types are required for PHYSAC_STANDALONE usage
 //----------------------------------------------------------------------------------
+#if defined(PHYSAC_STANDALONE)
+    #ifndef __cplusplus
+    // Boolean type
+        #ifndef true
+            typedef enum { false, true } bool;
+        #endif
+    #endif
 
-// Vector2 type
-typedef struct Vector2 {
-    float x;
-    float y;
-} Vector2;
+    // Vector2 type
+    typedef struct Vector2 {
+        float x;
+        float y;
+    } Vector2;
+
+    // Rectangle type
+    typedef struct Rectangle {
+        int x;
+        int y;
+        int width;
+        int height;
+    } Rectangle;
+#endif
 
 typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE } ColliderType;
 
@@ -66,13 +134,13 @@ typedef struct Collider {
     int radius;             // Used for COLLIDER_CIRCLE
 } Collider;
 
-typedef struct PhysicObjectData {
+typedef struct PhysicBodyData {
     unsigned int id;
     Transform transform;
     Rigidbody rigidbody;
     Collider collider;
     bool enabled;
-} PhysicObjectData, *PhysicObject;
+} PhysicBodyData, *PhysicBody;
 
 #ifdef __cplusplus
 extern "C" {            // Prevents name mangling of functions
@@ -81,20 +149,602 @@ extern "C" {            // Prevents name mangling of functions
 //----------------------------------------------------------------------------------
 // Module Functions Declaration
 //----------------------------------------------------------------------------------
-void InitPhysics(Vector2 gravity);                                                      // Initializes pointers array (just pointers, fixed size)
-void UpdatePhysics();                                                                   // Update physic objects, calculating physic behaviours and collisions detection
-void ClosePhysics();                                                                    // Unitialize all physic objects and empty the objects pool
+PHYSACDEF void InitPhysics(Vector2 gravity);                                            // Initializes pointers array (just pointers, fixed size)
+PHYSACDEF void UpdatePhysics();                                                         // Update physic objects, calculating physic behaviours and collisions detection
+PHYSACDEF void ClosePhysics();                                                          // Unitialize all physic objects and empty the objects pool
 
-PhysicObject CreatePhysicObject(Vector2 position, float rotation, Vector2 scale);       // Create a new physic object dinamically, initialize it and add to pool
-void DestroyPhysicObject(PhysicObject pObj);                                            // Destroy a specific physic object and take it out of the list
+PHYSACDEF PhysicBody CreatePhysicBody(Vector2 position, float rotation, Vector2 scale); // Create a new physic body dinamically, initialize it and add to pool
+PHYSACDEF void DestroyPhysicBody(PhysicBody pbody);                                     // Destroy a specific physic body and take it out of the list
 
-void ApplyForce(PhysicObject pObj, Vector2 force);                                      // Apply directional force to a physic object
-void ApplyForceAtPosition(Vector2 position, float force, float radius);                 // Apply radial force to all physic objects in range
+PHYSACDEF void ApplyForce(PhysicBody pbody, Vector2 force);                             // Apply directional force to a physic body
+PHYSACDEF void ApplyForceAtPosition(Vector2 position, float force, float radius);       // Apply radial force to all physic objects in range
 
-Rectangle TransformToRectangle(Transform transform);                                    // Convert Transform data type to Rectangle (position and scale)
+PHYSACDEF Rectangle TransformToRectangle(Transform transform);                          // Convert Transform data type to Rectangle (position and scale)
 
 #ifdef __cplusplus
 }
 #endif
 
 #endif // PHYSAC_H
+
+
+/***********************************************************************************
+*
+*   PHYSAC IMPLEMENTATION
+*
+************************************************************************************/
+
+#if defined(PHYSAC_IMPLEMENTATION)
+
+// Check if custom malloc/free functions defined, if not, using standard ones
+#if !defined(PHYSAC_MALLOC)
+    #include <stdlib.h>     // Required for: malloc(), free()
+    
+    #define PHYSAC_MALLOC(size)  malloc(size)
+    #define PHYSAC_FREE(ptr)     free(ptr)
+#endif
+
+#include <math.h>           // Required for: cos(), sin(), abs(), fminf()
+
+//----------------------------------------------------------------------------------
+// Defines and Macros
+//----------------------------------------------------------------------------------
+#define MAX_PHYSIC_BODIES       256             // Maximum available physic bodies slots in bodies pool
+#define PHYSICS_STEPS            64             // Physics update steps per frame for improved collision-detection
+#define PHYSICS_ACCURACY        0.0001f         // Velocity subtract operations round filter (friction)
+#define PHYSICS_ERRORPERCENT    0.001f          // Collision resolve position fix
+
+//----------------------------------------------------------------------------------
+// Types and Structures Definition
+// NOTE: Below types are required for PHYSAC_STANDALONE usage
+//----------------------------------------------------------------------------------
+// ...
+
+//----------------------------------------------------------------------------------
+// Global Variables Definition
+//----------------------------------------------------------------------------------
+static PhysicBody physicBodies[MAX_PHYSIC_BODIES];                  // Physic bodies pool
+static int physicBodiesCount;                                       // Counts current enabled physic bodies
+static Vector2 gravityForce;                                        // Gravity force
+
+//----------------------------------------------------------------------------------
+// Module specific Functions Declaration
+//----------------------------------------------------------------------------------
+static float Vector2DotProduct(Vector2 v1, Vector2 v2);             // Returns the dot product of two Vector2
+static float Vector2Length(Vector2 v);                              // Returns the length of a Vector2
+
+//----------------------------------------------------------------------------------
+// Module Functions Definition
+//----------------------------------------------------------------------------------
+
+// Initializes pointers array (just pointers, fixed size)
+PHYSACDEF void InitPhysics(Vector2 gravity)
+{
+    // Initialize physics variables
+    physicBodiesCount = 0;
+    gravityForce = gravity;
+}
+
+// Update physic objects, calculating physic behaviours and collisions detection
+PHYSACDEF void UpdatePhysics()
+{
+    // Reset all physic objects is grounded state
+    for (int i = 0; i < physicBodiesCount; i++) physicBodies[i]->rigidbody.isGrounded = false;
+    
+    for (int steps = 0; steps < PHYSICS_STEPS; steps++)
+    {
+        for (int i = 0; i < physicBodiesCount; i++)
+        {
+            if (physicBodies[i]->enabled)
+            {
+                // Update physic behaviour
+                if (physicBodies[i]->rigidbody.enabled)
+                {
+                    // Apply friction to acceleration in X axis
+                    if (physicBodies[i]->rigidbody.acceleration.x > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.x -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
+                    else if (physicBodies[i]->rigidbody.acceleration.x < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.x += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
+                    else physicBodies[i]->rigidbody.acceleration.x = 0.0f;
+                    
+                    // Apply friction to acceleration in Y axis
+                    if (physicBodies[i]->rigidbody.acceleration.y > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.y -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
+                    else if (physicBodies[i]->rigidbody.acceleration.y < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.y += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
+                    else physicBodies[i]->rigidbody.acceleration.y = 0.0f;
+                    
+                    // Apply friction to velocity in X axis
+                    if (physicBodies[i]->rigidbody.velocity.x > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.x -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
+                    else if (physicBodies[i]->rigidbody.velocity.x < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.x += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
+                    else physicBodies[i]->rigidbody.velocity.x = 0.0f;
+                    
+                    // Apply friction to velocity in Y axis
+                    if (physicBodies[i]->rigidbody.velocity.y > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.y -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
+                    else if (physicBodies[i]->rigidbody.velocity.y < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.y += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
+                    else physicBodies[i]->rigidbody.velocity.y = 0.0f;
+                    
+                    // Apply gravity to velocity
+                    if (physicBodies[i]->rigidbody.applyGravity)
+                    {
+                        physicBodies[i]->rigidbody.velocity.x += gravityForce.x/PHYSICS_STEPS;
+                        physicBodies[i]->rigidbody.velocity.y += gravityForce.y/PHYSICS_STEPS;
+                    }
+                    
+                    // Apply acceleration to velocity
+                    physicBodies[i]->rigidbody.velocity.x += physicBodies[i]->rigidbody.acceleration.x/PHYSICS_STEPS;
+                    physicBodies[i]->rigidbody.velocity.y += physicBodies[i]->rigidbody.acceleration.y/PHYSICS_STEPS;
+                    
+                    // Apply velocity to position
+                    physicBodies[i]->transform.position.x += physicBodies[i]->rigidbody.velocity.x/PHYSICS_STEPS;
+                    physicBodies[i]->transform.position.y -= physicBodies[i]->rigidbody.velocity.y/PHYSICS_STEPS;
+                }
+                
+                // Update collision detection
+                if (physicBodies[i]->collider.enabled)
+                {
+                    // Update collider bounds
+                    physicBodies[i]->collider.bounds = TransformToRectangle(physicBodies[i]->transform);
+                    
+                    // Check collision with other colliders
+                    for (int k = 0; k < physicBodiesCount; k++)
+                    {
+                        if (physicBodies[k]->collider.enabled && i != k)
+                        {
+                            // Resolve physic collision
+                            // NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
+                            // and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
+                            
+                            // 1. Calculate collision normal
+                            // -------------------------------------------------------------------------------------------------------------------------------------
+                            
+                            // Define collision contact normal, direction and penetration depth
+                            Vector2 contactNormal = { 0.0f, 0.0f };
+                            Vector2 direction = { 0.0f, 0.0f };
+                            float penetrationDepth = 0.0f;
+                            
+                            switch (physicBodies[i]->collider.type)
+                            {
+                                case COLLIDER_RECTANGLE:
+                                {
+                                    switch (physicBodies[k]->collider.type)
+                                    {
+                                        case COLLIDER_RECTANGLE:
+                                        {
+                                            // Check if colliders are overlapped
+                                            if (CheckCollisionRecs(physicBodies[i]->collider.bounds, physicBodies[k]->collider.bounds))
+                                            {
+                                                // Calculate direction vector from i to k
+                                                direction.x = (physicBodies[k]->transform.position.x + physicBodies[k]->transform.scale.x/2) - (physicBodies[i]->transform.position.x + physicBodies[i]->transform.scale.x/2);
+                                                direction.y = (physicBodies[k]->transform.position.y + physicBodies[k]->transform.scale.y/2) - (physicBodies[i]->transform.position.y + physicBodies[i]->transform.scale.y/2);
+                                                
+                                                // Define overlapping and penetration attributes
+                                                Vector2 overlap;
+
+                                                // Calculate overlap on X axis
+                                                overlap.x = (physicBodies[i]->transform.scale.x + physicBodies[k]->transform.scale.x)/2 - abs(direction.x);
+                                                
+                                                // SAT test on X axis
+                                                if (overlap.x > 0.0f)
+                                                {
+                                                    // Calculate overlap on Y axis
+                                                    overlap.y = (physicBodies[i]->transform.scale.y + physicBodies[k]->transform.scale.y)/2 - abs(direction.y);
+                                                    
+                                                    // SAT test on Y axis
+                                                    if (overlap.y > 0.0f)
+                                                    {
+                                                        // Find out which axis is axis of least penetration
+                                                        if (overlap.y > overlap.x)
+                                                        {
+                                                            // Point towards k knowing that direction points from i to k
+                                                            if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
+                                                            else contactNormal = (Vector2){ 1.0f, 0.0f };
+                                                            
+                                                            // Update penetration depth for position correction
+                                                            penetrationDepth = overlap.x;
+                                                        }
+                                                        else
+                                                        {
+                                                            // Point towards k knowing that direction points from i to k
+                                                            if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
+                                                            else contactNormal = (Vector2){ 0.0f, -1.0f };
+                                                            
+                                                            // Update penetration depth for position correction
+                                                            penetrationDepth = overlap.y;
+                                                        }
+                                                    }
+                                                }
+                                            }
+                                        } break;
+                                        case COLLIDER_CIRCLE:
+                                        {
+                                            if (CheckCollisionCircleRec(physicBodies[k]->transform.position, physicBodies[k]->collider.radius, physicBodies[i]->collider.bounds))
+                                            {
+                                                // Calculate direction vector between circles
+                                                direction.x = physicBodies[k]->transform.position.x - physicBodies[i]->transform.position.x + physicBodies[i]->transform.scale.x/2;
+                                                direction.y = physicBodies[k]->transform.position.y - physicBodies[i]->transform.position.y + physicBodies[i]->transform.scale.y/2;
+                                                
+                                                // Calculate closest point on rectangle to circle
+                                                Vector2 closestPoint = { 0.0f, 0.0f };
+                                                if (direction.x > 0.0f) closestPoint.x = physicBodies[i]->collider.bounds.x + physicBodies[i]->collider.bounds.width;
+                                                else closestPoint.x = physicBodies[i]->collider.bounds.x;
+                                                
+                                                if (direction.y > 0.0f) closestPoint.y = physicBodies[i]->collider.bounds.y + physicBodies[i]->collider.bounds.height;
+                                                else closestPoint.y = physicBodies[i]->collider.bounds.y;
+                                                
+                                                // Check if the closest point is inside the circle
+                                                if (CheckCollisionPointCircle(closestPoint, physicBodies[k]->transform.position, physicBodies[k]->collider.radius))
+                                                {
+                                                    // Recalculate direction based on closest point position
+                                                    direction.x = physicBodies[k]->transform.position.x - closestPoint.x;
+                                                    direction.y = physicBodies[k]->transform.position.y - closestPoint.y;
+                                                    float distance = Vector2Length(direction);
+                                                    
+                                                    // Calculate final contact normal
+                                                    contactNormal.x = direction.x/distance;
+                                                    contactNormal.y = -direction.y/distance;
+                                                    
+                                                    // Calculate penetration depth
+                                                    penetrationDepth = physicBodies[k]->collider.radius - distance;
+                                                }
+                                                else
+                                                {
+                                                    if (abs(direction.y) < abs(direction.x))
+                                                    {
+                                                        // Calculate final contact normal
+                                                        if (direction.y > 0.0f)
+                                                        {
+                                                            contactNormal = (Vector2){ 0.0f, -1.0f };
+                                                            penetrationDepth = fabs(physicBodies[i]->collider.bounds.y - physicBodies[k]->transform.position.y - physicBodies[k]->collider.radius);
+                                                        }
+                                                        else 
+                                                        {
+                                                            contactNormal = (Vector2){ 0.0f, 1.0f };
+                                                            penetrationDepth = fabs(physicBodies[i]->collider.bounds.y - physicBodies[k]->transform.position.y + physicBodies[k]->collider.radius);
+                                                        }
+                                                    }
+                                                    else
+                                                    {
+                                                        // Calculate final contact normal
+                                                        if (direction.x > 0.0f)
+                                                        {
+                                                            contactNormal = (Vector2){ 1.0f, 0.0f };
+                                                            penetrationDepth = fabs(physicBodies[k]->transform.position.x + physicBodies[k]->collider.radius - physicBodies[i]->collider.bounds.x);
+                                                        }
+                                                        else 
+                                                        {
+                                                            contactNormal = (Vector2){ -1.0f, 0.0f };
+                                                            penetrationDepth = fabs(physicBodies[i]->collider.bounds.x + physicBodies[i]->collider.bounds.width - physicBodies[k]->transform.position.x - physicBodies[k]->collider.radius);
+                                                        }
+                                                    }
+                                                }
+                                            }
+                                        } break;
+                                    }
+                                } break;
+                                case COLLIDER_CIRCLE:
+                                {
+                                    switch (physicBodies[k]->collider.type)
+                                    {
+                                        case COLLIDER_RECTANGLE:
+                                        {
+                                            if (CheckCollisionCircleRec(physicBodies[i]->transform.position, physicBodies[i]->collider.radius, physicBodies[k]->collider.bounds))
+                                            {
+                                                // Calculate direction vector between circles
+                                                direction.x = physicBodies[k]->transform.position.x + physicBodies[i]->transform.scale.x/2 - physicBodies[i]->transform.position.x;
+                                                direction.y = physicBodies[k]->transform.position.y + physicBodies[i]->transform.scale.y/2 - physicBodies[i]->transform.position.y;
+                                                
+                                                // Calculate closest point on rectangle to circle
+                                                Vector2 closestPoint = { 0.0f, 0.0f };
+                                                if (direction.x > 0.0f) closestPoint.x = physicBodies[k]->collider.bounds.x + physicBodies[k]->collider.bounds.width;
+                                                else closestPoint.x = physicBodies[k]->collider.bounds.x;
+                                                
+                                                if (direction.y > 0.0f) closestPoint.y = physicBodies[k]->collider.bounds.y + physicBodies[k]->collider.bounds.height;
+                                                else closestPoint.y = physicBodies[k]->collider.bounds.y;
+                                                
+                                                // Check if the closest point is inside the circle
+                                                if (CheckCollisionPointCircle(closestPoint, physicBodies[i]->transform.position, physicBodies[i]->collider.radius))
+                                                {
+                                                    // Recalculate direction based on closest point position
+                                                    direction.x = physicBodies[i]->transform.position.x - closestPoint.x;
+                                                    direction.y = physicBodies[i]->transform.position.y - closestPoint.y;
+                                                    float distance = Vector2Length(direction);
+                                                    
+                                                    // Calculate final contact normal
+                                                    contactNormal.x = direction.x/distance;
+                                                    contactNormal.y = -direction.y/distance;
+                                                    
+                                                    // Calculate penetration depth
+                                                    penetrationDepth = physicBodies[k]->collider.radius - distance;
+                                                }
+                                                else
+                                                {
+                                                    if (abs(direction.y) < abs(direction.x))
+                                                    {
+                                                        // Calculate final contact normal
+                                                        if (direction.y > 0.0f)
+                                                        {
+                                                            contactNormal = (Vector2){ 0.0f, -1.0f };
+                                                            penetrationDepth = fabs(physicBodies[k]->collider.bounds.y - physicBodies[i]->transform.position.y - physicBodies[i]->collider.radius);
+                                                        }
+                                                        else 
+                                                        {
+                                                            contactNormal = (Vector2){ 0.0f, 1.0f };
+                                                            penetrationDepth = fabs(physicBodies[k]->collider.bounds.y - physicBodies[i]->transform.position.y + physicBodies[i]->collider.radius);
+                                                        }
+                                                    }
+                                                    else
+                                                    {
+                                                        // Calculate final contact normal and penetration depth
+                                                        if (direction.x > 0.0f)
+                                                        {
+                                                            contactNormal = (Vector2){ 1.0f, 0.0f };
+                                                            penetrationDepth = fabs(physicBodies[i]->transform.position.x + physicBodies[i]->collider.radius - physicBodies[k]->collider.bounds.x);
+                                                        }
+                                                        else 
+                                                        {
+                                                            contactNormal = (Vector2){ -1.0f, 0.0f };
+                                                            penetrationDepth = fabs(physicBodies[k]->collider.bounds.x + physicBodies[k]->collider.bounds.width - physicBodies[i]->transform.position.x - physicBodies[i]->collider.radius);
+                                                        }
+                                                    }
+                                                }
+                                            }
+                                        } break;
+                                        case COLLIDER_CIRCLE:
+                                        {
+                                            // Check if colliders are overlapped
+                                            if (CheckCollisionCircles(physicBodies[i]->transform.position, physicBodies[i]->collider.radius, physicBodies[k]->transform.position, physicBodies[k]->collider.radius))
+                                            {
+                                                // Calculate direction vector between circles
+                                                direction.x = physicBodies[k]->transform.position.x - physicBodies[i]->transform.position.x;
+                                                direction.y = physicBodies[k]->transform.position.y - physicBodies[i]->transform.position.y;
+                                                
+                                                // Calculate distance between circles
+                                                float distance = Vector2Length(direction);
+                                                
+                                                // Check if circles are not completely overlapped
+                                                if (distance != 0.0f)
+                                                {                                                    
+                                                    // Calculate contact normal direction (Y axis needs to be flipped)
+                                                    contactNormal.x = direction.x/distance;
+                                                    contactNormal.y = -direction.y/distance;
+                                                }
+                                                else contactNormal = (Vector2){ 1.0f, 0.0f };   // Choose random (but consistent) values
+                                            }
+                                        } break;
+                                        default: break;
+                                    }
+                                } break;
+                                default: break;
+                            }
+                            
+                            // Update rigidbody grounded state
+                            if (physicBodies[i]->rigidbody.enabled)
+                            {
+                                if (contactNormal.y < 0.0f) physicBodies[i]->rigidbody.isGrounded = true;
+                            }
+                            
+                            // 2. Calculate collision impulse
+                            // -------------------------------------------------------------------------------------------------------------------------------------
+                            
+                            // Calculate relative velocity
+                            Vector2 relVelocity = { 0.0f, 0.0f };
+                            relVelocity.x = physicBodies[k]->rigidbody.velocity.x - physicBodies[i]->rigidbody.velocity.x;
+                            relVelocity.y = physicBodies[k]->rigidbody.velocity.y - physicBodies[i]->rigidbody.velocity.y;
+
+                            // Calculate relative velocity in terms of the normal direction
+                            float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
+                        
+                            // Dot not resolve if velocities are separating
+                            if (velAlongNormal <= 0.0f)
+                            {
+                                // Calculate minimum bounciness value from both objects
+                                float e = fminf(physicBodies[i]->rigidbody.bounciness, physicBodies[k]->rigidbody.bounciness);
+                                
+                                // Calculate impulse scalar value
+                                float j = -(1.0f + e)*velAlongNormal;
+                                j /= 1.0f/physicBodies[i]->rigidbody.mass + 1.0f/physicBodies[k]->rigidbody.mass;
+                                
+                                // Calculate final impulse vector
+                                Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
+                                
+                                // Calculate collision mass ration
+                                float massSum = physicBodies[i]->rigidbody.mass + physicBodies[k]->rigidbody.mass;
+                                float ratio = 0.0f;
+                                
+                                // Apply impulse to current rigidbodies velocities if they are enabled
+                                if (physicBodies[i]->rigidbody.enabled) 
+                                {
+                                    // Calculate inverted mass ration
+                                    ratio = physicBodies[i]->rigidbody.mass/massSum;
+                                    
+                                    // Apply impulse direction to velocity
+                                    physicBodies[i]->rigidbody.velocity.x -= impulse.x*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
+                                    physicBodies[i]->rigidbody.velocity.y -= impulse.y*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
+                                }
+                                
+                                if (physicBodies[k]->rigidbody.enabled) 
+                                {
+                                    // Calculate inverted mass ration
+                                    ratio = physicBodies[k]->rigidbody.mass/massSum;
+                                    
+                                    // Apply impulse direction to velocity
+                                    physicBodies[k]->rigidbody.velocity.x += impulse.x*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
+                                    physicBodies[k]->rigidbody.velocity.y += impulse.y*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
+                                }
+                                
+                                // 3. Correct colliders overlaping (transform position)
+                                // ---------------------------------------------------------------------------------------------------------------------------------
+                                
+                                // Calculate transform position penetration correction
+                                Vector2 posCorrection;
+                                posCorrection.x = penetrationDepth/((1.0f/physicBodies[i]->rigidbody.mass) + (1.0f/physicBodies[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
+                                posCorrection.y = penetrationDepth/((1.0f/physicBodies[i]->rigidbody.mass) + (1.0f/physicBodies[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
+                                
+                                // Fix transform positions
+                                if (physicBodies[i]->rigidbody.enabled)
+                                {                                        
+                                    // Fix physic objects transform position
+                                    physicBodies[i]->transform.position.x -= 1.0f/physicBodies[i]->rigidbody.mass*posCorrection.x;
+                                    physicBodies[i]->transform.position.y += 1.0f/physicBodies[i]->rigidbody.mass*posCorrection.y;
+                                    
+                                    // Update collider bounds
+                                    physicBodies[i]->collider.bounds = TransformToRectangle(physicBodies[i]->transform);
+                                    
+                                    if (physicBodies[k]->rigidbody.enabled)
+                                    {
+                                        // Fix physic objects transform position
+                                        physicBodies[k]->transform.position.x += 1.0f/physicBodies[k]->rigidbody.mass*posCorrection.x;
+                                        physicBodies[k]->transform.position.y -= 1.0f/physicBodies[k]->rigidbody.mass*posCorrection.y;
+                                        
+                                        // Update collider bounds
+                                        physicBodies[k]->collider.bounds = TransformToRectangle(physicBodies[k]->transform);
+                                    }
+                                }
+                            }
+                        }
+                    }
+                }
+            }
+        }
+    }
+}
+
+// Unitialize all physic objects and empty the objects pool
+PHYSACDEF void ClosePhysics()
+{
+    // Free all dynamic memory allocations
+    for (int i = 0; i < physicBodiesCount; i++) PHYSAC_FREE(physicBodies[i]);
+    
+    // Reset enabled physic objects count
+    physicBodiesCount = 0;
+}
+
+// Create a new physic body dinamically, initialize it and add to pool
+PHYSACDEF PhysicBody CreatePhysicBody(Vector2 position, float rotation, Vector2 scale)
+{
+    // Allocate dynamic memory
+    PhysicBody obj = (PhysicBody)PHYSAC_MALLOC(sizeof(PhysicBodyData));
+    
+    // Initialize physic body values with generic values
+    obj->id = physicBodiesCount;
+    obj->enabled = true;
+    
+    obj->transform = (Transform){ (Vector2){ position.x - scale.x/2, position.y - scale.y/2 }, rotation, scale };
+    
+    obj->rigidbody.enabled = false;
+    obj->rigidbody.mass = 1.0f;
+    obj->rigidbody.acceleration = (Vector2){ 0.0f, 0.0f };
+    obj->rigidbody.velocity = (Vector2){ 0.0f, 0.0f };
+    obj->rigidbody.applyGravity = false;
+    obj->rigidbody.isGrounded = false;
+    obj->rigidbody.friction = 0.0f;
+    obj->rigidbody.bounciness = 0.0f;
+    
+    obj->collider.enabled = true;
+    obj->collider.type = COLLIDER_RECTANGLE;
+    obj->collider.bounds = TransformToRectangle(obj->transform);
+    obj->collider.radius = 0.0f;
+    
+    // Add new physic body to the pointers array
+    physicBodies[physicBodiesCount] = obj;
+    
+    // Increase enabled physic bodies count
+    physicBodiesCount++;
+    
+    return obj;
+}
+
+// Destroy a specific physic body and take it out of the list
+PHYSACDEF void DestroyPhysicBody(PhysicBody pbody)
+{
+    // Free dynamic memory allocation
+    PHYSAC_FREE(physicBodies[pbody->id]);
+    
+    // Remove *obj from the pointers array
+    for (int i = pbody->id; i < physicBodiesCount; i++)
+    {
+        // Resort all the following pointers of the array
+        if ((i + 1) < physicBodiesCount)
+        {
+            physicBodies[i] = physicBodies[i + 1];
+            physicBodies[i]->id = physicBodies[i + 1]->id;
+        }
+        else PHYSAC_FREE(physicBodies[i]);
+    }
+    
+    // Decrease enabled physic bodies count
+    physicBodiesCount--;
+}
+
+// Apply directional force to a physic body
+PHYSACDEF void ApplyForce(PhysicBody pbody, Vector2 force)
+{
+    if (pbody->rigidbody.enabled)
+    {
+        pbody->rigidbody.velocity.x += force.x/pbody->rigidbody.mass;
+        pbody->rigidbody.velocity.y += force.y/pbody->rigidbody.mass;
+    }
+}
+
+// Apply radial force to all physic objects in range
+PHYSACDEF void ApplyForceAtPosition(Vector2 position, float force, float radius)
+{
+    for (int i = 0; i < physicBodiesCount; i++)
+    {
+        if (physicBodies[i]->rigidbody.enabled)
+        {
+            // Calculate direction and distance between force and physic body position
+            Vector2 distance = (Vector2){ physicBodies[i]->transform.position.x - position.x, physicBodies[i]->transform.position.y - position.y };
+
+            if (physicBodies[i]->collider.type == COLLIDER_RECTANGLE)
+            {
+                distance.x += physicBodies[i]->transform.scale.x/2;
+                distance.y += physicBodies[i]->transform.scale.y/2;
+            }
+            
+            float distanceLength = Vector2Length(distance);
+            
+            // Check if physic body is in force range
+            if (distanceLength <= radius)
+            {
+                // Normalize force direction
+                distance.x /= distanceLength;
+                distance.y /= -distanceLength;
+                
+                // Calculate final force
+                Vector2 finalForce = { distance.x*force, distance.y*force };
+                
+                // Apply force to the physic body
+                ApplyForce(physicBodies[i], finalForce);
+            }
+        }
+    }
+}
+
+// Convert Transform data type to Rectangle (position and scale)
+PHYSACDEF Rectangle TransformToRectangle(Transform transform)
+{
+    return (Rectangle){transform.position.x, transform.position.y, transform.scale.x, transform.scale.y};
+}
+
+//----------------------------------------------------------------------------------
+// Module specific Functions Definition
+//----------------------------------------------------------------------------------
+
+// Returns the dot product of two Vector2
+static float Vector2DotProduct(Vector2 v1, Vector2 v2)
+{
+    float result;
+
+    result = v1.x*v2.x + v1.y*v2.y;
+
+    return result;
+}
+
+static float Vector2Length(Vector2 v)
+{
+    float result;
+    
+    result = sqrt(v.x*v.x + v.y*v.y);
+    
+    return result;
+}
+
+#endif  // PHYSAC_IMPLEMENTATION

+ 55 - 36
src/raygui.h

@@ -1,8 +1,9 @@
 /*******************************************************************************************
 *
-*   raygui v1.2 - IMGUI (Immedite Mode GUI) library for raylib (https://github.com/raysan5/raylib)
+*   raygui 1.0 - IMGUI (Immedite Mode GUI) library for raylib (https://github.com/raysan5/raylib)
 *
-*   raygui is a library for creating simple IMGUI interfaces. It provides a set of basic components:
+*   raygui is a library for creating simple IMGUI interfaces using raylib. 
+*   It provides a set of basic components:
 *
 *       - Label
 *       - Button
@@ -16,31 +17,51 @@
 *       - Spinner
 *       - TextBox
 *
-*   It also provides a set of functions for styling the components based on a set of properties.
-*
-*   USAGE:
-*   
-*   Include this file in any C/C++ file that requires it; in ONLY one of them, write:
-*       #define RAYGUI_IMPLEMENTATION
-*   before the #include of this file. This expands out the actual implementation into that file.
-*   
+*   It also provides a set of functions for styling the components based on its properties (size, color).
+* 
 *   CONFIGURATION:
 *   
-*   You can #define RAYGUI_STANDALONE to avoid raylib.h inclusion (not dependant on raylib functions and types).
-*       NOTE: Some external funtions are required for drawing and input management, check implementation code.
+*   #define RAYGUI_IMPLEMENTATION
+*       Generates the implementation of the library into the included file.
+*       If not defined, the library is in header only mode and can be included in other headers 
+*       or source files without problems. But only ONE file should hold the implementation.
+*
+*   #define RAYGUI_STATIC (defined by default)
+*       The generated implementation will stay private inside implementation file and all 
+*       internal symbols and functions will only be visible inside that file.
+*
+*   #define RAYGUI_STANDALONE
+*       Avoid raylib.h header inclusion in this file. Data types defined on raylib are defined
+*       internally in the library and input management and drawing functions must be provided by
+*       the user (check library implementation for further details).
 *
-*   You can #define RAY_MALLOC() to replace malloc() and free() function by your own.
+*   #define RAYGUI_MALLOC()
+*   #define RAYGUI_FREE()
+*       You can define your own malloc/free implementation replacing stdlib.h malloc()/free() functions.
+*       Otherwise it will include stdlib.h and use the C standard library malloc()/free() function.
+*       
+*   LIMITATIONS: 
 *
-*   You can #define RAYGUI_STATIC to make the implementation private to the file that generates the implementation,
+*       // TODO.
 *
-*   VERSIONS AND CREDITS:
+*   VERSIONS:
 *
-*   1.2 (07-Jun-2016) Converted to header-only by Ramon Santamaria
-*   1.1 (07-Mar-2016) Reviewed and expanded by Albert Martos, Ian Eito, Sergio Martinez and Ramon Santamaria.
-*   1.0 (27-Aug-2015) Initial release. Implemented by Kevin Gato, Daniel Nicolás and Ramon Santamaria.
+*   1.0 (07-Jun-2016) Converted to header-only by Ramon Santamaria.
+*   0.9 (07-Mar-2016) Reviewed and tested by Albert Martos, Ian Eito, Sergio Martinez and Ramon Santamaria.
+*   0.8 (27-Aug-2015) Initial release. Implemented by Kevin Gato, Daniel Nicolás and Ramon Santamaria.
+*
+*   CONTRIBUTORS:
+*       Ramon Santamaria: Functions design and naming conventions.
+*       Kevin Gato: Initial implementation of basic components.
+*       Daniel Nicolas: Initial implementation of basic components.
+*       Albert Martos: Review and testing of library.
+*       Ian Eito: Review and testing of the library.
+*       Sergio Martinez: Review and testing of the library.
 *
 *   LICENSE: zlib/libpng
 *
+*   Copyright (c) 2015-2016 emegeme (@emegemegames)
+*
 *   This software is provided "as-is", without any express or implied warranty. In no event
 *   will the authors be held liable for any damages arising from the use of this software.
 *
@@ -355,29 +376,27 @@ RAYGUIDEF int GetStyleProperty(int guiProperty);                          // Get
 #endif // RAYGUI_H
 
 
-/*********************************************************************************************************
+/***********************************************************************************
 *
-*       RAYGUI IMPLEMENTATION
+*   RAYGUI IMPLEMENTATION
 *
-**********************************************************************************************************/
+************************************************************************************/
 
 #if defined(RAYGUI_IMPLEMENTATION)
 
-#include <stdio.h>      // Required for: FILE, fopen(), fclose(), fprintf(), feof(), fscanf()
-                        // NOTE: Those functions are only used in SaveGuiStyle() and LoadGuiStyle()
+#include <stdio.h>          // Required for: FILE, fopen(), fclose(), fprintf(), feof(), fscanf()
+                            // NOTE: Those functions are only used in SaveGuiStyle() and LoadGuiStyle()
                         
-#include <stdlib.h>     // Required for: malloc(), free() [Used only on LoadGuiStyle()]
-#include <string.h>     // Required for: strcmp() [Used only on LoadGuiStyle()]
-#include <stdarg.h>     // Required for: va_list, va_start(), vfprintf(), va_end()
-
-/*
-// NOTE: Example on how to define custom functions
-#if !defined(RAY_MALLOC)
-    #include <stdlib.h>
-    #define RAY_MALLOC(size,c) malloc(size)
-    #define RAY_FREE(ptr,c) free(ptr)
+// Check if custom malloc/free functions defined, if not, using standard ones
+#if !defined(RAYGUI_MALLOC)
+    #include <stdlib.h>     // Required for: malloc(), free() [Used only on LoadGuiStyle()]
+    
+    #define RAYGUI_MALLOC(size)  malloc(size)
+    #define RAYGUI_FREE(ptr)     free(ptr)
 #endif
-*/
+
+#include <string.h>         // Required for: strcmp() [Used only on LoadGuiStyle()]
+#include <stdarg.h>         // Required for: va_list, va_start(), vfprintf(), va_end()
 
 //----------------------------------------------------------------------------------
 // Defines and Macros
@@ -1272,7 +1291,7 @@ RAYGUIDEF void LoadGuiStyle(const char *fileName)
         int value;
     } StyleProperty;
     
-    StyleProperty *styleProp = (StyleProperty *)malloc(MAX_STYLE_PROPERTIES*sizeof(StyleProperty));; 
+    StyleProperty *styleProp = (StyleProperty *)RAYGUI_MALLOC(MAX_STYLE_PROPERTIES*sizeof(StyleProperty));; 
     int counter = 0;
     
     FILE *styleFile = fopen(fileName, "rt");
@@ -1297,7 +1316,7 @@ RAYGUIDEF void LoadGuiStyle(const char *fileName)
         }
     }
     
-    free(styleProp);
+    RAYGUI_FREE(styleProp);
 }
 
 // Set one style property value

+ 0 - 49
src/raylib.h

@@ -527,40 +527,6 @@ typedef struct GestureEvent {
 // Camera system modes
 typedef enum { CAMERA_CUSTOM = 0, CAMERA_FREE, CAMERA_ORBITAL, CAMERA_FIRST_PERSON, CAMERA_THIRD_PERSON } CameraMode;
 
-typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE } ColliderType;
-
-typedef struct Transform {
-    Vector2 position;
-    float rotation;         // Radians (not used)
-    Vector2 scale;          // Just for rectangle physic objects, for circle physic objects use collider radius and keep scale as { 0, 0 }
-} Transform;
-
-typedef struct Rigidbody {
-    bool enabled;           // Acts as kinematic state (collisions are calculated anyway)
-    float mass;
-    Vector2 acceleration;
-    Vector2 velocity;
-    bool applyGravity;
-    bool isGrounded;
-    float friction;         // Normalized value
-    float bounciness;
-} Rigidbody;
-
-typedef struct Collider {
-    bool enabled;
-    ColliderType type;
-    Rectangle bounds;       // Used for COLLIDER_RECTANGLE
-    int radius;             // Used for COLLIDER_CIRCLE
-} Collider;
-
-typedef struct PhysicObjectData {
-    unsigned int id;
-    Transform transform;
-    Rigidbody rigidbody;
-    Collider collider;
-    bool enabled;
-} PhysicObjectData, *PhysicObject;
-
 #ifdef __cplusplus
 extern "C" {            // Prevents name mangling of functions
 #endif
@@ -886,21 +852,6 @@ void EndBlendMode(void);                                            // End blend
 Light CreateLight(int type, Vector3 position, Color diffuse);       // Create a new light, initialize it and add to pool
 void DestroyLight(Light light);                                     // Destroy a light and take it out of the list
 
-//----------------------------------------------------------------------------------
-// Physics System Functions (Module: physac)
-//----------------------------------------------------------------------------------
-void InitPhysics(Vector2 gravity);                                                      // Initializes pointers array (just pointers, fixed size)
-void UpdatePhysics();                                                                   // Update physic objects, calculating physic behaviours and collisions detection
-void ClosePhysics();                                                                    // Unitialize all physic objects and empty the objects pool
-
-PhysicObject CreatePhysicObject(Vector2 position, float rotation, Vector2 scale);       // Create a new physic object dinamically, initialize it and add to pool
-void DestroyPhysicObject(PhysicObject pObj);                                            // Destroy a specific physic object and take it out of the list
-
-void ApplyForce(PhysicObject pObj, Vector2 force);                                      // Apply directional force to a physic object
-void ApplyForceAtPosition(Vector2 position, float force, float radius);                 // Apply radial force to all physic objects in range
-
-Rectangle TransformToRectangle(Transform transform);                                    // Convert Transform data type to Rectangle (position and scale)
-
 //------------------------------------------------------------------------------------
 // Audio Loading and Playing Functions (Module: audio)
 //------------------------------------------------------------------------------------