فهرست منبع

Remove OculusSDK library

Just waiting for a better future alternative (multiplatform)... OpenXR ?
Ray 8 سال پیش
والد
کامیت
a63ad0fec4

+ 0 - 196
src/external/OculusSDK/LibOVR/Include/Extras/OVR_CAPI_Util.h

@@ -1,196 +0,0 @@
-/********************************************************************************//**
-\file      OVR_CAPI_Util.h
-\brief     This header provides LibOVR utility function declarations
-\copyright Copyright 2015-2016 Oculus VR, LLC All Rights reserved.
-*************************************************************************************/
-
-#ifndef OVR_CAPI_Util_h
-#define OVR_CAPI_Util_h
-
-
-#include "../OVR_CAPI.h"
-
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-
-/// Enumerates modifications to the projection matrix based on the application's needs.
-///
-/// \see ovrMatrix4f_Projection
-///
-typedef enum ovrProjectionModifier_
-{
-    /// Use for generating a default projection matrix that is:
-    /// * Right-handed.
-    /// * Near depth values stored in the depth buffer are smaller than far depth values.
-    /// * Both near and far are explicitly defined.
-    /// * With a clipping range that is (0 to w).
-    ovrProjection_None = 0x00,
-
-    /// Enable if using left-handed transformations in your application.
-    ovrProjection_LeftHanded = 0x01,
-
-    /// After the projection transform is applied, far values stored in the depth buffer will be less than closer depth values.
-    /// NOTE: Enable only if the application is using a floating-point depth buffer for proper precision.
-    ovrProjection_FarLessThanNear = 0x02,
-
-    /// When this flag is used, the zfar value pushed into ovrMatrix4f_Projection() will be ignored
-    /// NOTE: Enable only if ovrProjection_FarLessThanNear is also enabled where the far clipping plane will be pushed to infinity.
-    ovrProjection_FarClipAtInfinity = 0x04,
-
-    /// Enable if the application is rendering with OpenGL and expects a projection matrix with a clipping range of (-w to w).
-    /// Ignore this flag if your application already handles the conversion from D3D range (0 to w) to OpenGL.
-    ovrProjection_ClipRangeOpenGL = 0x08,
-} ovrProjectionModifier;
-
-
-/// Return values for ovr_Detect.
-///
-/// \see ovr_Detect
-///
-typedef struct OVR_ALIGNAS(8) ovrDetectResult_
-{
-    /// Is ovrFalse when the Oculus Service is not running.
-    ///   This means that the Oculus Service is either uninstalled or stopped.
-    ///   IsOculusHMDConnected will be ovrFalse in this case.
-    /// Is ovrTrue when the Oculus Service is running.
-    ///   This means that the Oculus Service is installed and running.
-    ///   IsOculusHMDConnected will reflect the state of the HMD.
-    ovrBool IsOculusServiceRunning;
-
-    /// Is ovrFalse when an Oculus HMD is not detected.
-    ///   If the Oculus Service is not running, this will be ovrFalse.
-    /// Is ovrTrue when an Oculus HMD is detected.
-    ///   This implies that the Oculus Service is also installed and running.
-    ovrBool IsOculusHMDConnected;
-
-    OVR_UNUSED_STRUCT_PAD(pad0, 6) ///< \internal struct padding
-
-} ovrDetectResult;
-
-OVR_STATIC_ASSERT(sizeof(ovrDetectResult) == 8, "ovrDetectResult size mismatch");
-
-
-/// Detects Oculus Runtime and Device Status
-///
-/// Checks for Oculus Runtime and Oculus HMD device status without loading the LibOVRRT
-/// shared library.  This may be called before ovr_Initialize() to help decide whether or
-/// not to initialize LibOVR.
-///
-/// \param[in] timeoutMilliseconds Specifies a timeout to wait for HMD to be attached or 0 to poll.
-///
-/// \return Returns an ovrDetectResult object indicating the result of detection.
-///
-/// \see ovrDetectResult
-///
-OVR_PUBLIC_FUNCTION(ovrDetectResult) ovr_Detect(int timeoutMilliseconds);
-
-// On the Windows platform,
-#ifdef _WIN32
-    /// This is the Windows Named Event name that is used to check for HMD connected state.
-    #define OVR_HMD_CONNECTED_EVENT_NAME L"OculusHMDConnected"
-#endif // _WIN32
-
-
-/// Used to generate projection from ovrEyeDesc::Fov.
-///
-/// \param[in] fov Specifies the ovrFovPort to use.
-/// \param[in] znear Distance to near Z limit.
-/// \param[in] zfar Distance to far Z limit.
-/// \param[in] projectionModFlags A combination of the ovrProjectionModifier flags.
-///
-/// \return Returns the calculated projection matrix.
-/// 
-/// \see ovrProjectionModifier
-///
-OVR_PUBLIC_FUNCTION(ovrMatrix4f) ovrMatrix4f_Projection(ovrFovPort fov, float znear, float zfar, unsigned int projectionModFlags);
-
-
-/// Extracts the required data from the result of ovrMatrix4f_Projection.
-///
-/// \param[in] projection Specifies the project matrix from which to extract ovrTimewarpProjectionDesc.
-/// \param[in] projectionModFlags A combination of the ovrProjectionModifier flags.
-/// \return Returns the extracted ovrTimewarpProjectionDesc.
-/// \see ovrTimewarpProjectionDesc
-///
-OVR_PUBLIC_FUNCTION(ovrTimewarpProjectionDesc) ovrTimewarpProjectionDesc_FromProjection(ovrMatrix4f projection, unsigned int projectionModFlags);
-
-
-/// Generates an orthographic sub-projection.
-///
-/// Used for 2D rendering, Y is down.
-///
-/// \param[in] projection The perspective matrix that the orthographic matrix is derived from.
-/// \param[in] orthoScale Equal to 1.0f / pixelsPerTanAngleAtCenter.
-/// \param[in] orthoDistance Equal to the distance from the camera in meters, such as 0.8m.
-/// \param[in] HmdToEyeOffsetX Specifies the offset of the eye from the center.
-///
-/// \return Returns the calculated projection matrix.
-///
-OVR_PUBLIC_FUNCTION(ovrMatrix4f) ovrMatrix4f_OrthoSubProjection(ovrMatrix4f projection, ovrVector2f orthoScale,
-                                                                float orthoDistance, float HmdToEyeOffsetX);
-
-
-
-/// Computes offset eye poses based on headPose returned by ovrTrackingState.
-///
-/// \param[in] headPose Indicates the HMD position and orientation to use for the calculation.
-/// \param[in] hmdToEyeOffset Can be ovrEyeRenderDesc.HmdToEyeOffset returned from
-///            ovr_GetRenderDesc. For monoscopic rendering, use a vector that is the average 
-///            of the two vectors for both eyes.
-/// \param[out] outEyePoses If outEyePoses are used for rendering, they should be passed to 
-///             ovr_SubmitFrame in ovrLayerEyeFov::RenderPose or ovrLayerEyeFovDepth::RenderPose.
-///
-OVR_PUBLIC_FUNCTION(void) ovr_CalcEyePoses(ovrPosef headPose,
-                                           const ovrVector3f hmdToEyeOffset[2],
-                                           ovrPosef outEyePoses[2]);
-
-
-/// Returns the predicted head pose in outHmdTrackingState and offset eye poses in outEyePoses.
-///
-/// This is a thread-safe function where caller should increment frameIndex with every frame
-/// and pass that index where applicable to functions called on the rendering thread.
-/// Assuming outEyePoses are used for rendering, it should be passed as a part of ovrLayerEyeFov.
-/// The caller does not need to worry about applying HmdToEyeOffset to the returned outEyePoses variables.
-///
-/// \param[in]  hmd Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in]  frameIndex Specifies the targeted frame index, or 0 to refer to one frame after 
-///             the last time ovr_SubmitFrame was called.
-/// \param[in]  latencyMarker Specifies that this call is the point in time where
-///             the "App-to-Mid-Photon" latency timer starts from. If a given ovrLayer
-///             provides "SensorSampleTimestamp", that will override the value stored here.
-/// \param[in]  hmdToEyeOffset Can be ovrEyeRenderDesc.HmdToEyeOffset returned from
-///             ovr_GetRenderDesc. For monoscopic rendering, use a vector that is the average
-///             of the two vectors for both eyes.
-/// \param[out] outEyePoses The predicted eye poses.
-/// \param[out] outSensorSampleTime The time when this function was called. May be NULL, in which case it is ignored.
-///
-OVR_PUBLIC_FUNCTION(void) ovr_GetEyePoses(ovrSession session, long long frameIndex, ovrBool latencyMarker,
-                                             const ovrVector3f hmdToEyeOffset[2],
-                                             ovrPosef outEyePoses[2],
-                                             double* outSensorSampleTime);
-
-
-
-/// Tracking poses provided by the SDK come in a right-handed coordinate system. If an application
-/// is passing in ovrProjection_LeftHanded into ovrMatrix4f_Projection, then it should also use
-/// this function to flip the HMD tracking poses to be left-handed.
-///
-/// While this utility function is intended to convert a left-handed ovrPosef into a right-handed
-/// coordinate system, it will also work for converting right-handed to left-handed since the
-/// flip operation is the same for both cases.
-/// 
-/// \param[in]  inPose that is right-handed
-/// \param[out] outPose that is requested to be left-handed (can be the same pointer to inPose)
-///
-OVR_PUBLIC_FUNCTION(void) ovrPosef_FlipHandedness(const ovrPosef* inPose, ovrPosef* outPose);
-
-
-#ifdef __cplusplus
-} /* extern "C" */
-#endif
-
-
-#endif // Header include guard

+ 0 - 3804
src/external/OculusSDK/LibOVR/Include/Extras/OVR_Math.h

@@ -1,3804 +0,0 @@
-/********************************************************************************//**
-\file      OVR_Math.h
-\brief     Implementation of 3D primitives such as vectors, matrices.
-\copyright Copyright 2014-2016 Oculus VR, LLC All Rights reserved.
-*************************************************************************************/
-
-#ifndef OVR_Math_h
-#define OVR_Math_h
-
-
-// This file is intended to be independent of the rest of LibOVR and LibOVRKernel and thus 
-// has no #include dependencies on either.
-
-#include <math.h>
-#include <stdint.h>
-#include <stdlib.h>
-#include <stdio.h>
-#include <string.h>
-#include <float.h>
-#include "../OVR_CAPI.h" // Currently required due to a dependence on the ovrFovPort_ declaration.
-
-#if defined(_MSC_VER)
-    #pragma warning(push)
-    #pragma warning(disable: 4127) // conditional expression is constant
-#endif
-
-
-#if defined(_MSC_VER)
-    #define OVRMath_sprintf sprintf_s
-#else
-    #define OVRMath_sprintf snprintf
-#endif
-
-
-//-------------------------------------------------------------------------------------
-// ***** OVR_MATH_ASSERT
-//
-// Independent debug break implementation for OVR_Math.h.
-
-#if !defined(OVR_MATH_DEBUG_BREAK)
-    #if defined(_DEBUG)
-        #if defined(_MSC_VER)
-            #define OVR_MATH_DEBUG_BREAK __debugbreak()
-        #else
-            #define OVR_MATH_DEBUG_BREAK __builtin_trap()
-        #endif
-    #else
-        #define OVR_MATH_DEBUG_BREAK ((void)0)
-    #endif
-#endif
-
-
-//-------------------------------------------------------------------------------------
-// ***** OVR_MATH_ASSERT
-//
-// Independent OVR_MATH_ASSERT implementation for OVR_Math.h.
-
-#if !defined(OVR_MATH_ASSERT)
-    #if defined(_DEBUG)
-        #define OVR_MATH_ASSERT(p) if (!(p)) { OVR_MATH_DEBUG_BREAK; }
-    #else
-        #define OVR_MATH_ASSERT(p) ((void)0)
-    #endif
-#endif
-
-
-//-------------------------------------------------------------------------------------
-// ***** OVR_MATH_STATIC_ASSERT
-//
-// Independent OVR_MATH_ASSERT implementation for OVR_Math.h.
-
-#if !defined(OVR_MATH_STATIC_ASSERT)
-    #if defined(__cplusplus) && ((defined(_MSC_VER) && (defined(_MSC_VER) >= 1600)) || defined(__GXX_EXPERIMENTAL_CXX0X__) || (__cplusplus >= 201103L))
-        #define OVR_MATH_STATIC_ASSERT static_assert
-    #else
-        #if !defined(OVR_SA_UNUSED)
-            #if defined(__GNUC__) || defined(__clang__)
-                #define OVR_SA_UNUSED __attribute__((unused))
-            #else
-                #define OVR_SA_UNUSED
-            #endif
-            #define OVR_SA_PASTE(a,b) a##b
-            #define OVR_SA_HELP(a,b)  OVR_SA_PASTE(a,b)
-        #endif
-
-        #define OVR_MATH_STATIC_ASSERT(expression, msg) typedef char OVR_SA_HELP(compileTimeAssert, __LINE__) [((expression) != 0) ? 1 : -1] OVR_SA_UNUSED
-    #endif
-#endif
-
-
-
-namespace OVR {
-
-template<class T>
-const T OVRMath_Min(const T a, const T b)
-{ return (a < b) ? a : b; }
-
-template<class T>
-const T OVRMath_Max(const T a, const T b)
-{ return (b < a) ? a : b; }
-
-template<class T>
-void OVRMath_Swap(T& a, T& b) 
-{  T temp(a); a = b; b = temp; }
-
-
-//-------------------------------------------------------------------------------------
-// ***** Constants for 3D world/axis definitions.
-
-// Definitions of axes for coordinate and rotation conversions.
-enum Axis
-{
-    Axis_X = 0, Axis_Y = 1, Axis_Z = 2
-};
-
-// RotateDirection describes the rotation direction around an axis, interpreted as follows:
-//  CW  - Clockwise while looking "down" from positive axis towards the origin.
-//  CCW - Counter-clockwise while looking from the positive axis towards the origin,
-//        which is in the negative axis direction.
-//  CCW is the default for the RHS coordinate system. Oculus standard RHS coordinate
-//  system defines Y up, X right, and Z back (pointing out from the screen). In this
-//  system Rotate_CCW around Z will specifies counter-clockwise rotation in XY plane.
-enum RotateDirection
-{
-    Rotate_CCW = 1,
-    Rotate_CW  = -1 
-};
-
-// Constants for right handed and left handed coordinate systems
-enum HandedSystem
-{
-    Handed_R = 1, Handed_L = -1
-};
-
-// AxisDirection describes which way the coordinate axis points. Used by WorldAxes.
-enum AxisDirection
-{
-    Axis_Up    =  2,
-    Axis_Down  = -2,
-    Axis_Right =  1,
-    Axis_Left  = -1,
-    Axis_In    =  3,
-    Axis_Out   = -3
-};
-
-struct WorldAxes
-{
-    AxisDirection XAxis, YAxis, ZAxis;
-
-    WorldAxes(AxisDirection x, AxisDirection y, AxisDirection z)
-        : XAxis(x), YAxis(y), ZAxis(z) 
-    { OVR_MATH_ASSERT(abs(x) != abs(y) && abs(y) != abs(z) && abs(z) != abs(x));}
-};
-
-} // namespace OVR
-
-
-//------------------------------------------------------------------------------------//
-// ***** C Compatibility Types
-
-// These declarations are used to support conversion between C types used in
-// LibOVR C interfaces and their C++ versions. As an example, they allow passing
-// Vector3f into a function that expects ovrVector3f.
-
-typedef struct ovrQuatf_ ovrQuatf;
-typedef struct ovrQuatd_ ovrQuatd;
-typedef struct ovrSizei_ ovrSizei;
-typedef struct ovrSizef_ ovrSizef;
-typedef struct ovrSized_ ovrSized;
-typedef struct ovrRecti_ ovrRecti;
-typedef struct ovrVector2i_ ovrVector2i;
-typedef struct ovrVector2f_ ovrVector2f;
-typedef struct ovrVector2d_ ovrVector2d;
-typedef struct ovrVector3f_ ovrVector3f;
-typedef struct ovrVector3d_ ovrVector3d;
-typedef struct ovrVector4f_ ovrVector4f;
-typedef struct ovrVector4d_ ovrVector4d;
-typedef struct ovrMatrix2f_ ovrMatrix2f;
-typedef struct ovrMatrix2d_ ovrMatrix2d;
-typedef struct ovrMatrix3f_ ovrMatrix3f;
-typedef struct ovrMatrix3d_ ovrMatrix3d;
-typedef struct ovrMatrix4f_ ovrMatrix4f;
-typedef struct ovrMatrix4d_ ovrMatrix4d;
-typedef struct ovrPosef_ ovrPosef;
-typedef struct ovrPosed_ ovrPosed;
-typedef struct ovrPoseStatef_ ovrPoseStatef;
-typedef struct ovrPoseStated_ ovrPoseStated;
-
-namespace OVR {
-
-// Forward-declare our templates.
-template<class T> class Quat;
-template<class T> class Size;
-template<class T> class Rect;
-template<class T> class Vector2;
-template<class T> class Vector3;
-template<class T> class Vector4;
-template<class T> class Matrix2;
-template<class T> class Matrix3;
-template<class T> class Matrix4;
-template<class T> class Pose;
-template<class T> class PoseState;
-
-// CompatibleTypes::Type is used to lookup a compatible C-version of a C++ class.
-template<class C>
-struct CompatibleTypes
-{    
-    // Declaration here seems necessary for MSVC; specializations are
-    // used instead.
-    typedef struct {} Type;
-};
-
-// Specializations providing CompatibleTypes::Type value.
-template<> struct CompatibleTypes<Quat<float> >     { typedef ovrQuatf Type; };
-template<> struct CompatibleTypes<Quat<double> >    { typedef ovrQuatd Type; };
-template<> struct CompatibleTypes<Matrix2<float> >  { typedef ovrMatrix2f Type; };
-template<> struct CompatibleTypes<Matrix2<double> > { typedef ovrMatrix2d Type; };
-template<> struct CompatibleTypes<Matrix3<float> >  { typedef ovrMatrix3f Type; };
-template<> struct CompatibleTypes<Matrix3<double> > { typedef ovrMatrix3d Type; };
-template<> struct CompatibleTypes<Matrix4<float> >  { typedef ovrMatrix4f Type; };
-template<> struct CompatibleTypes<Matrix4<double> > { typedef ovrMatrix4d Type; };
-template<> struct CompatibleTypes<Size<int> >       { typedef ovrSizei Type; };
-template<> struct CompatibleTypes<Size<float> >     { typedef ovrSizef Type; };
-template<> struct CompatibleTypes<Size<double> >    { typedef ovrSized Type; };
-template<> struct CompatibleTypes<Rect<int> >       { typedef ovrRecti Type; };
-template<> struct CompatibleTypes<Vector2<int> >    { typedef ovrVector2i Type; };
-template<> struct CompatibleTypes<Vector2<float> >  { typedef ovrVector2f Type; };
-template<> struct CompatibleTypes<Vector2<double> > { typedef ovrVector2d Type; };
-template<> struct CompatibleTypes<Vector3<float> >  { typedef ovrVector3f Type; };
-template<> struct CompatibleTypes<Vector3<double> > { typedef ovrVector3d Type; };
-template<> struct CompatibleTypes<Vector4<float> >  { typedef ovrVector4f Type; };
-template<> struct CompatibleTypes<Vector4<double> > { typedef ovrVector4d Type; };
-template<> struct CompatibleTypes<Pose<float> >     { typedef ovrPosef Type; };
-template<> struct CompatibleTypes<Pose<double> >    { typedef ovrPosed Type; };
-
-//------------------------------------------------------------------------------------//
-// ***** Math
-//
-// Math class contains constants and functions. This class is a template specialized
-// per type, with Math<float> and Math<double> being distinct.
-template<class T>
-class Math
-{  
-public:
-    // By default, support explicit conversion to float. This allows Vector2<int> to
-    // compile, for example.
-    typedef float OtherFloatType;
-
-    static int Tolerance() { return 0; }  // Default value so integer types compile
-};
-
-
-//------------------------------------------------------------------------------------//
-// ***** double constants
-#define MATH_DOUBLE_PI              3.14159265358979323846
-#define MATH_DOUBLE_TWOPI           (2*MATH_DOUBLE_PI)
-#define MATH_DOUBLE_PIOVER2         (0.5*MATH_DOUBLE_PI)
-#define MATH_DOUBLE_PIOVER4         (0.25*MATH_DOUBLE_PI)
-#define MATH_FLOAT_MAXVALUE             (FLT_MAX) 
-
-#define MATH_DOUBLE_RADTODEGREEFACTOR (360.0 / MATH_DOUBLE_TWOPI)
-#define MATH_DOUBLE_DEGREETORADFACTOR (MATH_DOUBLE_TWOPI / 360.0)
-
-#define MATH_DOUBLE_E               2.71828182845904523536
-#define MATH_DOUBLE_LOG2E           1.44269504088896340736
-#define MATH_DOUBLE_LOG10E          0.434294481903251827651
-#define MATH_DOUBLE_LN2             0.693147180559945309417
-#define MATH_DOUBLE_LN10            2.30258509299404568402
-
-#define MATH_DOUBLE_SQRT2           1.41421356237309504880
-#define MATH_DOUBLE_SQRT1_2         0.707106781186547524401
-
-#define MATH_DOUBLE_TOLERANCE       1e-12   // a default number for value equality tolerance: about 4500*Epsilon;
-#define MATH_DOUBLE_SINGULARITYRADIUS 1e-12 // about 1-cos(.0001 degree), for gimbal lock numerical problems    
-
-//------------------------------------------------------------------------------------//
-// ***** float constants
-#define MATH_FLOAT_PI               float(MATH_DOUBLE_PI)
-#define MATH_FLOAT_TWOPI            float(MATH_DOUBLE_TWOPI)
-#define MATH_FLOAT_PIOVER2          float(MATH_DOUBLE_PIOVER2)
-#define MATH_FLOAT_PIOVER4          float(MATH_DOUBLE_PIOVER4)
-
-#define MATH_FLOAT_RADTODEGREEFACTOR float(MATH_DOUBLE_RADTODEGREEFACTOR)
-#define MATH_FLOAT_DEGREETORADFACTOR float(MATH_DOUBLE_DEGREETORADFACTOR)
-
-#define MATH_FLOAT_E                float(MATH_DOUBLE_E)
-#define MATH_FLOAT_LOG2E            float(MATH_DOUBLE_LOG2E)
-#define MATH_FLOAT_LOG10E           float(MATH_DOUBLE_LOG10E)
-#define MATH_FLOAT_LN2              float(MATH_DOUBLE_LN2)
-#define MATH_FLOAT_LN10             float(MATH_DOUBLE_LN10)
-
-#define MATH_FLOAT_SQRT2            float(MATH_DOUBLE_SQRT2)
-#define MATH_FLOAT_SQRT1_2          float(MATH_DOUBLE_SQRT1_2)
-
-#define MATH_FLOAT_TOLERANCE        1e-5f   // a default number for value equality tolerance: 1e-5, about 84*EPSILON;
-#define MATH_FLOAT_SINGULARITYRADIUS 1e-7f  // about 1-cos(.025 degree), for gimbal lock numerical problems   
-
-
-
-// Single-precision Math constants class.
-template<>
-class Math<float>
-{
-public:
-     typedef double OtherFloatType;
-
-    static inline float Tolerance()         { return MATH_FLOAT_TOLERANCE; }; // a default number for value equality tolerance
-    static inline float SingularityRadius() { return MATH_FLOAT_SINGULARITYRADIUS; };    // for gimbal lock numerical problems    
-};
-
-// Double-precision Math constants class
-template<>
-class Math<double>
-{
-public:
-    typedef float OtherFloatType;
-
-    static inline double Tolerance()         { return MATH_DOUBLE_TOLERANCE; }; // a default number for value equality tolerance
-    static inline double SingularityRadius() { return MATH_DOUBLE_SINGULARITYRADIUS; };    // for gimbal lock numerical problems    
-};
-
-typedef Math<float>  Mathf;
-typedef Math<double> Mathd;
-
-// Conversion functions between degrees and radians
-// (non-templated to ensure passing int arguments causes warning)
-inline float  RadToDegree(float rad)         { return rad * MATH_FLOAT_RADTODEGREEFACTOR; }
-inline double RadToDegree(double rad)        { return rad * MATH_DOUBLE_RADTODEGREEFACTOR; }
-
-inline float  DegreeToRad(float deg)         { return deg * MATH_FLOAT_DEGREETORADFACTOR; }
-inline double DegreeToRad(double deg)        { return deg * MATH_DOUBLE_DEGREETORADFACTOR; }
-
-// Square function
-template<class T>
-inline T Sqr(T x) { return x*x; }
-
-// Sign: returns 0 if x == 0, -1 if x < 0, and 1 if x > 0
-template<class T>
-inline T Sign(T x) { return (x != T(0)) ? (x < T(0) ? T(-1) : T(1)) : T(0); }
-
-// Numerically stable acos function
-inline float Acos(float x)   { return (x > 1.0f) ? 0.0f : (x < -1.0f) ? MATH_FLOAT_PI : acosf(x); }
-inline double Acos(double x) { return (x > 1.0) ? 0.0 : (x < -1.0) ? MATH_DOUBLE_PI : acos(x); }
-
-// Numerically stable asin function
-inline float Asin(float x)   { return (x > 1.0f) ? MATH_FLOAT_PIOVER2 : (x < -1.0f) ? -MATH_FLOAT_PIOVER2 : asinf(x); }
-inline double Asin(double x) { return (x > 1.0) ? MATH_DOUBLE_PIOVER2 : (x < -1.0) ? -MATH_DOUBLE_PIOVER2 : asin(x); }
-
-#if defined(_MSC_VER)
-    inline int isnan(double x) { return ::_isnan(x); }
-#elif !defined(isnan) // Some libraries #define isnan.
-    inline int isnan(double x) { return ::isnan(x); }
-#endif
-
-template<class T>
-class Quat;
-
-
-//-------------------------------------------------------------------------------------
-// ***** Vector2<>
-
-// Vector2f (Vector2d) represents a 2-dimensional vector or point in space,
-// consisting of coordinates x and y
-
-template<class T>
-class Vector2
-{
-public:
-    typedef T ElementType;
-    static const size_t ElementCount = 2;
-
-    T x, y;
-
-    Vector2() : x(0), y(0) { }
-    Vector2(T x_, T y_) : x(x_), y(y_) { }
-    explicit Vector2(T s) : x(s), y(s) { }
-    explicit Vector2(const Vector2<typename Math<T>::OtherFloatType> &src)
-        : x((T)src.x), y((T)src.y) { }
-
-    static Vector2 Zero() { return Vector2(0, 0); }
-
-    // C-interop support.
-    typedef  typename CompatibleTypes<Vector2<T> >::Type CompatibleType;
-
-    Vector2(const CompatibleType& s) : x(s.x), y(s.y) {  }
-
-    operator const CompatibleType& () const
-    {
-        OVR_MATH_STATIC_ASSERT(sizeof(Vector2<T>) == sizeof(CompatibleType), "sizeof(Vector2<T>) failure");
-        return reinterpret_cast<const CompatibleType&>(*this);
-    }
-
-        
-    bool     operator== (const Vector2& b) const  { return x == b.x && y == b.y; }
-    bool     operator!= (const Vector2& b) const  { return x != b.x || y != b.y; }
-             
-    Vector2  operator+  (const Vector2& b) const  { return Vector2(x + b.x, y + b.y); }
-    Vector2& operator+= (const Vector2& b)        { x += b.x; y += b.y; return *this; }
-    Vector2  operator-  (const Vector2& b) const  { return Vector2(x - b.x, y - b.y); }
-    Vector2& operator-= (const Vector2& b)        { x -= b.x; y -= b.y; return *this; }
-    Vector2  operator- () const                   { return Vector2(-x, -y); }
-
-    // Scalar multiplication/division scales vector.
-    Vector2  operator*  (T s) const               { return Vector2(x*s, y*s); }
-    Vector2& operator*= (T s)                     { x *= s; y *= s; return *this; }
-
-    Vector2  operator/  (T s) const               { T rcp = T(1)/s;
-                                                    return Vector2(x*rcp, y*rcp); }
-    Vector2& operator/= (T s)                     { T rcp = T(1)/s;
-                                                    x *= rcp; y *= rcp;
-                                                    return *this; }
-
-    static Vector2  Min(const Vector2& a, const Vector2& b) { return Vector2((a.x < b.x) ? a.x : b.x,
-                                                                             (a.y < b.y) ? a.y : b.y); }
-    static Vector2  Max(const Vector2& a, const Vector2& b) { return Vector2((a.x > b.x) ? a.x : b.x,
-                                                                             (a.y > b.y) ? a.y : b.y); }
-
-    Vector2 Clamped(T maxMag) const
-    {
-        T magSquared = LengthSq();
-        if (magSquared <= Sqr(maxMag))
-            return *this;
-        else
-            return *this * (maxMag / sqrt(magSquared));
-    }
-
-    // Compare two vectors for equality with tolerance. Returns true if vectors match withing tolerance.
-    bool IsEqual(const Vector2& b, T tolerance =Math<T>::Tolerance()) const
-    {
-        return (fabs(b.x-x) <= tolerance) &&
-               (fabs(b.y-y) <= tolerance);
-    }
-    bool Compare(const Vector2& b, T tolerance = Math<T>::Tolerance()) const 
-    {
-        return IsEqual(b, tolerance);
-    }
-
-    // Access element by index
-    T& operator[] (int idx)
-    {
-        OVR_MATH_ASSERT(0 <= idx && idx < 2);
-        return *(&x + idx);
-    }
-    const T& operator[] (int idx) const
-    {
-        OVR_MATH_ASSERT(0 <= idx && idx < 2);
-        return *(&x + idx);
-    }
-
-    // Entry-wise product of two vectors
-    Vector2    EntrywiseMultiply(const Vector2& b) const    { return Vector2(x * b.x, y * b.y);}
-
-
-    // Multiply and divide operators do entry-wise math. Used Dot() for dot product.
-    Vector2  operator*  (const Vector2& b) const        { return Vector2(x * b.x,  y * b.y); }
-    Vector2  operator/  (const Vector2& b) const        { return Vector2(x / b.x,  y / b.y); }
-
-    // Dot product
-    // Used to calculate angle q between two vectors among other things,
-    // as (A dot B) = |a||b|cos(q).
-    T        Dot(const Vector2& b) const                 { return x*b.x + y*b.y; }
-
-    // Returns the angle from this vector to b, in radians.
-    T       Angle(const Vector2& b) const        
-    { 
-        T div = LengthSq()*b.LengthSq();
-        OVR_MATH_ASSERT(div != T(0));
-        T result = Acos((this->Dot(b))/sqrt(div));
-        return result;
-    }
-
-    // Return Length of the vector squared.
-    T       LengthSq() const                     { return (x * x + y * y); }
-
-    // Return vector length.
-    T       Length() const                       { return sqrt(LengthSq()); }
-
-    // Returns squared distance between two points represented by vectors.
-    T       DistanceSq(const Vector2& b) const   { return (*this - b).LengthSq(); }
-
-    // Returns distance between two points represented by vectors.
-    T       Distance(const Vector2& b) const     { return (*this - b).Length(); }
-
-    // Determine if this a unit vector.
-    bool    IsNormalized() const                 { return fabs(LengthSq() - T(1)) < Math<T>::Tolerance(); }
-
-    // Normalize, convention vector length to 1.    
-    void    Normalize()                          
-    {
-        T s = Length();
-        if (s != T(0))
-            s = T(1) / s;
-        *this *= s;
-    }
-
-    // Returns normalized (unit) version of the vector without modifying itself.
-    Vector2 Normalized() const                   
-    { 
-        T s = Length();
-        if (s != T(0))
-            s = T(1) / s;
-        return *this * s; 
-    }
-
-    // Linearly interpolates from this vector to another.
-    // Factor should be between 0.0 and 1.0, with 0 giving full value to this.
-    Vector2 Lerp(const Vector2& b, T f) const    { return *this*(T(1) - f) + b*f; }
-
-    // Projects this vector onto the argument; in other words,
-    // A.Project(B) returns projection of vector A onto B.
-    Vector2 ProjectTo(const Vector2& b) const    
-    { 
-        T l2 = b.LengthSq();
-        OVR_MATH_ASSERT(l2 != T(0));
-        return b * ( Dot(b) / l2 ); 
-    }
-    
-    // returns true if vector b is clockwise from this vector
-    bool IsClockwise(const Vector2& b) const
-    {
-        return (x * b.y - y * b.x) < 0;
-    }
-};
-
-
-typedef Vector2<float>  Vector2f;
-typedef Vector2<double> Vector2d;
-typedef Vector2<int>    Vector2i;
-
-typedef Vector2<float>  Point2f;
-typedef Vector2<double> Point2d;
-typedef Vector2<int>    Point2i;
-
-//-------------------------------------------------------------------------------------
-// ***** Vector3<> - 3D vector of {x, y, z}
-
-//
-// Vector3f (Vector3d) represents a 3-dimensional vector or point in space,
-// consisting of coordinates x, y and z.
-
-template<class T>
-class Vector3
-{
-public:
-    typedef T ElementType;
-    static const size_t ElementCount = 3;
-
-    T x, y, z;
-
-    // FIXME: default initialization of a vector class can be very expensive in a full-blown
-    // application.  A few hundred thousand vector constructions is not unlikely and can add
-    // up to milliseconds of time on processors like the PS3 PPU.
-    Vector3() : x(0), y(0), z(0) { }
-    Vector3(T x_, T y_, T z_ = 0) : x(x_), y(y_), z(z_) { }
-    explicit Vector3(T s) : x(s), y(s), z(s) { }
-    explicit Vector3(const Vector3<typename Math<T>::OtherFloatType> &src)
-        : x((T)src.x), y((T)src.y), z((T)src.z) { }
-
-    static Vector3 Zero() { return Vector3(0, 0, 0); }
-
-    // C-interop support.
-    typedef  typename CompatibleTypes<Vector3<T> >::Type CompatibleType;
-
-    Vector3(const CompatibleType& s) : x(s.x), y(s.y), z(s.z) {  }
-
-    operator const CompatibleType& () const
-    {
-        OVR_MATH_STATIC_ASSERT(sizeof(Vector3<T>) == sizeof(CompatibleType), "sizeof(Vector3<T>) failure");
-        return reinterpret_cast<const CompatibleType&>(*this);
-    }
-
-    bool     operator== (const Vector3& b) const  { return x == b.x && y == b.y && z == b.z; }
-    bool     operator!= (const Vector3& b) const  { return x != b.x || y != b.y || z != b.z; }
-             
-    Vector3  operator+  (const Vector3& b) const  { return Vector3(x + b.x, y + b.y, z + b.z); }
-    Vector3& operator+= (const Vector3& b)        { x += b.x; y += b.y; z += b.z; return *this; }
-    Vector3  operator-  (const Vector3& b) const  { return Vector3(x - b.x, y - b.y, z - b.z); }
-    Vector3& operator-= (const Vector3& b)        { x -= b.x; y -= b.y; z -= b.z; return *this; }
-    Vector3  operator- () const                   { return Vector3(-x, -y, -z); }
-
-    // Scalar multiplication/division scales vector.
-    Vector3  operator*  (T s) const               { return Vector3(x*s, y*s, z*s); }
-    Vector3& operator*= (T s)                     { x *= s; y *= s; z *= s; return *this; }
-
-    Vector3  operator/  (T s) const               { T rcp = T(1)/s;
-                                                    return Vector3(x*rcp, y*rcp, z*rcp); }
-    Vector3& operator/= (T s)                     { T rcp = T(1)/s;
-                                                    x *= rcp; y *= rcp; z *= rcp;
-                                                    return *this; }
-
-    static Vector3  Min(const Vector3& a, const Vector3& b)
-    {
-        return Vector3((a.x < b.x) ? a.x : b.x,
-                       (a.y < b.y) ? a.y : b.y,
-                       (a.z < b.z) ? a.z : b.z);
-    }
-    static Vector3  Max(const Vector3& a, const Vector3& b)
-    { 
-        return Vector3((a.x > b.x) ? a.x : b.x,
-                       (a.y > b.y) ? a.y : b.y,
-                       (a.z > b.z) ? a.z : b.z);
-    }        
-
-    Vector3 Clamped(T maxMag) const
-    {
-        T magSquared = LengthSq();
-        if (magSquared <= Sqr(maxMag))
-            return *this;
-        else
-            return *this * (maxMag / sqrt(magSquared));
-    }
-
-    // Compare two vectors for equality with tolerance. Returns true if vectors match withing tolerance.
-    bool IsEqual(const Vector3& b, T tolerance = Math<T>::Tolerance()) const
-    {
-        return (fabs(b.x-x) <= tolerance) && 
-               (fabs(b.y-y) <= tolerance) && 
-               (fabs(b.z-z) <= tolerance);
-    }
-    bool Compare(const Vector3& b, T tolerance = Math<T>::Tolerance()) const
-    {
-        return IsEqual(b, tolerance);
-    }
-
-    T& operator[] (int idx)
-    {
-        OVR_MATH_ASSERT(0 <= idx && idx < 3);
-        return *(&x + idx);
-    }
-
-    const T& operator[] (int idx) const
-    {
-        OVR_MATH_ASSERT(0 <= idx && idx < 3);
-        return *(&x + idx);
-    }
-
-    // Entrywise product of two vectors
-    Vector3    EntrywiseMultiply(const Vector3& b) const    { return Vector3(x * b.x, 
-                                                                         y * b.y, 
-                                                                         z * b.z);}
-
-    // Multiply and divide operators do entry-wise math
-    Vector3  operator*  (const Vector3& b) const        { return Vector3(x * b.x, 
-                                                                         y * b.y, 
-                                                                         z * b.z); }
-
-    Vector3  operator/  (const Vector3& b) const        { return Vector3(x / b.x, 
-                                                                         y / b.y, 
-                                                                         z / b.z); }
-
-
-    // Dot product
-    // Used to calculate angle q between two vectors among other things,
-    // as (A dot B) = |a||b|cos(q).
-     T      Dot(const Vector3& b) const          { return x*b.x + y*b.y + z*b.z; }
-
-    // Compute cross product, which generates a normal vector.
-    // Direction vector can be determined by right-hand rule: Pointing index finder in
-    // direction a and middle finger in direction b, thumb will point in a.Cross(b).
-    Vector3 Cross(const Vector3& b) const        { return Vector3(y*b.z - z*b.y,
-                                                                  z*b.x - x*b.z,
-                                                                  x*b.y - y*b.x); }
-
-    // Returns the angle from this vector to b, in radians.
-    T       Angle(const Vector3& b) const 
-    {
-        T div = LengthSq()*b.LengthSq();
-        OVR_MATH_ASSERT(div != T(0));
-        T result = Acos((this->Dot(b))/sqrt(div));
-        return result;
-    }
-
-    // Return Length of the vector squared.
-    T       LengthSq() const                     { return (x * x + y * y + z * z); }
-
-    // Return vector length.
-    T       Length() const                       { return (T)sqrt(LengthSq()); }
-
-    // Returns squared distance between two points represented by vectors.
-    T       DistanceSq(Vector3 const& b) const         { return (*this - b).LengthSq(); }
-
-    // Returns distance between two points represented by vectors.
-    T       Distance(Vector3 const& b) const     { return (*this - b).Length(); }
-    
-    bool    IsNormalized() const                 { return fabs(LengthSq() - T(1)) < Math<T>::Tolerance(); }
-
-    // Normalize, convention vector length to 1.    
-    void    Normalize()                          
-    {
-        T s = Length();
-        if (s != T(0))
-            s = T(1) / s;
-        *this *= s;
-    }
-
-    // Returns normalized (unit) version of the vector without modifying itself.
-    Vector3 Normalized() const                   
-    { 
-        T s = Length();
-        if (s != T(0))
-            s = T(1) / s;
-        return *this * s;
-    }
-
-    // Linearly interpolates from this vector to another.
-    // Factor should be between 0.0 and 1.0, with 0 giving full value to this.
-    Vector3 Lerp(const Vector3& b, T f) const    { return *this*(T(1) - f) + b*f; }
-
-    // Projects this vector onto the argument; in other words,
-    // A.Project(B) returns projection of vector A onto B.
-    Vector3 ProjectTo(const Vector3& b) const    
-    { 
-        T l2 = b.LengthSq();
-        OVR_MATH_ASSERT(l2 != T(0));
-        return b * ( Dot(b) / l2 ); 
-    }
-
-    // Projects this vector onto a plane defined by a normal vector
-    Vector3 ProjectToPlane(const Vector3& normal) const { return *this - this->ProjectTo(normal); }
-};
-
-typedef Vector3<float>  Vector3f;
-typedef Vector3<double> Vector3d;
-typedef Vector3<int32_t>  Vector3i;
-    
-OVR_MATH_STATIC_ASSERT((sizeof(Vector3f) == 3*sizeof(float)), "sizeof(Vector3f) failure");
-OVR_MATH_STATIC_ASSERT((sizeof(Vector3d) == 3*sizeof(double)), "sizeof(Vector3d) failure");
-OVR_MATH_STATIC_ASSERT((sizeof(Vector3i) == 3*sizeof(int32_t)), "sizeof(Vector3i) failure");
-
-typedef Vector3<float>   Point3f;
-typedef Vector3<double>  Point3d;
-typedef Vector3<int32_t>  Point3i;
-
-
-//-------------------------------------------------------------------------------------
-// ***** Vector4<> - 4D vector of {x, y, z, w}
-
-//
-// Vector4f (Vector4d) represents a 3-dimensional vector or point in space,
-// consisting of coordinates x, y, z and w.
-
-template<class T>
-class Vector4
-{
-public:
-    typedef T ElementType;
-    static const size_t ElementCount = 4;
-
-    T x, y, z, w;
-
-    // FIXME: default initialization of a vector class can be very expensive in a full-blown
-    // application.  A few hundred thousand vector constructions is not unlikely and can add
-    // up to milliseconds of time on processors like the PS3 PPU.
-    Vector4() : x(0), y(0), z(0), w(0) { }
-    Vector4(T x_, T y_, T z_, T w_) : x(x_), y(y_), z(z_), w(w_) { }
-    explicit Vector4(T s) : x(s), y(s), z(s), w(s) { }
-    explicit Vector4(const Vector3<T>& v, const T w_=T(1)) : x(v.x), y(v.y), z(v.z), w(w_) { }
-    explicit Vector4(const Vector4<typename Math<T>::OtherFloatType> &src)
-        : x((T)src.x), y((T)src.y), z((T)src.z), w((T)src.w) { }
-
-    static Vector4 Zero() { return Vector4(0, 0, 0, 0); }
-
-    // C-interop support.
-    typedef  typename CompatibleTypes< Vector4<T> >::Type CompatibleType;
-
-    Vector4(const CompatibleType& s) : x(s.x), y(s.y), z(s.z), w(s.w) {  }
-
-    operator const CompatibleType& () const
-    {
-        OVR_MATH_STATIC_ASSERT(sizeof(Vector4<T>) == sizeof(CompatibleType), "sizeof(Vector4<T>) failure");
-        return reinterpret_cast<const CompatibleType&>(*this);
-    }
-
-    Vector4& operator= (const Vector3<T>& other)  { x=other.x; y=other.y; z=other.z; w=1; return *this; }
-    bool     operator== (const Vector4& b) const  { return x == b.x && y == b.y && z == b.z && w == b.w; }
-    bool     operator!= (const Vector4& b) const  { return x != b.x || y != b.y || z != b.z || w != b.w; }
-             
-    Vector4  operator+  (const Vector4& b) const  { return Vector4(x + b.x, y + b.y, z + b.z, w + b.w); }
-    Vector4& operator+= (const Vector4& b)        { x += b.x; y += b.y; z += b.z; w += b.w; return *this; }
-    Vector4  operator-  (const Vector4& b) const  { return Vector4(x - b.x, y - b.y, z - b.z, w - b.w); }
-    Vector4& operator-= (const Vector4& b)        { x -= b.x; y -= b.y; z -= b.z; w -= b.w; return *this; }
-    Vector4  operator- () const                   { return Vector4(-x, -y, -z, -w); }
-
-    // Scalar multiplication/division scales vector.
-    Vector4  operator*  (T s) const               { return Vector4(x*s, y*s, z*s, w*s); }
-    Vector4& operator*= (T s)                     { x *= s; y *= s; z *= s; w *= s;return *this; }
-
-    Vector4  operator/  (T s) const               { T rcp = T(1)/s;
-                                                    return Vector4(x*rcp, y*rcp, z*rcp, w*rcp); }
-    Vector4& operator/= (T s)                     { T rcp = T(1)/s;
-                                                    x *= rcp; y *= rcp; z *= rcp; w *= rcp;
-                                                    return *this; }
-
-    static Vector4  Min(const Vector4& a, const Vector4& b)
-    {
-        return Vector4((a.x < b.x) ? a.x : b.x,
-                       (a.y < b.y) ? a.y : b.y,
-                       (a.z < b.z) ? a.z : b.z,
-                       (a.w < b.w) ? a.w : b.w);
-    }
-    static Vector4  Max(const Vector4& a, const Vector4& b)
-    { 
-        return Vector4((a.x > b.x) ? a.x : b.x,
-                       (a.y > b.y) ? a.y : b.y,
-                       (a.z > b.z) ? a.z : b.z,
-                       (a.w > b.w) ? a.w : b.w);
-    }        
-
-    Vector4 Clamped(T maxMag) const
-    {
-        T magSquared = LengthSq();
-        if (magSquared <= Sqr(maxMag))
-            return *this;
-        else
-            return *this * (maxMag / sqrt(magSquared));
-    }
-
-    // Compare two vectors for equality with tolerance. Returns true if vectors match withing tolerance.
-    bool IsEqual(const Vector4& b, T tolerance = Math<T>::Tolerance()) const
-    {
-        return (fabs(b.x-x) <= tolerance) && 
-               (fabs(b.y-y) <= tolerance) && 
-               (fabs(b.z-z) <= tolerance) &&
-               (fabs(b.w-w) <= tolerance);
-    }
-    bool Compare(const Vector4& b, T tolerance = Math<T>::Tolerance()) const
-    {
-        return IsEqual(b, tolerance);
-    }
-    
-    T& operator[] (int idx)
-    {
-        OVR_MATH_ASSERT(0 <= idx && idx < 4);
-        return *(&x + idx);
-    }
-
-    const T& operator[] (int idx) const
-    {
-        OVR_MATH_ASSERT(0 <= idx && idx < 4);
-        return *(&x + idx);
-    }
-
-    // Entry wise product of two vectors
-    Vector4    EntrywiseMultiply(const Vector4& b) const    { return Vector4(x * b.x, 
-                                                                         y * b.y, 
-                                                                         z * b.z,
-                                                                         w * b.w);}
-
-    // Multiply and divide operators do entry-wise math
-    Vector4  operator*  (const Vector4& b) const        { return Vector4(x * b.x, 
-                                                                         y * b.y, 
-                                                                         z * b.z,
-                                                                         w * b.w); }
-
-    Vector4  operator/  (const Vector4& b) const        { return Vector4(x / b.x, 
-                                                                         y / b.y, 
-                                                                         z / b.z,
-                                                                         w / b.w); }
-
-
-    // Dot product
-    T       Dot(const Vector4& b) const          { return x*b.x + y*b.y + z*b.z + w*b.w; }
-
-    // Return Length of the vector squared.
-    T       LengthSq() const                     { return (x * x + y * y + z * z + w * w); }
-
-    // Return vector length.
-    T       Length() const                       { return sqrt(LengthSq()); }
-    
-    bool    IsNormalized() const                 { return fabs(LengthSq() - T(1)) < Math<T>::Tolerance(); }
-
-    // Normalize, convention vector length to 1.    
-    void    Normalize()                          
-    {
-        T s = Length();
-        if (s != T(0))
-            s = T(1) / s;
-        *this *= s;
-    }
-
-    // Returns normalized (unit) version of the vector without modifying itself.
-    Vector4 Normalized() const                   
-    { 
-        T s = Length();
-        if (s != T(0))
-            s = T(1) / s;
-        return *this * s;
-    }
-
-    // Linearly interpolates from this vector to another.
-    // Factor should be between 0.0 and 1.0, with 0 giving full value to this.
-    Vector4 Lerp(const Vector4& b, T f) const    { return *this*(T(1) - f) + b*f; }
-};
-
-typedef Vector4<float>  Vector4f;
-typedef Vector4<double> Vector4d;
-typedef Vector4<int>    Vector4i;
-
-
-//-------------------------------------------------------------------------------------
-// ***** Bounds3
-
-// Bounds class used to describe a 3D axis aligned bounding box.
-
-template<class T>
-class Bounds3
-{
-public:
-    Vector3<T>    b[2];
-
-    Bounds3()
-    {
-    }
-
-    Bounds3( const Vector3<T> & mins, const Vector3<T> & maxs )
-{
-        b[0] = mins;
-        b[1] = maxs;
-    }
-
-    void Clear()
-    {
-        b[0].x = b[0].y = b[0].z = Math<T>::MaxValue;
-        b[1].x = b[1].y = b[1].z = -Math<T>::MaxValue;
-    }
-
-    void AddPoint( const Vector3<T> & v )
-    {
-        b[0].x = (b[0].x < v.x ? b[0].x : v.x);
-        b[0].y = (b[0].y < v.y ? b[0].y : v.y);
-        b[0].z = (b[0].z < v.z ? b[0].z : v.z);
-        b[1].x = (v.x < b[1].x ? b[1].x : v.x);
-        b[1].y = (v.y < b[1].y ? b[1].y : v.y);
-        b[1].z = (v.z < b[1].z ? b[1].z : v.z);
-    }
-
-    const Vector3<T> & GetMins() const { return b[0]; }
-    const Vector3<T> & GetMaxs() const { return b[1]; }
-
-    Vector3<T> & GetMins() { return b[0]; }
-    Vector3<T> & GetMaxs() { return b[1]; }
-};
-
-typedef Bounds3<float>    Bounds3f;
-typedef Bounds3<double>    Bounds3d;
-
-
-//-------------------------------------------------------------------------------------
-// ***** Size
-
-// Size class represents 2D size with Width, Height components.
-// Used to describe distentions of render targets, etc.
-
-template<class T>
-class Size
-{
-public:
-    T   w, h;
-
-    Size()              : w(0), h(0)   { }
-    Size(T w_, T h_)    : w(w_), h(h_) { }
-    explicit Size(T s)  : w(s), h(s)   { }
-    explicit Size(const Size<typename Math<T>::OtherFloatType> &src)
-        : w((T)src.w), h((T)src.h) { }
-
-    // C-interop support.
-    typedef  typename CompatibleTypes<Size<T> >::Type CompatibleType;
-
-    Size(const CompatibleType& s) : w(s.w), h(s.h) {  }
-
-    operator const CompatibleType& () const
-    {
-        OVR_MATH_STATIC_ASSERT(sizeof(Size<T>) == sizeof(CompatibleType), "sizeof(Size<T>) failure");
-        return reinterpret_cast<const CompatibleType&>(*this);
-    }
-
-    bool     operator== (const Size& b) const  { return w == b.w && h == b.h; }
-    bool     operator!= (const Size& b) const  { return w != b.w || h != b.h; }
-             
-    Size  operator+  (const Size& b) const  { return Size(w + b.w, h + b.h); }
-    Size& operator+= (const Size& b)        { w += b.w; h += b.h; return *this; }
-    Size  operator-  (const Size& b) const  { return Size(w - b.w, h - b.h); }
-    Size& operator-= (const Size& b)        { w -= b.w; h -= b.h; return *this; }
-    Size  operator- () const                { return Size(-w, -h); }
-    Size  operator*  (const Size& b) const  { return Size(w * b.w, h * b.h); }
-    Size& operator*= (const Size& b)        { w *= b.w; h *= b.h; return *this; }
-    Size  operator/  (const Size& b) const  { return Size(w / b.w, h / b.h); }
-    Size& operator/= (const Size& b)        { w /= b.w; h /= b.h; return *this; }
-
-    // Scalar multiplication/division scales both components.
-    Size  operator*  (T s) const            { return Size(w*s, h*s); }
-    Size& operator*= (T s)                  { w *= s; h *= s; return *this; }    
-    Size  operator/  (T s) const            { return Size(w/s, h/s); }
-    Size& operator/= (T s)                  { w /= s; h /= s; return *this; }
-
-    static Size Min(const Size& a, const Size& b)  { return Size((a.w  < b.w)  ? a.w  : b.w,
-                                                                 (a.h < b.h) ? a.h : b.h); }
-    static Size Max(const Size& a, const Size& b)  { return Size((a.w  > b.w)  ? a.w  : b.w,
-                                                                 (a.h > b.h) ? a.h : b.h); }
-    
-    T       Area() const                    { return w * h; }
-
-    inline  Vector2<T> ToVector() const     { return Vector2<T>(w, h); }
-};
-
-
-typedef Size<int>       Sizei;
-typedef Size<unsigned>  Sizeu;
-typedef Size<float>     Sizef;
-typedef Size<double>    Sized;
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** Rect
-
-// Rect describes a rectangular area for rendering, that includes position and size.
-template<class T>
-class Rect
-{
-public:
-    T x, y;
-    T w, h;
-
-    Rect() { }
-    Rect(T x1, T y1, T w1, T h1)                   : x(x1), y(y1), w(w1), h(h1) { }    
-    Rect(const Vector2<T>& pos, const Size<T>& sz) : x(pos.x), y(pos.y), w(sz.w), h(sz.h) { }
-    Rect(const Size<T>& sz)                        : x(0), y(0), w(sz.w), h(sz.h) { }
-    
-    // C-interop support.
-    typedef  typename CompatibleTypes<Rect<T> >::Type CompatibleType;
-
-    Rect(const CompatibleType& s) : x(s.Pos.x), y(s.Pos.y), w(s.Size.w), h(s.Size.h) {  }
-
-    operator const CompatibleType& () const
-    {
-        OVR_MATH_STATIC_ASSERT(sizeof(Rect<T>) == sizeof(CompatibleType), "sizeof(Rect<T>) failure");
-        return reinterpret_cast<const CompatibleType&>(*this);
-    }
-
-    Vector2<T> GetPos() const                { return Vector2<T>(x, y); }
-    Size<T>    GetSize() const               { return Size<T>(w, h); }
-    void       SetPos(const Vector2<T>& pos) { x = pos.x; y = pos.y; }
-    void       SetSize(const Size<T>& sz)    { w = sz.w; h = sz.h; }
-
-    bool operator == (const Rect& vp) const
-    { return (x == vp.x) && (y == vp.y) && (w == vp.w) && (h == vp.h); }
-    bool operator != (const Rect& vp) const
-    { return !operator == (vp); }
-};
-
-typedef Rect<int> Recti;
-
-
-//-------------------------------------------------------------------------------------//
-// ***** Quat
-//
-// Quatf represents a quaternion class used for rotations.
-// 
-// Quaternion multiplications are done in right-to-left order, to match the
-// behavior of matrices.
-
-
-template<class T>
-class Quat
-{
-public:
-    typedef T ElementType;
-    static const size_t ElementCount = 4;
-
-    // x,y,z = axis*sin(angle), w = cos(angle)
-    T x, y, z, w;    
-
-    Quat() : x(0), y(0), z(0), w(1) { }
-    Quat(T x_, T y_, T z_, T w_) : x(x_), y(y_), z(z_), w(w_) { }
-    explicit Quat(const Quat<typename Math<T>::OtherFloatType> &src)
-        : x((T)src.x), y((T)src.y), z((T)src.z), w((T)src.w)
-    {
-        // NOTE: Converting a normalized Quat<float> to Quat<double>
-        // will generally result in an un-normalized quaternion.
-        // But we don't normalize here in case the quaternion
-        // being converted is not a normalized rotation quaternion.
-    }
-
-    typedef  typename CompatibleTypes<Quat<T> >::Type CompatibleType;
-
-    // C-interop support.
-    Quat(const CompatibleType& s) : x(s.x), y(s.y), z(s.z), w(s.w) { }
-
-    operator CompatibleType () const
-    {
-        CompatibleType result;
-        result.x = x;
-        result.y = y;
-        result.z = z;
-        result.w = w;
-        return result;
-    }
-
-    // Constructs quaternion for rotation around the axis by an angle.
-    Quat(const Vector3<T>& axis, T angle)
-    {
-        // Make sure we don't divide by zero. 
-        if (axis.LengthSq() == T(0))
-        {
-            // Assert if the axis is zero, but the angle isn't
-            OVR_MATH_ASSERT(angle == T(0));
-            x = y = z = T(0); w = T(1);
-            return;
-        }
-
-        Vector3<T> unitAxis = axis.Normalized();
-        T          sinHalfAngle = sin(angle * T(0.5));
-
-        w = cos(angle * T(0.5));
-        x = unitAxis.x * sinHalfAngle;
-        y = unitAxis.y * sinHalfAngle;
-        z = unitAxis.z * sinHalfAngle;
-    }
-
-    // Constructs quaternion for rotation around one of the coordinate axis by an angle.
-    Quat(Axis A, T angle, RotateDirection d = Rotate_CCW, HandedSystem s = Handed_R)
-    {
-        T sinHalfAngle = s * d *sin(angle * T(0.5));
-        T v[3];
-        v[0] = v[1] = v[2] = T(0);
-        v[A] = sinHalfAngle;
-
-        w = cos(angle * T(0.5));
-        x = v[0];
-        y = v[1];
-        z = v[2];
-    }
-
-    Quat operator-() { return Quat(-x, -y, -z, -w); }   // unary minus
-
-    static Quat Identity() { return Quat(0, 0, 0, 1); }
-
-    // Compute axis and angle from quaternion
-    void GetAxisAngle(Vector3<T>* axis, T* angle) const
-    {
-        if ( x*x + y*y + z*z > Math<T>::Tolerance() * Math<T>::Tolerance() ) {
-            *axis  = Vector3<T>(x, y, z).Normalized();
-            *angle = 2 * Acos(w);
-            if (*angle > ((T)MATH_DOUBLE_PI)) // Reduce the magnitude of the angle, if necessary
-            {
-                *angle = ((T)MATH_DOUBLE_TWOPI) - *angle;
-                *axis = *axis * (-1);
-            }
-        }
-        else 
-        {
-            *axis = Vector3<T>(1, 0, 0);
-            *angle= T(0);
-        }
-    }
-
-    // Convert a quaternion to a rotation vector, also known as
-    // Rodrigues vector, AxisAngle vector, SORA vector, exponential map.
-    // A rotation vector describes a rotation about an axis:
-    // the axis of rotation is the vector normalized,
-    // the angle of rotation is the magnitude of the vector.
-    Vector3<T> ToRotationVector() const
-    {
-        OVR_MATH_ASSERT(IsNormalized() || LengthSq() == 0);
-        T s = T(0);
-        T sinHalfAngle = sqrt(x*x + y*y + z*z);
-        if (sinHalfAngle > T(0))
-        {
-            T cosHalfAngle = w;
-            T halfAngle = atan2(sinHalfAngle, cosHalfAngle);
-
-            // Ensure minimum rotation magnitude
-            if (cosHalfAngle < 0)
-                halfAngle -= T(MATH_DOUBLE_PI);
-
-            s = T(2) * halfAngle / sinHalfAngle;
-        }
-        return Vector3<T>(x*s, y*s, z*s);
-    }
-
-    // Faster version of the above, optimized for use with small rotations, where rotation angle ~= sin(angle)
-    inline OVR::Vector3<T> FastToRotationVector() const
-    {
-        OVR_MATH_ASSERT(IsNormalized());
-        T s;
-        T sinHalfSquared = x*x + y*y + z*z;
-        if (sinHalfSquared < T(.0037)) // =~ sin(7/2 degrees)^2
-        {
-            // Max rotation magnitude error is about .062% at 7 degrees rotation, or about .0043 degrees
-            s = T(2) * Sign(w);
-        }
-        else
-        {
-            T sinHalfAngle = sqrt(sinHalfSquared);
-            T cosHalfAngle = w;
-            T halfAngle = atan2(sinHalfAngle, cosHalfAngle);
-
-            // Ensure minimum rotation magnitude
-            if (cosHalfAngle < 0)
-                halfAngle -= T(MATH_DOUBLE_PI);
-
-            s = T(2) * halfAngle / sinHalfAngle;
-        }
-        return Vector3<T>(x*s, y*s, z*s);
-    }
-
-    // Given a rotation vector of form unitRotationAxis * angle,
-    // returns the equivalent quaternion (unitRotationAxis * sin(angle), cos(Angle)).
-    static Quat FromRotationVector(const Vector3<T>& v)
-    {
-        T angleSquared = v.LengthSq();
-        T s = T(0);
-        T c = T(1);
-        if (angleSquared > T(0))
-        {
-            T angle = sqrt(angleSquared);
-            s = sin(angle * T(0.5)) / angle;    // normalize
-            c = cos(angle * T(0.5));
-        }
-        return Quat(s*v.x, s*v.y, s*v.z, c);
-    }
-
-    // Faster version of above, optimized for use with small rotation magnitudes, where rotation angle =~ sin(angle).
-    // If normalize is false, small-angle quaternions are returned un-normalized.
-    inline static Quat FastFromRotationVector(const OVR::Vector3<T>& v, bool normalize = true)
-    {
-        T s, c;
-        T angleSquared = v.LengthSq();
-        if (angleSquared < T(0.0076))   // =~ (5 degrees*pi/180)^2
-        {
-            s = T(0.5);
-            c = T(1.0);
-            // Max rotation magnitude error (after normalization) is about .064% at 5 degrees rotation, or .0032 degrees
-            if (normalize && angleSquared > 0)
-            {
-                // sin(angle/2)^2 ~= (angle/2)^2 and cos(angle/2)^2 ~= 1
-                T invLen = T(1) / sqrt(angleSquared * T(0.25) + T(1)); // normalize
-                s = s * invLen;
-                c = c * invLen;
-            }
-        }
-        else
-        {
-            T angle = sqrt(angleSquared);
-            s = sin(angle * T(0.5)) / angle;
-            c = cos(angle * T(0.5));
-        }
-        return Quat(s*v.x, s*v.y, s*v.z, c);
-    }
-
-    // Constructs the quaternion from a rotation matrix
-    explicit Quat(const Matrix4<T>& m)
-    {
-        T trace = m.M[0][0] + m.M[1][1] + m.M[2][2];
-
-        // In almost all cases, the first part is executed.
-        // However, if the trace is not positive, the other
-        // cases arise.
-        if (trace > T(0)) 
-        {
-            T s = sqrt(trace + T(1)) * T(2); // s=4*qw
-            w = T(0.25) * s;
-            x = (m.M[2][1] - m.M[1][2]) / s;
-            y = (m.M[0][2] - m.M[2][0]) / s;
-            z = (m.M[1][0] - m.M[0][1]) / s; 
-        } 
-        else if ((m.M[0][0] > m.M[1][1])&&(m.M[0][0] > m.M[2][2])) 
-        {
-            T s = sqrt(T(1) + m.M[0][0] - m.M[1][1] - m.M[2][2]) * T(2);
-            w = (m.M[2][1] - m.M[1][2]) / s;
-            x = T(0.25) * s;
-            y = (m.M[0][1] + m.M[1][0]) / s;
-            z = (m.M[2][0] + m.M[0][2]) / s;
-        } 
-        else if (m.M[1][1] > m.M[2][2]) 
-        {
-            T s = sqrt(T(1) + m.M[1][1] - m.M[0][0] - m.M[2][2]) * T(2); // S=4*qy
-            w = (m.M[0][2] - m.M[2][0]) / s;
-            x = (m.M[0][1] + m.M[1][0]) / s;
-            y = T(0.25) * s;
-            z = (m.M[1][2] + m.M[2][1]) / s;
-        } 
-        else 
-        {
-            T s = sqrt(T(1) + m.M[2][2] - m.M[0][0] - m.M[1][1]) * T(2); // S=4*qz
-            w = (m.M[1][0] - m.M[0][1]) / s;
-            x = (m.M[0][2] + m.M[2][0]) / s;
-            y = (m.M[1][2] + m.M[2][1]) / s;
-            z = T(0.25) * s;
-        }
-        OVR_MATH_ASSERT(IsNormalized());    // Ensure input matrix is orthogonal
-    }
-
-    // Constructs the quaternion from a rotation matrix
-    explicit Quat(const Matrix3<T>& m)
-    {
-        T trace = m.M[0][0] + m.M[1][1] + m.M[2][2];
-
-        // In almost all cases, the first part is executed.
-        // However, if the trace is not positive, the other
-        // cases arise.
-        if (trace > T(0)) 
-        {
-            T s = sqrt(trace + T(1)) * T(2); // s=4*qw
-            w = T(0.25) * s;
-            x = (m.M[2][1] - m.M[1][2]) / s;
-            y = (m.M[0][2] - m.M[2][0]) / s;
-            z = (m.M[1][0] - m.M[0][1]) / s; 
-        } 
-        else if ((m.M[0][0] > m.M[1][1])&&(m.M[0][0] > m.M[2][2])) 
-        {
-            T s = sqrt(T(1) + m.M[0][0] - m.M[1][1] - m.M[2][2]) * T(2);
-            w = (m.M[2][1] - m.M[1][2]) / s;
-            x = T(0.25) * s;
-            y = (m.M[0][1] + m.M[1][0]) / s;
-            z = (m.M[2][0] + m.M[0][2]) / s;
-        } 
-        else if (m.M[1][1] > m.M[2][2]) 
-        {
-            T s = sqrt(T(1) + m.M[1][1] - m.M[0][0] - m.M[2][2]) * T(2); // S=4*qy
-            w = (m.M[0][2] - m.M[2][0]) / s;
-            x = (m.M[0][1] + m.M[1][0]) / s;
-            y = T(0.25) * s;
-            z = (m.M[1][2] + m.M[2][1]) / s;
-        } 
-        else 
-        {
-            T s = sqrt(T(1) + m.M[2][2] - m.M[0][0] - m.M[1][1]) * T(2); // S=4*qz
-            w = (m.M[1][0] - m.M[0][1]) / s;
-            x = (m.M[0][2] + m.M[2][0]) / s;
-            y = (m.M[1][2] + m.M[2][1]) / s;
-            z = T(0.25) * s;
-        }
-        OVR_MATH_ASSERT(IsNormalized());    // Ensure input matrix is orthogonal
-    }
-
-    bool operator== (const Quat& b) const   { return x == b.x && y == b.y && z == b.z && w == b.w; }
-    bool operator!= (const Quat& b) const   { return x != b.x || y != b.y || z != b.z || w != b.w; }
-
-    Quat  operator+  (const Quat& b) const  { return Quat(x + b.x, y + b.y, z + b.z, w + b.w); }
-    Quat& operator+= (const Quat& b)        { w += b.w; x += b.x; y += b.y; z += b.z; return *this; }
-    Quat  operator-  (const Quat& b) const  { return Quat(x - b.x, y - b.y, z - b.z, w - b.w); }
-    Quat& operator-= (const Quat& b)        { w -= b.w; x -= b.x; y -= b.y; z -= b.z; return *this; }
-
-    Quat  operator*  (T s) const            { return Quat(x * s, y * s, z * s, w * s); }
-    Quat& operator*= (T s)                  { w *= s; x *= s; y *= s; z *= s; return *this; }
-    Quat  operator/  (T s) const            { T rcp = T(1)/s; return Quat(x * rcp, y * rcp, z * rcp, w *rcp); }
-    Quat& operator/= (T s)                  { T rcp = T(1)/s; w *= rcp; x *= rcp; y *= rcp; z *= rcp; return *this; }
-
-    // Compare two quats for equality within tolerance. Returns true if quats match withing tolerance.
-    bool IsEqual(const Quat& b, T tolerance = Math<T>::Tolerance()) const
-    {
-        return Abs(Dot(b)) >= T(1) - tolerance;
-    }
-
-    static T Abs(const T v)                 { return (v >= 0) ? v : -v; }
-
-    // Get Imaginary part vector
-    Vector3<T> Imag() const                 { return Vector3<T>(x,y,z); }
-
-    // Get quaternion length.
-    T       Length() const                  { return sqrt(LengthSq()); }
-
-    // Get quaternion length squared.
-    T       LengthSq() const                { return (x * x + y * y + z * z + w * w); }
-
-    // Simple Euclidean distance in R^4 (not SLERP distance, but at least respects Haar measure)
-    T       Distance(const Quat& q) const    
-    { 
-        T d1 = (*this - q).Length();
-        T d2 = (*this + q).Length(); // Antipodal point check
-        return (d1 < d2) ? d1 : d2;
-    }
-
-    T       DistanceSq(const Quat& q) const
-    {
-        T d1 = (*this - q).LengthSq();
-        T d2 = (*this + q).LengthSq(); // Antipodal point check
-        return (d1 < d2) ? d1 : d2;
-    }
-
-    T       Dot(const Quat& q) const
-    {
-        return x * q.x + y * q.y + z * q.z + w * q.w;
-    }
-
-    // Angle between two quaternions in radians
-    T Angle(const Quat& q) const
-    {
-        return T(2) * Acos(Abs(Dot(q)));
-    }
-
-    // Angle of quaternion
-    T Angle() const
-    {
-        return T(2) * Acos(Abs(w));
-    }
-
-    // Normalize
-    bool    IsNormalized() const            { return fabs(LengthSq() - T(1)) < Math<T>::Tolerance(); }
-
-    void    Normalize()
-    {
-        T s = Length();
-        if (s != T(0))
-            s = T(1) / s;
-        *this *= s;
-    }
-
-    Quat    Normalized() const
-    { 
-        T s = Length();
-        if (s != T(0))
-            s = T(1) / s;
-        return *this * s;
-    }
-
-    inline void EnsureSameHemisphere(const Quat& o)
-    {
-        if (Dot(o) < T(0))
-        {
-            x = -x;
-            y = -y;
-            z = -z;
-            w = -w;
-        }
-    }
-
-    // Returns conjugate of the quaternion. Produces inverse rotation if quaternion is normalized.
-    Quat    Conj() const                    { return Quat(-x, -y, -z, w); }
-
-    // Quaternion multiplication. Combines quaternion rotations, performing the one on the 
-    // right hand side first.
-    Quat  operator* (const Quat& b) const   { return Quat(w * b.x + x * b.w + y * b.z - z * b.y,
-                                                          w * b.y - x * b.z + y * b.w + z * b.x,
-                                                          w * b.z + x * b.y - y * b.x + z * b.w,
-                                                          w * b.w - x * b.x - y * b.y - z * b.z); }
-    const Quat& operator*= (const Quat& b)  { *this = *this * b;  return *this; }
-
-    // 
-    // this^p normalized; same as rotating by this p times.
-    Quat PowNormalized(T p) const
-    {
-        Vector3<T> v;
-        T          a;
-        GetAxisAngle(&v, &a);
-        return Quat(v, a * p);
-    }
-
-    // Compute quaternion that rotates v into alignTo: alignTo = Quat::Align(alignTo, v).Rotate(v).
-    // NOTE: alignTo and v must be normalized.
-    static Quat Align(const Vector3<T>& alignTo, const Vector3<T>& v)
-    {
-        OVR_MATH_ASSERT(alignTo.IsNormalized() && v.IsNormalized());
-        Vector3<T> bisector = (v + alignTo);
-        bisector.Normalize();
-        T cosHalfAngle = v.Dot(bisector); // 0..1
-        if (cosHalfAngle > T(0))
-        {
-            Vector3<T> imag = v.Cross(bisector);
-            return Quat(imag.x, imag.y, imag.z, cosHalfAngle);
-        }
-        else
-        {
-            // cosHalfAngle == 0: a 180 degree rotation.
-            // sinHalfAngle == 1, rotation axis is any axis perpendicular
-            // to alignTo.  Choose axis to include largest magnitude components
-            if (fabs(v.x) > fabs(v.y))
-            {
-                // x or z is max magnitude component
-                // = Cross(v, (0,1,0)).Normalized();
-                T invLen = sqrt(v.x*v.x + v.z*v.z);
-                if (invLen > T(0))
-                    invLen = T(1) / invLen;
-                return Quat(-v.z*invLen, 0, v.x*invLen, 0);
-            }
-            else
-            {
-                // y or z is max magnitude component
-                // = Cross(v, (1,0,0)).Normalized();
-                T invLen = sqrt(v.y*v.y + v.z*v.z);
-                if (invLen > T(0))
-                    invLen = T(1) / invLen;
-                return Quat(0, v.z*invLen, -v.y*invLen, 0);
-            }
-        }
-    }
-
-    // Decompose a quat into quat = swing * twist, where twist is a rotation about axis,
-    // and swing is a rotation perpendicular to axis.
-    Quat GetSwingTwist(const Vector3<T>& axis, Quat* twist) const
-    {
-        OVR_MATH_ASSERT(twist);
-        OVR_MATH_ASSERT(axis.IsNormalized());
-
-        // Create a normalized quaternion from projection of (x,y,z) onto axis
-        T d = axis.Dot(Vector3<T>(x, y, z));
-        *twist = Quat(axis.x*d, axis.y*d, axis.z*d, w);
-        T len = twist->Length();
-        if (len == 0)
-            twist->w = T(1);    // identity
-        else
-            *twist /= len;       // normalize
-
-        return *this * twist->Inverted();
-    }
-
-    // Normalized linear interpolation of quaternions
-    // NOTE: This function is a bad approximation of Slerp()
-    // when the angle between the *this and b is large.
-    // Use FastSlerp() or Slerp() instead.
-    Quat Lerp(const Quat& b, T s) const
-    {
-        return (*this * (T(1) - s) + b * (Dot(b) < 0 ? -s : s)).Normalized();
-    }
-
-    // Spherical linear interpolation between rotations
-    Quat Slerp(const Quat& b, T s) const
-    {
-        Vector3<T> delta = (b * this->Inverted()).ToRotationVector();
-        return (FromRotationVector(delta * s) * *this).Normalized();    // normalize so errors don't accumulate
-    }
-
-    // Spherical linear interpolation: much faster for small rotations, accurate for large rotations. See FastTo/FromRotationVector
-    Quat FastSlerp(const Quat& b, T s) const
-    {
-        Vector3<T> delta = (b * this->Inverted()).FastToRotationVector();
-        return (FastFromRotationVector(delta * s, false) * *this).Normalized();
-    }
-
-    // Rotate transforms vector in a manner that matches Matrix rotations (counter-clockwise,
-    // assuming negative direction of the axis). Standard formula: q(t) * V * q(t)^-1. 
-    Vector3<T> Rotate(const Vector3<T>& v) const
-    {
-        OVR_MATH_ASSERT(isnan(w) || IsNormalized());
-
-        // rv = q * (v,0) * q'
-        // Same as rv = v + real * cross(imag,v)*2 + cross(imag, cross(imag,v)*2);
-
-        // uv = 2 * Imag().Cross(v);
-        T uvx = T(2) * (y*v.z - z*v.y);
-        T uvy = T(2) * (z*v.x - x*v.z);
-        T uvz = T(2) * (x*v.y - y*v.x);
-
-        // return v + Real()*uv + Imag().Cross(uv);
-        return Vector3<T>(v.x + w*uvx + y*uvz - z*uvy,
-                          v.y + w*uvy + z*uvx - x*uvz,
-                          v.z + w*uvz + x*uvy - y*uvx);
-    }
-
-    // Rotation by inverse of *this
-    Vector3<T> InverseRotate(const Vector3<T>& v) const
-    {
-        OVR_MATH_ASSERT(IsNormalized());
-
-        // rv = q' * (v,0) * q
-        // Same as rv = v + real * cross(-imag,v)*2 + cross(-imag, cross(-imag,v)*2);
-        //      or rv = v - real * cross(imag,v)*2 + cross(imag, cross(imag,v)*2);
-
-        // uv = 2 * Imag().Cross(v);
-        T uvx = T(2) * (y*v.z - z*v.y);
-        T uvy = T(2) * (z*v.x - x*v.z);
-        T uvz = T(2) * (x*v.y - y*v.x);
-
-        // return v - Real()*uv + Imag().Cross(uv);
-        return Vector3<T>(v.x - w*uvx + y*uvz - z*uvy,
-                          v.y - w*uvy + z*uvx - x*uvz,
-                          v.z - w*uvz + x*uvy - y*uvx);
-    }
-    
-    // Inversed quaternion rotates in the opposite direction.
-    Quat        Inverted() const
-    {
-        return Quat(-x, -y, -z, w);
-    }
-
-    Quat        Inverse() const
-    {
-        return Quat(-x, -y, -z, w);
-    }
-
-    // Sets this quaternion to the one rotates in the opposite direction.
-    void        Invert()
-    {
-        *this = Quat(-x, -y, -z, w);
-    }
-    
-    // Time integration of constant angular velocity over dt
-    Quat TimeIntegrate(Vector3<T> angularVelocity, T dt) const
-    {
-        // solution is: this * exp( omega*dt/2 ); FromRotationVector(v) gives exp(v*.5).
-        return (*this * FastFromRotationVector(angularVelocity * dt, false)).Normalized();
-    }
-
-    // Time integration of constant angular acceleration and velocity over dt
-    // These are the first two terms of the "Magnus expansion" of the solution
-    //
-    //   o = o * exp( W=(W1 + W2 + W3+...) * 0.5 );
-    //
-    //  omega1 = (omega + omegaDot*dt)
-    //  W1 = (omega + omega1)*dt/2              
-    //  W2 = cross(omega, omega1)/12*dt^2 % (= -cross(omega_dot, omega)/12*dt^3)
-    // Terms 3 and beyond are vanishingly small:
-    //  W3 = cross(omega_dot, cross(omega_dot, omega))/240*dt^5 
-    //
-    Quat TimeIntegrate(Vector3<T> angularVelocity, Vector3<T> angularAcceleration, T dt) const
-    {
-        const Vector3<T>& omega = angularVelocity;
-        const Vector3<T>& omegaDot = angularAcceleration;
-
-        Vector3<T> omega1 = (omega + omegaDot * dt);
-        Vector3<T> W = ( (omega + omega1) + omega.Cross(omega1) * (dt/T(6)) ) * (dt/T(2));
-
-        // FromRotationVector(v) is exp(v*.5)
-        return (*this * FastFromRotationVector(W, false)).Normalized();
-    }
-
-    // Decompose rotation into three rotations:
-    // roll radians about Z axis, then pitch radians about X axis, then yaw radians about Y axis.
-    // Call with nullptr if a return value is not needed.
-    void GetYawPitchRoll(T* yaw, T* pitch, T* roll) const
-    {
-        return GetEulerAngles<Axis_Y, Axis_X, Axis_Z, Rotate_CCW, Handed_R>(yaw, pitch, roll);
-    }
-
-    // GetEulerAngles extracts Euler angles from the quaternion, in the specified order of
-    // axis rotations and the specified coordinate system. Right-handed coordinate system
-    // is the default, with CCW rotations while looking in the negative axis direction.
-    // Here a,b,c, are the Yaw/Pitch/Roll angles to be returned.
-    // Rotation order is c, b, a:
-    // rotation c around axis A3
-    // is followed by rotation b around axis A2
-    // is followed by rotation a around axis A1
-    // rotations are CCW or CW (D) in LH or RH coordinate system (S)
-    // 
-    template <Axis A1, Axis A2, Axis A3, RotateDirection D, HandedSystem S>
-    void GetEulerAngles(T *a, T *b, T *c) const 
-    {
-        OVR_MATH_ASSERT(IsNormalized());
-        OVR_MATH_STATIC_ASSERT((A1 != A2) && (A2 != A3) && (A1 != A3), "(A1 != A2) && (A2 != A3) && (A1 != A3)");
-
-        T Q[3] = { x, y, z };  //Quaternion components x,y,z
-
-        T ww  = w*w;
-        T Q11 = Q[A1]*Q[A1];
-        T Q22 = Q[A2]*Q[A2];
-        T Q33 = Q[A3]*Q[A3];
-
-        T psign = T(-1);
-        // Determine whether even permutation
-        if (((A1 + 1) % 3 == A2) && ((A2 + 1) % 3 == A3))
-            psign = T(1);
-        
-        T s2 = psign * T(2) * (psign*w*Q[A2] + Q[A1]*Q[A3]);
-
-        T singularityRadius = Math<T>::SingularityRadius();
-        if (s2 < T(-1) + singularityRadius)
-        { // South pole singularity
-            if (a) *a = T(0);
-            if (b) *b = -S*D*((T)MATH_DOUBLE_PIOVER2);
-            if (c) *c = S*D*atan2(T(2)*(psign*Q[A1] * Q[A2] + w*Q[A3]), ww + Q22 - Q11 - Q33 );
-        }
-        else if (s2 > T(1) - singularityRadius)
-        {  // North pole singularity
-            if (a) *a = T(0);
-            if (b) *b = S*D*((T)MATH_DOUBLE_PIOVER2);
-            if (c) *c = S*D*atan2(T(2)*(psign*Q[A1] * Q[A2] + w*Q[A3]), ww + Q22 - Q11 - Q33);
-        }
-        else
-        {
-            if (a) *a = -S*D*atan2(T(-2)*(w*Q[A1] - psign*Q[A2] * Q[A3]), ww + Q33 - Q11 - Q22);
-            if (b) *b = S*D*asin(s2);
-            if (c) *c = S*D*atan2(T(2)*(w*Q[A3] - psign*Q[A1] * Q[A2]), ww + Q11 - Q22 - Q33);
-        }      
-    }
-
-    template <Axis A1, Axis A2, Axis A3, RotateDirection D>
-    void GetEulerAngles(T *a, T *b, T *c) const
-    { GetEulerAngles<A1, A2, A3, D, Handed_R>(a, b, c); }
-
-    template <Axis A1, Axis A2, Axis A3>
-    void GetEulerAngles(T *a, T *b, T *c) const
-    { GetEulerAngles<A1, A2, A3, Rotate_CCW, Handed_R>(a, b, c); }
-
-    // GetEulerAnglesABA extracts Euler angles from the quaternion, in the specified order of
-    // axis rotations and the specified coordinate system. Right-handed coordinate system
-    // is the default, with CCW rotations while looking in the negative axis direction.
-    // Here a,b,c, are the Yaw/Pitch/Roll angles to be returned.
-    // rotation a around axis A1
-    // is followed by rotation b around axis A2
-    // is followed by rotation c around axis A1
-    // Rotations are CCW or CW (D) in LH or RH coordinate system (S)
-    template <Axis A1, Axis A2, RotateDirection D, HandedSystem S>
-    void GetEulerAnglesABA(T *a, T *b, T *c) const
-    {
-        OVR_MATH_ASSERT(IsNormalized());
-        OVR_MATH_STATIC_ASSERT(A1 != A2, "A1 != A2");
-
-        T Q[3] = {x, y, z}; // Quaternion components
-
-        // Determine the missing axis that was not supplied
-        int m = 3 - A1 - A2;
-
-        T ww = w*w;
-        T Q11 = Q[A1]*Q[A1];
-        T Q22 = Q[A2]*Q[A2];
-        T Qmm = Q[m]*Q[m];
-
-        T psign = T(-1);
-        if ((A1 + 1) % 3 == A2) // Determine whether even permutation
-        {
-            psign = T(1);
-        }
-
-        T c2 = ww + Q11 - Q22 - Qmm;
-        T singularityRadius = Math<T>::SingularityRadius();
-        if (c2 < T(-1) + singularityRadius)
-        { // South pole singularity
-            if (a) *a = T(0);
-            if (b) *b = S*D*((T)MATH_DOUBLE_PI);
-            if (c) *c = S*D*atan2(T(2)*(w*Q[A1] - psign*Q[A2] * Q[m]),
-                            ww + Q22 - Q11 - Qmm);
-        }
-        else if (c2 > T(1) - singularityRadius)
-        {  // North pole singularity
-            if (a) *a = T(0);
-            if (b) *b = T(0);
-            if (c) *c = S*D*atan2(T(2)*(w*Q[A1] - psign*Q[A2] * Q[m]),
-                           ww + Q22 - Q11 - Qmm);
-        }
-        else
-        {
-            if (a) *a = S*D*atan2(psign*w*Q[m] + Q[A1] * Q[A2],
-                           w*Q[A2] -psign*Q[A1]*Q[m]);
-            if (b) *b = S*D*acos(c2);
-            if (c) *c = S*D*atan2(-psign*w*Q[m] + Q[A1] * Q[A2],
-                           w*Q[A2] + psign*Q[A1]*Q[m]);
-        }
-    }
-};
-
-typedef Quat<float>  Quatf;
-typedef Quat<double> Quatd;
-
-OVR_MATH_STATIC_ASSERT((sizeof(Quatf) == 4*sizeof(float)), "sizeof(Quatf) failure");
-OVR_MATH_STATIC_ASSERT((sizeof(Quatd) == 4*sizeof(double)), "sizeof(Quatd) failure");
-
-//-------------------------------------------------------------------------------------
-// ***** Pose
-//
-// Position and orientation combined.
-//
-// This structure needs to be the same size and layout on 32-bit and 64-bit arch.
-// Update OVR_PadCheck.cpp when updating this object.
-template<class T>
-class Pose
-{
-public:
-    typedef typename CompatibleTypes<Pose<T> >::Type CompatibleType;
-
-    Pose() { }
-    Pose(const Quat<T>& orientation, const Vector3<T>& pos)
-        : Rotation(orientation), Translation(pos) {  }
-    Pose(const Pose& s)
-        : Rotation(s.Rotation), Translation(s.Translation) {  }
-    Pose(const Matrix3<T>& R, const Vector3<T>& t)
-        : Rotation((Quat<T>)R), Translation(t) {  }
-    Pose(const CompatibleType& s)
-        : Rotation(s.Orientation), Translation(s.Position) {  }
-
-    explicit Pose(const Pose<typename Math<T>::OtherFloatType> &s)
-        : Rotation(s.Rotation), Translation(s.Translation)
-    {
-        // Ensure normalized rotation if converting from float to double
-        if (sizeof(T) > sizeof(typename Math<T>::OtherFloatType))
-            Rotation.Normalize();
-    }
-
-    static Pose Identity() { return Pose(Quat<T>(0, 0, 0, 1), Vector3<T>(0, 0, 0)); }
-
-    void SetIdentity() { Rotation = Quat<T>(0, 0, 0, 1); Translation = Vector3<T>(0, 0, 0); }
-
-    // used to make things obviously broken if someone tries to use the value
-    void SetInvalid() { Rotation = Quat<T>(NAN, NAN, NAN, NAN); Translation = Vector3<T>(NAN, NAN, NAN); }
-
-    bool IsEqual(const Pose&b, T tolerance = Math<T>::Tolerance()) const
-    {
-        return Translation.IsEqual(b.Translation, tolerance) && Rotation.IsEqual(b.Rotation, tolerance);
-    }
-
-    operator typename CompatibleTypes<Pose<T> >::Type () const
-    {
-        typename CompatibleTypes<Pose<T> >::Type result;
-        result.Orientation = Rotation;
-        result.Position = Translation;
-        return result;
-    }
-
-    Quat<T>    Rotation;
-    Vector3<T> Translation;
-    
-    OVR_MATH_STATIC_ASSERT((sizeof(T) == sizeof(double) || sizeof(T) == sizeof(float)), "(sizeof(T) == sizeof(double) || sizeof(T) == sizeof(float))");
-
-    void ToArray(T* arr) const
-    {
-        T temp[7] =  { Rotation.x, Rotation.y, Rotation.z, Rotation.w, Translation.x, Translation.y, Translation.z };
-        for (int i = 0; i < 7; i++) arr[i] = temp[i];
-    }
-
-    static Pose<T> FromArray(const T* v)
-    {
-        Quat<T> rotation(v[0], v[1], v[2], v[3]);
-        Vector3<T> translation(v[4], v[5], v[6]);
-        // Ensure rotation is normalized, in case it was originally a float, stored in a .json file, etc.
-        return Pose<T>(rotation.Normalized(), translation);
-    }
-
-    Vector3<T> Rotate(const Vector3<T>& v) const
-    {
-        return Rotation.Rotate(v);
-    }
-
-    Vector3<T> InverseRotate(const Vector3<T>& v) const
-    {
-        return Rotation.InverseRotate(v);
-    }
-
-    Vector3<T> Translate(const Vector3<T>& v) const
-    {
-        return v + Translation;
-    }
-
-    Vector3<T> Transform(const Vector3<T>& v) const
-    {
-        return Rotate(v) + Translation;
-    }
-
-    Vector3<T> InverseTransform(const Vector3<T>& v) const
-    {
-        return InverseRotate(v - Translation);
-    }
-
-
-    Vector3<T> Apply(const Vector3<T>& v) const
-    {
-        return Transform(v);
-    }
-
-    Pose operator*(const Pose& other) const   
-    {
-        return Pose(Rotation * other.Rotation, Apply(other.Translation));
-    }
-
-    Pose Inverted() const   
-    {
-        Quat<T> inv = Rotation.Inverted();
-        return Pose(inv, inv.Rotate(-Translation));
-    }
-
-    // Interpolation between two poses: translation is interpolated with Lerp(),
-    // and rotations are interpolated with Slerp().
-    Pose Lerp(const Pose& b, T s)
-    {
-        return Pose(Rotation.Slerp(b.Rotation, s), Translation.Lerp(b.Translation, s));
-    }
-
-    // Similar to Lerp above, except faster in case of small rotation differences.  See Quat<T>::FastSlerp.
-    Pose FastLerp(const Pose& b, T s)
-    {
-        return Pose(Rotation.FastSlerp(b.Rotation, s), Translation.Lerp(b.Translation, s));
-    }
-
-    Pose TimeIntegrate(const Vector3<T>& linearVelocity, const Vector3<T>& angularVelocity, T dt) const
-    {
-        return Pose(
-                (Rotation * Quat<T>::FastFromRotationVector(angularVelocity * dt, false)).Normalized(),
-                Translation + linearVelocity * dt);
-    }
-
-    Pose TimeIntegrate(const Vector3<T>& linearVelocity, const Vector3<T>& linearAcceleration,
-                       const Vector3<T>& angularVelocity, const Vector3<T>& angularAcceleration,
-                       T dt) const
-    {
-        return Pose(Rotation.TimeIntegrate(angularVelocity, angularAcceleration, dt),
-                    Translation + linearVelocity*dt + linearAcceleration*dt*dt * T(0.5));
-    }
-};
-
-typedef Pose<float>  Posef;
-typedef Pose<double> Posed;
-
-OVR_MATH_STATIC_ASSERT((sizeof(Posed) == sizeof(Quatd) + sizeof(Vector3d)), "sizeof(Posed) failure");
-OVR_MATH_STATIC_ASSERT((sizeof(Posef) == sizeof(Quatf) + sizeof(Vector3f)), "sizeof(Posef) failure");
-    
-
-//-------------------------------------------------------------------------------------
-// ***** Matrix4
-//
-// Matrix4 is a 4x4 matrix used for 3d transformations and projections.
-// Translation stored in the last column.
-// The matrix is stored in row-major order in memory, meaning that values
-// of the first row are stored before the next one.
-//
-// The arrangement of the matrix is chosen to be in Right-Handed 
-// coordinate system and counterclockwise rotations when looking down
-// the axis
-//
-// Transformation Order:
-//   - Transformations are applied from right to left, so the expression
-//     M1 * M2 * M3 * V means that the vector V is transformed by M3 first,
-//     followed by M2 and M1. 
-//
-// Coordinate system: Right Handed
-//
-// Rotations: Counterclockwise when looking down the axis. All angles are in radians.
-//    
-//  | sx   01   02   tx |    // First column  (sx, 10, 20): Axis X basis vector.
-//  | 10   sy   12   ty |    // Second column (01, sy, 21): Axis Y basis vector.
-//  | 20   21   sz   tz |    // Third columnt (02, 12, sz): Axis Z basis vector.
-//  | 30   31   32   33 |
-//
-//  The basis vectors are first three columns.
-
-template<class T>
-class Matrix4
-{
-public:
-    typedef T ElementType;
-    static const size_t Dimension = 4;
-
-    T M[4][4];
-
-    enum NoInitType { NoInit };
-
-    // Construct with no memory initialization.
-    Matrix4(NoInitType) { }
-
-    // By default, we construct identity matrix.
-    Matrix4()
-    {
-        M[0][0] = M[1][1] = M[2][2] = M[3][3] = T(1);
-        M[0][1] = M[1][0] = M[2][3] = M[3][1] = T(0);
-        M[0][2] = M[1][2] = M[2][0] = M[3][2] = T(0);
-        M[0][3] = M[1][3] = M[2][1] = M[3][0] = T(0);
-    }
-
-    Matrix4(T m11, T m12, T m13, T m14,
-            T m21, T m22, T m23, T m24,
-            T m31, T m32, T m33, T m34,
-            T m41, T m42, T m43, T m44)
-    {
-        M[0][0] = m11; M[0][1] = m12; M[0][2] = m13; M[0][3] = m14;
-        M[1][0] = m21; M[1][1] = m22; M[1][2] = m23; M[1][3] = m24;
-        M[2][0] = m31; M[2][1] = m32; M[2][2] = m33; M[2][3] = m34;
-        M[3][0] = m41; M[3][1] = m42; M[3][2] = m43; M[3][3] = m44;
-    }
-
-    Matrix4(T m11, T m12, T m13,
-            T m21, T m22, T m23,
-            T m31, T m32, T m33)
-    {
-        M[0][0] = m11; M[0][1] = m12; M[0][2] = m13; M[0][3] = T(0);
-        M[1][0] = m21; M[1][1] = m22; M[1][2] = m23; M[1][3] = T(0);
-        M[2][0] = m31; M[2][1] = m32; M[2][2] = m33; M[2][3] = T(0);
-        M[3][0] = T(0);   M[3][1] = T(0);   M[3][2] = T(0);   M[3][3] = T(1);
-    }
-
-    explicit Matrix4(const Matrix3<T>& m)
-    {
-        M[0][0] = m.M[0][0]; M[0][1] = m.M[0][1]; M[0][2] = m.M[0][2]; M[0][3] = T(0);
-        M[1][0] = m.M[1][0]; M[1][1] = m.M[1][1]; M[1][2] = m.M[1][2]; M[1][3] = T(0);
-        M[2][0] = m.M[2][0]; M[2][1] = m.M[2][1]; M[2][2] = m.M[2][2]; M[2][3] = T(0);
-        M[3][0] = T(0);         M[3][1] = T(0);         M[3][2] = T(0);         M[3][3] = T(1);
-    }
-
-    explicit Matrix4(const Quat<T>& q)
-    {
-        OVR_MATH_ASSERT(q.IsNormalized());
-        T ww = q.w*q.w;
-        T xx = q.x*q.x;
-        T yy = q.y*q.y;
-        T zz = q.z*q.z;
-
-        M[0][0] = ww + xx - yy - zz;       M[0][1] = 2 * (q.x*q.y - q.w*q.z); M[0][2] = 2 * (q.x*q.z + q.w*q.y); M[0][3] = T(0);
-        M[1][0] = 2 * (q.x*q.y + q.w*q.z); M[1][1] = ww - xx + yy - zz;       M[1][2] = 2 * (q.y*q.z - q.w*q.x); M[1][3] = T(0);
-        M[2][0] = 2 * (q.x*q.z - q.w*q.y); M[2][1] = 2 * (q.y*q.z + q.w*q.x); M[2][2] = ww - xx - yy + zz;       M[2][3] = T(0);
-        M[3][0] = T(0);                       M[3][1] = T(0);                       M[3][2] = T(0);                       M[3][3] = T(1);
-    }
-
-    explicit Matrix4(const Pose<T>& p)
-    {
-        Matrix4 result(p.Rotation);
-        result.SetTranslation(p.Translation);
-        *this = result;
-    }
-
-
-    // C-interop support
-    explicit Matrix4(const Matrix4<typename Math<T>::OtherFloatType> &src)
-    {
-        for (int i = 0; i < 4; i++)
-            for (int j = 0; j < 4; j++)
-                M[i][j] = (T)src.M[i][j];
-    }
-
-    // C-interop support.
-    Matrix4(const typename CompatibleTypes<Matrix4<T> >::Type& s) 
-    {
-        OVR_MATH_STATIC_ASSERT(sizeof(s) == sizeof(Matrix4), "sizeof(s) == sizeof(Matrix4)");
-        memcpy(M, s.M, sizeof(M));
-    }
-
-    operator typename CompatibleTypes<Matrix4<T> >::Type () const
-    {
-        typename CompatibleTypes<Matrix4<T> >::Type result;
-        OVR_MATH_STATIC_ASSERT(sizeof(result) == sizeof(Matrix4), "sizeof(result) == sizeof(Matrix4)");
-        memcpy(result.M, M, sizeof(M));
-        return result;
-    }
-
-    void ToString(char* dest, size_t destsize) const
-    {
-        size_t pos = 0;
-        for (int r=0; r<4; r++)
-        {
-            for (int c=0; c<4; c++)
-            {
-                pos += OVRMath_sprintf(dest+pos, destsize-pos, "%g ", M[r][c]);
-            }
-        }
-    }
-
-    static Matrix4 FromString(const char* src)
-    {
-        Matrix4 result;
-        if (src)
-        {
-            for (int r = 0; r < 4; r++)
-            {
-                for (int c = 0; c < 4; c++)
-                {
-                    result.M[r][c] = (T)atof(src);
-                    while (*src && *src != ' ')
-                    {
-                        src++;
-                    }
-                    while (*src && *src == ' ')
-                    {
-                        src++;
-                    }
-                }
-            }
-        }
-        return result;
-    }
-
-    static Matrix4 Identity()  { return Matrix4(); }
-
-    void SetIdentity()
-    {
-        M[0][0] = M[1][1] = M[2][2] = M[3][3] = T(1);
-        M[0][1] = M[1][0] = M[2][3] = M[3][1] = T(0);
-        M[0][2] = M[1][2] = M[2][0] = M[3][2] = T(0);
-        M[0][3] = M[1][3] = M[2][1] = M[3][0] = T(0);
-    }
-
-    void SetXBasis(const Vector3<T>& v)
-    {
-        M[0][0] = v.x;
-        M[1][0] = v.y;
-        M[2][0] = v.z;
-    }
-    Vector3<T> GetXBasis() const
-    {
-        return Vector3<T>(M[0][0], M[1][0], M[2][0]);
-    }
-
-    void SetYBasis(const Vector3<T> & v)
-    {
-        M[0][1] = v.x;
-        M[1][1] = v.y;
-        M[2][1] = v.z;
-    }
-    Vector3<T> GetYBasis() const
-    {
-        return Vector3<T>(M[0][1], M[1][1], M[2][1]);
-    }
-
-    void SetZBasis(const Vector3<T> & v)
-    {
-        M[0][2] = v.x;
-        M[1][2] = v.y;
-        M[2][2] = v.z;
-    }
-    Vector3<T> GetZBasis() const
-    {
-        return Vector3<T>(M[0][2], M[1][2], M[2][2]);
-    }
-
-    bool operator== (const Matrix4& b) const
-    {
-        bool isEqual = true;
-        for (int i = 0; i < 4; i++)
-            for (int j = 0; j < 4; j++)
-                isEqual &= (M[i][j] == b.M[i][j]);
-
-        return isEqual;
-    }
-
-    Matrix4 operator+ (const Matrix4& b) const
-    {
-        Matrix4 result(*this);
-        result += b;
-        return result;
-    }
-
-    Matrix4& operator+= (const Matrix4& b)
-    {
-        for (int i = 0; i < 4; i++)
-            for (int j = 0; j < 4; j++)
-                M[i][j] += b.M[i][j];
-        return *this;
-    }
-
-    Matrix4 operator- (const Matrix4& b) const
-    {
-        Matrix4 result(*this);
-        result -= b;
-        return result;
-    }
-
-    Matrix4& operator-= (const Matrix4& b)
-    {
-        for (int i = 0; i < 4; i++)
-            for (int j = 0; j < 4; j++)
-                M[i][j] -= b.M[i][j];
-        return *this;
-    }
-
-    // Multiplies two matrices into destination with minimum copying.
-    static Matrix4& Multiply(Matrix4* d, const Matrix4& a, const Matrix4& b)
-    {
-        OVR_MATH_ASSERT((d != &a) && (d != &b));
-        int i = 0;
-        do {
-            d->M[i][0] = a.M[i][0] * b.M[0][0] + a.M[i][1] * b.M[1][0] + a.M[i][2] * b.M[2][0] + a.M[i][3] * b.M[3][0];
-            d->M[i][1] = a.M[i][0] * b.M[0][1] + a.M[i][1] * b.M[1][1] + a.M[i][2] * b.M[2][1] + a.M[i][3] * b.M[3][1];
-            d->M[i][2] = a.M[i][0] * b.M[0][2] + a.M[i][1] * b.M[1][2] + a.M[i][2] * b.M[2][2] + a.M[i][3] * b.M[3][2];
-            d->M[i][3] = a.M[i][0] * b.M[0][3] + a.M[i][1] * b.M[1][3] + a.M[i][2] * b.M[2][3] + a.M[i][3] * b.M[3][3];
-        } while((++i) < 4);
-
-        return *d;
-    }
-
-    Matrix4 operator* (const Matrix4& b) const
-    {
-        Matrix4 result(Matrix4::NoInit);
-        Multiply(&result, *this, b);
-        return result;
-    }
-
-    Matrix4& operator*= (const Matrix4& b)
-    {
-        return Multiply(this, Matrix4(*this), b);
-    }
-
-    Matrix4 operator* (T s) const
-    {
-        Matrix4 result(*this);
-        result *= s;
-        return result;
-    }
-
-    Matrix4& operator*= (T s)
-    {
-        for (int i = 0; i < 4; i++)
-            for (int j = 0; j < 4; j++)
-                M[i][j] *= s;
-        return *this;
-    }
-
-
-    Matrix4 operator/ (T s) const
-    {
-        Matrix4 result(*this);
-        result /= s;
-        return result;
-    }
-
-    Matrix4& operator/= (T s)
-    {
-        for (int i = 0; i < 4; i++)
-            for (int j = 0; j < 4; j++)
-                M[i][j] /= s;
-        return *this;
-    }
-
-    Vector3<T> Transform(const Vector3<T>& v) const
-    {
-        const T rcpW = T(1) / (M[3][0] * v.x + M[3][1] * v.y + M[3][2] * v.z + M[3][3]);
-        return Vector3<T>((M[0][0] * v.x + M[0][1] * v.y + M[0][2] * v.z + M[0][3]) * rcpW,
-                          (M[1][0] * v.x + M[1][1] * v.y + M[1][2] * v.z + M[1][3]) * rcpW,
-                          (M[2][0] * v.x + M[2][1] * v.y + M[2][2] * v.z + M[2][3]) * rcpW);
-    }
-
-    Vector4<T> Transform(const Vector4<T>& v) const
-    {
-        return Vector4<T>(M[0][0] * v.x + M[0][1] * v.y + M[0][2] * v.z + M[0][3] * v.w,
-                          M[1][0] * v.x + M[1][1] * v.y + M[1][2] * v.z + M[1][3] * v.w,
-                          M[2][0] * v.x + M[2][1] * v.y + M[2][2] * v.z + M[2][3] * v.w,
-                          M[3][0] * v.x + M[3][1] * v.y + M[3][2] * v.z + M[3][3] * v.w);
-    }
-
-    Matrix4 Transposed() const
-    {
-        return Matrix4(M[0][0], M[1][0], M[2][0], M[3][0],
-                        M[0][1], M[1][1], M[2][1], M[3][1],
-                        M[0][2], M[1][2], M[2][2], M[3][2],
-                        M[0][3], M[1][3], M[2][3], M[3][3]);
-    }
-
-    void     Transpose()
-    {
-        *this = Transposed();
-    }
-
-
-    T SubDet (const size_t* rows, const size_t* cols) const
-    {
-        return M[rows[0]][cols[0]] * (M[rows[1]][cols[1]] * M[rows[2]][cols[2]] - M[rows[1]][cols[2]] * M[rows[2]][cols[1]])
-             - M[rows[0]][cols[1]] * (M[rows[1]][cols[0]] * M[rows[2]][cols[2]] - M[rows[1]][cols[2]] * M[rows[2]][cols[0]])
-             + M[rows[0]][cols[2]] * (M[rows[1]][cols[0]] * M[rows[2]][cols[1]] - M[rows[1]][cols[1]] * M[rows[2]][cols[0]]);
-    }
-
-    T Cofactor(size_t I, size_t J) const
-    {
-        const size_t indices[4][3] = {{1,2,3},{0,2,3},{0,1,3},{0,1,2}};
-        return ((I+J)&1) ? -SubDet(indices[I],indices[J]) : SubDet(indices[I],indices[J]);
-    }
-
-    T    Determinant() const
-    {
-        return M[0][0] * Cofactor(0,0) + M[0][1] * Cofactor(0,1) + M[0][2] * Cofactor(0,2) + M[0][3] * Cofactor(0,3);
-    }
-
-    Matrix4 Adjugated() const
-    {
-        return Matrix4(Cofactor(0,0), Cofactor(1,0), Cofactor(2,0), Cofactor(3,0), 
-                        Cofactor(0,1), Cofactor(1,1), Cofactor(2,1), Cofactor(3,1), 
-                        Cofactor(0,2), Cofactor(1,2), Cofactor(2,2), Cofactor(3,2),
-                        Cofactor(0,3), Cofactor(1,3), Cofactor(2,3), Cofactor(3,3));
-    }
-
-    Matrix4 Inverted() const
-    {
-        T det = Determinant();
-        OVR_MATH_ASSERT(det != 0);
-        return Adjugated() * (T(1)/det);
-    }
-
-    void Invert()
-    {
-        *this = Inverted();
-    }
-
-    // This is more efficient than general inverse, but ONLY works
-    // correctly if it is a homogeneous transform matrix (rot + trans)
-    Matrix4 InvertedHomogeneousTransform() const
-    {
-        // Make the inverse rotation matrix
-        Matrix4 rinv = this->Transposed();
-        rinv.M[3][0] = rinv.M[3][1] = rinv.M[3][2] = T(0);
-        // Make the inverse translation matrix
-        Vector3<T> tvinv(-M[0][3],-M[1][3],-M[2][3]);
-        Matrix4 tinv = Matrix4::Translation(tvinv);
-        return rinv * tinv;  // "untranslate", then "unrotate"
-    }
-
-    // This is more efficient than general inverse, but ONLY works
-    // correctly if it is a homogeneous transform matrix (rot + trans)
-    void InvertHomogeneousTransform()
-    {
-        *this = InvertedHomogeneousTransform();
-    }
-
-    // Matrix to Euler Angles conversion
-    // a,b,c, are the YawPitchRoll angles to be returned
-    // rotation a around axis A1
-    // is followed by rotation b around axis A2
-    // is followed by rotation c around axis A3
-    // rotations are CCW or CW (D) in LH or RH coordinate system (S)
-    template <Axis A1, Axis A2, Axis A3, RotateDirection D, HandedSystem S>
-    void ToEulerAngles(T *a, T *b, T *c) const
-    {
-        OVR_MATH_STATIC_ASSERT((A1 != A2) && (A2 != A3) && (A1 != A3), "(A1 != A2) && (A2 != A3) && (A1 != A3)");
-
-        T psign = T(-1);
-        if (((A1 + 1) % 3 == A2) && ((A2 + 1) % 3 == A3)) // Determine whether even permutation
-            psign = T(1);
-        
-        T pm = psign*M[A1][A3];
-        T singularityRadius = Math<T>::SingularityRadius();
-        if (pm < T(-1) + singularityRadius)
-        { // South pole singularity
-            *a = T(0);
-            *b = -S*D*((T)MATH_DOUBLE_PIOVER2);
-            *c = S*D*atan2( psign*M[A2][A1], M[A2][A2] );
-        }
-        else if (pm > T(1) - singularityRadius)
-        { // North pole singularity
-            *a = T(0);
-            *b = S*D*((T)MATH_DOUBLE_PIOVER2);
-            *c = S*D*atan2( psign*M[A2][A1], M[A2][A2] );
-        }
-        else
-        { // Normal case (nonsingular)
-            *a = S*D*atan2( -psign*M[A2][A3], M[A3][A3] );
-            *b = S*D*asin(pm);
-            *c = S*D*atan2( -psign*M[A1][A2], M[A1][A1] );
-        }
-    }
-
-    // Matrix to Euler Angles conversion
-    // a,b,c, are the YawPitchRoll angles to be returned
-    // rotation a around axis A1
-    // is followed by rotation b around axis A2
-    // is followed by rotation c around axis A1
-    // rotations are CCW or CW (D) in LH or RH coordinate system (S)
-    template <Axis A1, Axis A2, RotateDirection D, HandedSystem S>
-    void ToEulerAnglesABA(T *a, T *b, T *c) const
-    {        
-         OVR_MATH_STATIC_ASSERT(A1 != A2, "A1 != A2");
-  
-        // Determine the axis that was not supplied
-        int m = 3 - A1 - A2;
-
-        T psign = T(-1);
-        if ((A1 + 1) % 3 == A2) // Determine whether even permutation
-            psign = T(1);
-
-        T c2 = M[A1][A1];
-        T singularityRadius = Math<T>::SingularityRadius();
-        if (c2 < T(-1) + singularityRadius)
-        { // South pole singularity
-            *a = T(0);
-            *b = S*D*((T)MATH_DOUBLE_PI);
-            *c = S*D*atan2( -psign*M[A2][m],M[A2][A2]);
-        }
-        else if (c2 > T(1) - singularityRadius)
-        { // North pole singularity
-            *a = T(0);
-            *b = T(0);
-            *c = S*D*atan2( -psign*M[A2][m],M[A2][A2]);
-        }
-        else
-        { // Normal case (nonsingular)
-            *a = S*D*atan2( M[A2][A1],-psign*M[m][A1]);
-            *b = S*D*acos(c2);
-            *c = S*D*atan2( M[A1][A2],psign*M[A1][m]);
-        }
-    }
-  
-    // Creates a matrix that converts the vertices from one coordinate system
-    // to another.
-    static Matrix4 AxisConversion(const WorldAxes& to, const WorldAxes& from)
-    {        
-        // Holds axis values from the 'to' structure
-        int toArray[3] = { to.XAxis, to.YAxis, to.ZAxis };
-
-        // The inverse of the toArray
-        int inv[4]; 
-        inv[0] = inv[abs(to.XAxis)] = 0;
-        inv[abs(to.YAxis)] = 1;
-        inv[abs(to.ZAxis)] = 2;
-
-        Matrix4 m(0,  0,  0, 
-                  0,  0,  0,
-                  0,  0,  0);
-
-        // Only three values in the matrix need to be changed to 1 or -1.
-        m.M[inv[abs(from.XAxis)]][0] = T(from.XAxis/toArray[inv[abs(from.XAxis)]]);
-        m.M[inv[abs(from.YAxis)]][1] = T(from.YAxis/toArray[inv[abs(from.YAxis)]]);
-        m.M[inv[abs(from.ZAxis)]][2] = T(from.ZAxis/toArray[inv[abs(from.ZAxis)]]);
-        return m;
-    } 
-
-
-    // Creates a matrix for translation by vector
-    static Matrix4 Translation(const Vector3<T>& v)
-    {
-        Matrix4 t;
-        t.M[0][3] = v.x;
-        t.M[1][3] = v.y;
-        t.M[2][3] = v.z;
-        return t;
-    }
-
-    // Creates a matrix for translation by vector
-    static Matrix4 Translation(T x, T y, T z = T(0))
-    {
-        Matrix4 t;
-        t.M[0][3] = x;
-        t.M[1][3] = y;
-        t.M[2][3] = z;
-        return t;
-    }
-
-    // Sets the translation part
-    void SetTranslation(const Vector3<T>& v)
-    {
-        M[0][3] = v.x;
-        M[1][3] = v.y;
-        M[2][3] = v.z;
-    }
-
-    Vector3<T> GetTranslation() const
-    {
-        return Vector3<T>( M[0][3], M[1][3], M[2][3] );
-    }
-
-    // Creates a matrix for scaling by vector
-    static Matrix4 Scaling(const Vector3<T>& v)
-    {
-        Matrix4 t;
-        t.M[0][0] = v.x;
-        t.M[1][1] = v.y;
-        t.M[2][2] = v.z;
-        return t;
-    }
-
-    // Creates a matrix for scaling by vector
-    static Matrix4 Scaling(T x, T y, T z)
-    {
-        Matrix4 t;
-        t.M[0][0] = x;
-        t.M[1][1] = y;
-        t.M[2][2] = z;
-        return t;
-    }
-
-    // Creates a matrix for scaling by constant
-    static Matrix4 Scaling(T s)
-    {
-        Matrix4 t;
-        t.M[0][0] = s;
-        t.M[1][1] = s;
-        t.M[2][2] = s;
-        return t;
-    }
-
-    // Simple L1 distance in R^12
-    T Distance(const Matrix4& m2) const           
-    { 
-        T d = fabs(M[0][0] - m2.M[0][0]) + fabs(M[0][1] - m2.M[0][1]);
-        d += fabs(M[0][2] - m2.M[0][2]) + fabs(M[0][3] - m2.M[0][3]);
-        d += fabs(M[1][0] - m2.M[1][0]) + fabs(M[1][1] - m2.M[1][1]);
-        d += fabs(M[1][2] - m2.M[1][2]) + fabs(M[1][3] - m2.M[1][3]);
-        d += fabs(M[2][0] - m2.M[2][0]) + fabs(M[2][1] - m2.M[2][1]);
-        d += fabs(M[2][2] - m2.M[2][2]) + fabs(M[2][3] - m2.M[2][3]);
-        d += fabs(M[3][0] - m2.M[3][0]) + fabs(M[3][1] - m2.M[3][1]);
-        d += fabs(M[3][2] - m2.M[3][2]) + fabs(M[3][3] - m2.M[3][3]);
-        return d; 
-    }
-
-    // Creates a rotation matrix rotating around the X axis by 'angle' radians.
-    // Just for quick testing.  Not for final API.  Need to remove case.
-    static Matrix4 RotationAxis(Axis A, T angle, RotateDirection d, HandedSystem s)
-    {
-        T sina = s * d *sin(angle);
-        T cosa = cos(angle);
-        
-        switch(A)
-        {
-        case Axis_X:
-            return Matrix4(1,  0,     0, 
-                           0,  cosa,  -sina,
-                           0,  sina,  cosa);
-        case Axis_Y:
-            return Matrix4(cosa,  0,   sina, 
-                           0,     1,   0,
-                           -sina, 0,   cosa);
-        case Axis_Z:
-            return Matrix4(cosa,  -sina,  0, 
-                           sina,  cosa,   0,
-                           0,     0,      1);
-        default:
-            return Matrix4();
-        }
-    }
-
-
-    // Creates a rotation matrix rotating around the X axis by 'angle' radians.
-    // Rotation direction is depends on the coordinate system:
-    // RHS (Oculus default): Positive angle values rotate Counter-clockwise (CCW),
-    //                        while looking in the negative axis direction. This is the
-    //                        same as looking down from positive axis values towards origin.
-    // LHS: Positive angle values rotate clock-wise (CW), while looking in the
-    //       negative axis direction.
-    static Matrix4 RotationX(T angle)
-    {
-        T sina = sin(angle);
-        T cosa = cos(angle);
-        return Matrix4(1,  0,     0, 
-                       0,  cosa,  -sina,
-                       0,  sina,  cosa);
-    }
-
-    // Creates a rotation matrix rotating around the Y axis by 'angle' radians.
-    // Rotation direction is depends on the coordinate system:
-    //  RHS (Oculus default): Positive angle values rotate Counter-clockwise (CCW),
-    //                        while looking in the negative axis direction. This is the
-    //                        same as looking down from positive axis values towards origin.
-    //  LHS: Positive angle values rotate clock-wise (CW), while looking in the
-    //       negative axis direction.
-    static Matrix4 RotationY(T angle)
-    {
-        T sina = (T)sin(angle);
-        T cosa = (T)cos(angle);
-        return Matrix4(cosa,  0,   sina, 
-                       0,     1,   0,
-                       -sina, 0,   cosa);
-    }
-
-    // Creates a rotation matrix rotating around the Z axis by 'angle' radians.
-    // Rotation direction is depends on the coordinate system:
-    //  RHS (Oculus default): Positive angle values rotate Counter-clockwise (CCW),
-    //                        while looking in the negative axis direction. This is the
-    //                        same as looking down from positive axis values towards origin.
-    //  LHS: Positive angle values rotate clock-wise (CW), while looking in the
-    //       negative axis direction.
-    static Matrix4 RotationZ(T angle)
-    {
-        T sina = sin(angle);
-        T cosa = cos(angle);
-        return Matrix4(cosa,  -sina,  0, 
-                       sina,  cosa,   0,
-                       0,     0,      1);
-    }
-
-    // LookAtRH creates a View transformation matrix for right-handed coordinate system.
-    // The resulting matrix points camera from 'eye' towards 'at' direction, with 'up'
-    // specifying the up vector. The resulting matrix should be used with PerspectiveRH
-    // projection.
-    static Matrix4 LookAtRH(const Vector3<T>& eye, const Vector3<T>& at, const Vector3<T>& up)
-    {
-        Vector3<T> z = (eye - at).Normalized();  // Forward
-        Vector3<T> x = up.Cross(z).Normalized(); // Right
-        Vector3<T> y = z.Cross(x);
-
-        Matrix4 m(x.x,  x.y,  x.z,  -(x.Dot(eye)),
-                  y.x,  y.y,  y.z,  -(y.Dot(eye)),
-                  z.x,  z.y,  z.z,  -(z.Dot(eye)),
-                  0,    0,    0,    1 );
-        return m;
-    }
-    
-    // LookAtLH creates a View transformation matrix for left-handed coordinate system.
-    // The resulting matrix points camera from 'eye' towards 'at' direction, with 'up'
-    // specifying the up vector. 
-    static Matrix4 LookAtLH(const Vector3<T>& eye, const Vector3<T>& at, const Vector3<T>& up)
-    {
-        Vector3<T> z = (at - eye).Normalized();  // Forward
-        Vector3<T> x = up.Cross(z).Normalized(); // Right
-        Vector3<T> y = z.Cross(x);
-
-        Matrix4 m(x.x,  x.y,  x.z,  -(x.Dot(eye)),
-                  y.x,  y.y,  y.z,  -(y.Dot(eye)),
-                  z.x,  z.y,  z.z,  -(z.Dot(eye)),
-                  0,    0,    0,    1 ); 
-        return m;
-    }
-    
-    // PerspectiveRH creates a right-handed perspective projection matrix that can be
-    // used with the Oculus sample renderer. 
-    //  yfov   - Specifies vertical field of view in radians.
-    //  aspect - Screen aspect ration, which is usually width/height for square pixels.
-    //           Note that xfov = yfov * aspect.
-    //  znear  - Absolute value of near Z clipping clipping range.
-    //  zfar   - Absolute value of far  Z clipping clipping range (larger then near).
-    // Even though RHS usually looks in the direction of negative Z, positive values
-    // are expected for znear and zfar.
-    static Matrix4 PerspectiveRH(T yfov, T aspect, T znear, T zfar)
-    {
-        Matrix4 m;
-        T tanHalfFov = tan(yfov * T(0.5));
-
-        m.M[0][0] = T(1) / (aspect * tanHalfFov);
-        m.M[1][1] = T(1) / tanHalfFov;
-        m.M[2][2] = zfar / (znear - zfar);
-        m.M[3][2] = T(-1);
-        m.M[2][3] = (zfar * znear) / (znear - zfar);
-        m.M[3][3] = T(0);
-
-        // Note: Post-projection matrix result assumes Left-Handed coordinate system,
-        //       with Y up, X right and Z forward. This supports positive z-buffer values.
-        // This is the case even for RHS coordinate input.
-        return m;
-    }
-    
-    // PerspectiveLH creates a left-handed perspective projection matrix that can be
-    // used with the Oculus sample renderer. 
-    //  yfov   - Specifies vertical field of view in radians.
-    //  aspect - Screen aspect ration, which is usually width/height for square pixels.
-    //           Note that xfov = yfov * aspect.
-    //  znear  - Absolute value of near Z clipping clipping range.
-    //  zfar   - Absolute value of far  Z clipping clipping range (larger then near).
-    static Matrix4 PerspectiveLH(T yfov, T aspect, T znear, T zfar)
-    {
-        Matrix4 m;
-        T tanHalfFov = tan(yfov * T(0.5));
-
-        m.M[0][0] = T(1) / (aspect * tanHalfFov);
-        m.M[1][1] = T(1) / tanHalfFov;
-        //m.M[2][2] = zfar / (znear - zfar);
-         m.M[2][2] = zfar / (zfar - znear);
-        m.M[3][2] = T(-1);
-        m.M[2][3] = (zfar * znear) / (znear - zfar);
-        m.M[3][3] = T(0);
-
-        // Note: Post-projection matrix result assumes Left-Handed coordinate system,    
-        //       with Y up, X right and Z forward. This supports positive z-buffer values.
-        // This is the case even for RHS coordinate input. 
-        return m;
-    }
-
-    static Matrix4 Ortho2D(T w, T h)
-    {
-        Matrix4 m;
-        m.M[0][0] = T(2.0)/w;
-        m.M[1][1] = T(-2.0)/h;
-        m.M[0][3] = T(-1.0);
-        m.M[1][3] = T(1.0);
-        m.M[2][2] = T(0);
-        return m;
-    }
-};
-
-typedef Matrix4<float>  Matrix4f;
-typedef Matrix4<double> Matrix4d;
-
-//-------------------------------------------------------------------------------------
-// ***** Matrix3
-//
-// Matrix3 is a 3x3 matrix used for representing a rotation matrix.
-// The matrix is stored in row-major order in memory, meaning that values
-// of the first row are stored before the next one.
-//
-// The arrangement of the matrix is chosen to be in Right-Handed 
-// coordinate system and counterclockwise rotations when looking down
-// the axis
-//
-// Transformation Order:
-//   - Transformations are applied from right to left, so the expression
-//     M1 * M2 * M3 * V means that the vector V is transformed by M3 first,
-//     followed by M2 and M1. 
-//
-// Coordinate system: Right Handed
-//
-// Rotations: Counterclockwise when looking down the axis. All angles are in radians.
-
-template<class T>
-class Matrix3
-{
-public:
-    typedef T ElementType;
-    static const size_t Dimension = 3;
-
-    T M[3][3];
-
-    enum NoInitType { NoInit };
-
-    // Construct with no memory initialization.
-    Matrix3(NoInitType) { }
-
-    // By default, we construct identity matrix.
-    Matrix3()
-    {
-        M[0][0] = M[1][1] = M[2][2] = T(1);
-        M[0][1] = M[1][0] = M[2][0] = T(0);
-        M[0][2] = M[1][2] = M[2][1] = T(0);
-    }
-
-    Matrix3(T m11, T m12, T m13,
-            T m21, T m22, T m23,
-            T m31, T m32, T m33)
-    {
-        M[0][0] = m11; M[0][1] = m12; M[0][2] = m13;
-        M[1][0] = m21; M[1][1] = m22; M[1][2] = m23;
-        M[2][0] = m31; M[2][1] = m32; M[2][2] = m33;
-    }
-    
-    // Construction from X, Y, Z basis vectors
-    Matrix3(const Vector3<T>& xBasis, const Vector3<T>& yBasis, const Vector3<T>& zBasis)
-    {
-        M[0][0] = xBasis.x; M[0][1] = yBasis.x; M[0][2] = zBasis.x;
-        M[1][0] = xBasis.y; M[1][1] = yBasis.y; M[1][2] = zBasis.y;
-        M[2][0] = xBasis.z; M[2][1] = yBasis.z; M[2][2] = zBasis.z;
-    }
-
-    explicit Matrix3(const Quat<T>& q)
-    {
-        OVR_MATH_ASSERT(q.IsNormalized());
-        const T tx  = q.x+q.x,  ty  = q.y+q.y,  tz  = q.z+q.z;
-        const T twx = q.w*tx,   twy = q.w*ty,   twz = q.w*tz;
-        const T txx = q.x*tx,   txy = q.x*ty,   txz = q.x*tz;
-        const T tyy = q.y*ty,   tyz = q.y*tz,   tzz = q.z*tz;
-        M[0][0] = T(1) - (tyy + tzz);    M[0][1] = txy - twz;            M[0][2] = txz + twy;
-        M[1][0] = txy + twz;            M[1][1] = T(1) - (txx + tzz);    M[1][2] = tyz - twx;
-        M[2][0] = txz - twy;            M[2][1] = tyz + twx;            M[2][2] = T(1) - (txx + tyy);
-    }
-    
-    inline explicit Matrix3(T s)
-    {
-        M[0][0] = M[1][1] = M[2][2] = s;
-        M[0][1] = M[0][2] = M[1][0] = M[1][2] = M[2][0] = M[2][1] = T(0);
-    }
-
-    Matrix3(T m11, T m22, T m33)
-    {
-        M[0][0] = m11; M[0][1] = T(0); M[0][2] = T(0);
-        M[1][0] = T(0); M[1][1] = m22; M[1][2] = T(0);
-        M[2][0] = T(0); M[2][1] = T(0); M[2][2] = m33;
-    }
-
-    explicit Matrix3(const Matrix3<typename Math<T>::OtherFloatType> &src)
-    {
-        for (int i = 0; i < 3; i++)
-            for (int j = 0; j < 3; j++)
-                M[i][j] = (T)src.M[i][j];
-    }
-
-    // C-interop support.
-    Matrix3(const typename CompatibleTypes<Matrix3<T> >::Type& s) 
-    {
-        OVR_MATH_STATIC_ASSERT(sizeof(s) == sizeof(Matrix3), "sizeof(s) == sizeof(Matrix3)");
-        memcpy(M, s.M, sizeof(M));
-    }
-
-    operator const typename CompatibleTypes<Matrix3<T> >::Type () const
-    {
-        typename CompatibleTypes<Matrix3<T> >::Type result;
-        OVR_MATH_STATIC_ASSERT(sizeof(result) == sizeof(Matrix3), "sizeof(result) == sizeof(Matrix3)");
-        memcpy(result.M, M, sizeof(M));
-        return result;
-    }
-
-    T  operator()(int i, int j) const { return M[i][j]; }
-    T& operator()(int i, int j)       { return M[i][j]; }
-
-    void ToString(char* dest, size_t destsize) const
-    {
-        size_t pos = 0;
-        for (int r=0; r<3; r++)
-        {
-            for (int c=0; c<3; c++)
-                pos += OVRMath_sprintf(dest+pos, destsize-pos, "%g ", M[r][c]);
-        }
-    }
-
-    static Matrix3 FromString(const char* src)
-    {
-        Matrix3 result;
-        if (src)
-        {
-            for (int r=0; r<3; r++)
-            {
-                for (int c=0; c<3; c++)
-                {
-                    result.M[r][c] = (T)atof(src);
-                    while (*src && *src != ' ')
-                        src++;
-                    while (*src && *src == ' ')
-                        src++;
-                }
-            }
-        }
-        return result;
-    }
-
-    static Matrix3 Identity()  { return Matrix3(); }
-
-    void SetIdentity()
-    {
-        M[0][0] = M[1][1] = M[2][2] = T(1);
-        M[0][1] = M[1][0] = M[2][0] = T(0);
-        M[0][2] = M[1][2] = M[2][1] = T(0);
-    }
-
-    static Matrix3 Diagonal(T m00, T m11, T m22)
-    {
-        return Matrix3(m00, 0, 0,
-            0, m11, 0,
-            0, 0, m22);
-    }
-    static Matrix3 Diagonal(const Vector3<T>& v) { return Diagonal(v.x, v.y, v.z); }
-
-    T Trace() const { return M[0][0] + M[1][1] + M[2][2]; }
-    
-    bool operator== (const Matrix3& b) const
-    {
-        bool isEqual = true;
-        for (int i = 0; i < 3; i++)
-        {
-            for (int j = 0; j < 3; j++)
-                isEqual &= (M[i][j] == b.M[i][j]);
-        }
-
-        return isEqual;
-    }
-
-    Matrix3 operator+ (const Matrix3& b) const
-    {
-        Matrix3<T> result(*this);
-        result += b;
-        return result;
-    }
-
-    Matrix3& operator+= (const Matrix3& b)
-    {
-        for (int i = 0; i < 3; i++)
-            for (int j = 0; j < 3; j++)
-                M[i][j] += b.M[i][j];
-        return *this;
-    }
-
-    void operator= (const Matrix3& b)
-    {
-        for (int i = 0; i < 3; i++)
-            for (int j = 0; j < 3; j++)
-                M[i][j] = b.M[i][j];
-    }
-
-    Matrix3 operator- (const Matrix3& b) const
-    {
-        Matrix3 result(*this);
-        result -= b;
-        return result;
-    }
-
-    Matrix3& operator-= (const Matrix3& b)
-    {
-        for (int i = 0; i < 3; i++)
-        {
-            for (int j = 0; j < 3; j++)
-                M[i][j] -= b.M[i][j];
-        }
-
-        return *this;
-    }
-
-    // Multiplies two matrices into destination with minimum copying.
-    static Matrix3& Multiply(Matrix3* d, const Matrix3& a, const Matrix3& b)
-    {
-        OVR_MATH_ASSERT((d != &a) && (d != &b));
-        int i = 0;
-        do {
-            d->M[i][0] = a.M[i][0] * b.M[0][0] + a.M[i][1] * b.M[1][0] + a.M[i][2] * b.M[2][0];
-            d->M[i][1] = a.M[i][0] * b.M[0][1] + a.M[i][1] * b.M[1][1] + a.M[i][2] * b.M[2][1];
-            d->M[i][2] = a.M[i][0] * b.M[0][2] + a.M[i][1] * b.M[1][2] + a.M[i][2] * b.M[2][2];
-        } while((++i) < 3);
-
-        return *d;
-    }
-
-    Matrix3 operator* (const Matrix3& b) const
-    {
-        Matrix3 result(Matrix3::NoInit);
-        Multiply(&result, *this, b);
-        return result;
-    }
-
-    Matrix3& operator*= (const Matrix3& b)
-    {
-        return Multiply(this, Matrix3(*this), b);
-    }
-
-    Matrix3 operator* (T s) const
-    {
-        Matrix3 result(*this);
-        result *= s;
-        return result;
-    }
-
-    Matrix3& operator*= (T s)
-    {
-        for (int i = 0; i < 3; i++)
-        {
-            for (int j = 0; j < 3; j++)
-                M[i][j] *= s;
-        }
-
-        return *this;
-    }
-
-    Vector3<T> operator* (const Vector3<T> &b) const
-    {
-        Vector3<T> result;
-        result.x = M[0][0]*b.x + M[0][1]*b.y + M[0][2]*b.z;
-        result.y = M[1][0]*b.x + M[1][1]*b.y + M[1][2]*b.z;
-        result.z = M[2][0]*b.x + M[2][1]*b.y + M[2][2]*b.z;
-
-        return result;
-    }
-
-    Matrix3 operator/ (T s) const
-    {
-        Matrix3 result(*this);
-        result /= s;
-        return result;
-    }
-
-    Matrix3& operator/= (T s)
-    {
-        for (int i = 0; i < 3; i++)
-        {
-            for (int j = 0; j < 3; j++)
-                M[i][j] /= s;
-        }
-
-        return *this;
-    }
-
-    Vector2<T> Transform(const Vector2<T>& v) const
-    {
-        const T rcpZ = T(1) / (M[2][0] * v.x + M[2][1] * v.y + M[2][2]);
-        return Vector2<T>((M[0][0] * v.x + M[0][1] * v.y + M[0][2]) * rcpZ,
-                          (M[1][0] * v.x + M[1][1] * v.y + M[1][2]) * rcpZ);
-    }
-
-    Vector3<T> Transform(const Vector3<T>& v) const
-    {
-        return Vector3<T>(M[0][0] * v.x + M[0][1] * v.y + M[0][2] * v.z,
-                          M[1][0] * v.x + M[1][1] * v.y + M[1][2] * v.z,
-                          M[2][0] * v.x + M[2][1] * v.y + M[2][2] * v.z);
-    }
-
-    Matrix3 Transposed() const
-    {
-        return Matrix3(M[0][0], M[1][0], M[2][0],
-                       M[0][1], M[1][1], M[2][1],
-                       M[0][2], M[1][2], M[2][2]);
-    }
-
-    void     Transpose()
-    {
-        *this = Transposed();
-    }
-
-
-    T SubDet (const size_t* rows, const size_t* cols) const
-    {
-        return M[rows[0]][cols[0]] * (M[rows[1]][cols[1]] * M[rows[2]][cols[2]] - M[rows[1]][cols[2]] * M[rows[2]][cols[1]])
-             - M[rows[0]][cols[1]] * (M[rows[1]][cols[0]] * M[rows[2]][cols[2]] - M[rows[1]][cols[2]] * M[rows[2]][cols[0]])
-             + M[rows[0]][cols[2]] * (M[rows[1]][cols[0]] * M[rows[2]][cols[1]] - M[rows[1]][cols[1]] * M[rows[2]][cols[0]]);
-    }
-
-    
-    // M += a*b.t()
-    inline void Rank1Add(const Vector3<T> &a, const Vector3<T> &b)
-    {
-        M[0][0] += a.x*b.x;        M[0][1] += a.x*b.y;        M[0][2] += a.x*b.z;
-        M[1][0] += a.y*b.x;        M[1][1] += a.y*b.y;        M[1][2] += a.y*b.z;
-        M[2][0] += a.z*b.x;        M[2][1] += a.z*b.y;        M[2][2] += a.z*b.z;
-    }
-
-    // M -= a*b.t()
-    inline void Rank1Sub(const Vector3<T> &a, const Vector3<T> &b)
-    {
-        M[0][0] -= a.x*b.x;        M[0][1] -= a.x*b.y;        M[0][2] -= a.x*b.z;
-        M[1][0] -= a.y*b.x;        M[1][1] -= a.y*b.y;        M[1][2] -= a.y*b.z;
-        M[2][0] -= a.z*b.x;        M[2][1] -= a.z*b.y;        M[2][2] -= a.z*b.z;
-    }
-
-    inline Vector3<T> Col(int c) const
-    {
-        return Vector3<T>(M[0][c], M[1][c], M[2][c]);
-    }
-
-    inline Vector3<T> Row(int r) const
-    {
-        return Vector3<T>(M[r][0], M[r][1], M[r][2]);
-    }
-
-    inline Vector3<T> GetColumn(int c) const
-    {
-        return Vector3<T>(M[0][c], M[1][c], M[2][c]);
-    }
-
-    inline Vector3<T> GetRow(int r) const
-    {
-        return Vector3<T>(M[r][0], M[r][1], M[r][2]);
-    }
-
-    inline void SetColumn(int c, const Vector3<T>& v)
-    {
-        M[0][c] = v.x;
-        M[1][c] = v.y;
-        M[2][c] = v.z;
-    }
-
-    inline void SetRow(int r, const Vector3<T>& v)
-    {
-        M[r][0] = v.x;
-        M[r][1] = v.y;
-        M[r][2] = v.z;
-    }
-
-    inline T Determinant() const
-    {
-        const Matrix3<T>& m = *this;
-        T d; 
-
-        d  = m.M[0][0] * (m.M[1][1]*m.M[2][2] - m.M[1][2] * m.M[2][1]);
-        d -= m.M[0][1] * (m.M[1][0]*m.M[2][2] - m.M[1][2] * m.M[2][0]);
-        d += m.M[0][2] * (m.M[1][0]*m.M[2][1] - m.M[1][1] * m.M[2][0]);
-
-        return d;
-    }
-    
-    inline Matrix3<T> Inverse() const
-    {
-        Matrix3<T> a;
-        const  Matrix3<T>& m = *this;
-        T d = Determinant();
-
-        OVR_MATH_ASSERT(d != 0);
-        T s = T(1)/d;
-
-        a.M[0][0] = s * (m.M[1][1] * m.M[2][2] - m.M[1][2] * m.M[2][1]);   
-        a.M[1][0] = s * (m.M[1][2] * m.M[2][0] - m.M[1][0] * m.M[2][2]);   
-        a.M[2][0] = s * (m.M[1][0] * m.M[2][1] - m.M[1][1] * m.M[2][0]);   
-
-        a.M[0][1] = s * (m.M[0][2] * m.M[2][1] - m.M[0][1] * m.M[2][2]);   
-        a.M[1][1] = s * (m.M[0][0] * m.M[2][2] - m.M[0][2] * m.M[2][0]);   
-        a.M[2][1] = s * (m.M[0][1] * m.M[2][0] - m.M[0][0] * m.M[2][1]);   
-        
-        a.M[0][2] = s * (m.M[0][1] * m.M[1][2] - m.M[0][2] * m.M[1][1]);   
-        a.M[1][2] = s * (m.M[0][2] * m.M[1][0] - m.M[0][0] * m.M[1][2]);   
-        a.M[2][2] = s * (m.M[0][0] * m.M[1][1] - m.M[0][1] * m.M[1][0]);   
-        
-        return a;
-    }
-    
-    // Outer Product of two column vectors: a * b.Transpose()
-    static Matrix3 OuterProduct(const Vector3<T>& a, const Vector3<T>& b)
-    {
-        return Matrix3(a.x*b.x, a.x*b.y, a.x*b.z,
-                       a.y*b.x, a.y*b.y, a.y*b.z,
-                       a.z*b.x, a.z*b.y, a.z*b.z);
-    }
-
-    // Vector cross product as a premultiply matrix:
-    // L.Cross(R) = LeftCrossAsMatrix(L) * R
-    static Matrix3 LeftCrossAsMatrix(const Vector3<T>& L)
-    {
-        return Matrix3(
-            T(0), -L.z, +L.y,
-            +L.z, T(0), -L.x,
-            -L.y, +L.x, T(0));
-    }
-
-    // Vector cross product as a premultiply matrix:
-    // L.Cross(R) = RightCrossAsMatrix(R) * L
-    static Matrix3 RightCrossAsMatrix(const Vector3<T>& R)
-    {
-        return Matrix3(
-            T(0), +R.z, -R.y,
-            -R.z, T(0), +R.x,
-            +R.y, -R.x, T(0));
-    }
-
-    // Angle in radians of a rotation matrix
-    // Uses identity trace(a) = 2*cos(theta) + 1
-    T Angle() const
-    {
-        return Acos((Trace() - T(1)) * T(0.5));
-    }
-
-    // Angle in radians between two rotation matrices
-    T Angle(const Matrix3& b) const
-    {
-        // Compute trace of (this->Transposed() * b)
-        // This works out to sum of products of elements.
-        T trace = T(0);
-        for (int i = 0; i < 3; i++)
-        {
-            for (int j = 0; j < 3; j++)
-            {
-                trace += M[i][j] * b.M[i][j];
-            }
-        }
-        return Acos((trace - T(1)) * T(0.5));
-    }
-};
-
-typedef Matrix3<float>  Matrix3f;
-typedef Matrix3<double> Matrix3d;
-
-//-------------------------------------------------------------------------------------
-// ***** Matrix2
-
-template<class T>
-class Matrix2
-{
-public:
-    typedef T ElementType;
-    static const size_t Dimension = 2;
-
-    T M[2][2];
-
-    enum NoInitType { NoInit };
-
-    // Construct with no memory initialization.
-    Matrix2(NoInitType) { }
-
-    // By default, we construct identity matrix.
-    Matrix2()
-    {
-        M[0][0] = M[1][1] = T(1);
-        M[0][1] = M[1][0] = T(0);
-    }
-
-    Matrix2(T m11, T m12,
-            T m21, T m22)
-    {
-        M[0][0] = m11; M[0][1] = m12;
-        M[1][0] = m21; M[1][1] = m22;
-    }
-
-    // Construction from X, Y basis vectors
-    Matrix2(const Vector2<T>& xBasis, const Vector2<T>& yBasis)
-    {
-        M[0][0] = xBasis.x; M[0][1] = yBasis.x;
-        M[1][0] = xBasis.y; M[1][1] = yBasis.y;
-    }
-
-    explicit Matrix2(T s)
-    {
-        M[0][0] = M[1][1] = s;
-        M[0][1] = M[1][0] = T(0);
-    }
-
-    Matrix2(T m11, T m22)
-    {
-        M[0][0] = m11; M[0][1] = T(0);
-        M[1][0] = T(0);   M[1][1] = m22;
-    }
-
-    explicit Matrix2(const Matrix2<typename Math<T>::OtherFloatType> &src)
-    {
-        M[0][0] = T(src.M[0][0]); M[0][1] = T(src.M[0][1]);
-        M[1][0] = T(src.M[1][0]); M[1][1] = T(src.M[1][1]);
-    }
-
-    // C-interop support
-    Matrix2(const typename CompatibleTypes<Matrix2<T> >::Type& s)
-    {
-        OVR_MATH_STATIC_ASSERT(sizeof(s) == sizeof(Matrix2), "sizeof(s) == sizeof(Matrix2)");
-        memcpy(M, s.M, sizeof(M));
-    }
-
-    operator const typename CompatibleTypes<Matrix2<T> >::Type() const
-    {
-        typename CompatibleTypes<Matrix2<T> >::Type result;
-        OVR_MATH_STATIC_ASSERT(sizeof(result) == sizeof(Matrix2), "sizeof(result) == sizeof(Matrix2)");
-        memcpy(result.M, M, sizeof(M));
-        return result;
-    }
-
-    T  operator()(int i, int j) const { return M[i][j]; }
-    T& operator()(int i, int j)       { return M[i][j]; }
-    const T*  operator[](int i) const { return M[i]; }
-    T*  operator[](int i)             { return M[i]; }
-
-    static Matrix2 Identity()  { return Matrix2(); }
-
-    void SetIdentity()
-    {
-        M[0][0] = M[1][1] = T(1);
-        M[0][1] = M[1][0] = T(0);
-    }
-
-    static Matrix2 Diagonal(T m00, T m11)
-    {
-        return Matrix2(m00, m11);
-    }
-    static Matrix2 Diagonal(const Vector2<T>& v) { return Matrix2(v.x, v.y); }
-
-    T Trace() const { return M[0][0] + M[1][1]; }
-
-    bool operator== (const Matrix2& b) const
-    {
-        return M[0][0] == b.M[0][0] && M[0][1] == b.M[0][1] &&
-               M[1][0] == b.M[1][0] && M[1][1] == b.M[1][1];
-    }
-
-    Matrix2 operator+ (const Matrix2& b) const
-    {
-        return Matrix2(M[0][0] + b.M[0][0], M[0][1] + b.M[0][1],
-                       M[1][0] + b.M[1][0], M[1][1] + b.M[1][1]);
-    }
-
-    Matrix2& operator+= (const Matrix2& b)
-    {
-        M[0][0] += b.M[0][0]; M[0][1] += b.M[0][1];
-        M[1][0] += b.M[1][0]; M[1][1] += b.M[1][1];
-        return *this;
-    }
-
-    void operator= (const Matrix2& b)
-    {
-        M[0][0] = b.M[0][0]; M[0][1] = b.M[0][1];
-        M[1][0] = b.M[1][0]; M[1][1] = b.M[1][1];
-    }
-
-    Matrix2 operator- (const Matrix2& b) const
-    {
-        return Matrix2(M[0][0] - b.M[0][0], M[0][1] - b.M[0][1],
-                       M[1][0] - b.M[1][0], M[1][1] - b.M[1][1]);
-    }
-
-    Matrix2& operator-= (const Matrix2& b)
-    {
-        M[0][0] -= b.M[0][0]; M[0][1] -= b.M[0][1];
-        M[1][0] -= b.M[1][0]; M[1][1] -= b.M[1][1];
-        return *this;
-    }
-
-    Matrix2 operator* (const Matrix2& b) const
-    {
-        return Matrix2(M[0][0] * b.M[0][0] + M[0][1] * b.M[1][0], M[0][0] * b.M[0][1] + M[0][1] * b.M[1][1],
-                       M[1][0] * b.M[0][0] + M[1][1] * b.M[1][0], M[1][0] * b.M[0][1] + M[1][1] * b.M[1][1]);
-    }
-
-    Matrix2& operator*= (const Matrix2& b)
-    {
-        *this = *this * b;
-        return *this;
-    }
-
-    Matrix2 operator* (T s) const
-    {
-        return Matrix2(M[0][0] * s, M[0][1] * s,
-                       M[1][0] * s, M[1][1] * s);
-    }
-
-    Matrix2& operator*= (T s)
-    {
-        M[0][0] *= s; M[0][1] *= s;
-        M[1][0] *= s; M[1][1] *= s;
-        return *this;
-    }
-
-    Matrix2 operator/ (T s) const
-    {
-        return *this * (T(1) / s);
-    }
-
-    Matrix2& operator/= (T s)
-    {
-        return *this *= (T(1) / s);
-    }
-
-    Vector2<T> operator* (const Vector2<T> &b) const
-    {
-        return Vector2<T>(M[0][0] * b.x + M[0][1] * b.y,
-                          M[1][0] * b.x + M[1][1] * b.y);
-    }
-
-    Vector2<T> Transform(const Vector2<T>& v) const
-    {
-        return Vector2<T>(M[0][0] * v.x + M[0][1] * v.y,
-                          M[1][0] * v.x + M[1][1] * v.y);
-    }
-
-    Matrix2 Transposed() const
-    {
-        return Matrix2(M[0][0], M[1][0],
-                       M[0][1], M[1][1]);
-    }
-
-    void Transpose()
-    {
-        OVRMath_Swap(M[1][0], M[0][1]);
-    }
-
-    Vector2<T> GetColumn(int c) const
-    {
-        return Vector2<T>(M[0][c], M[1][c]);
-    }
-
-    Vector2<T> GetRow(int r) const
-    {
-        return Vector2<T>(M[r][0], M[r][1]);
-    }
-
-    void SetColumn(int c, const Vector2<T>& v)
-    {
-        M[0][c] = v.x;
-        M[1][c] = v.y;
-    }
-
-    void SetRow(int r, const Vector2<T>& v)
-    {
-        M[r][0] = v.x;
-        M[r][1] = v.y;
-    }
-
-    T Determinant() const
-    {
-        return M[0][0] * M[1][1] - M[0][1] * M[1][0];
-    }
-
-    Matrix2 Inverse() const
-    {
-        T rcpDet = T(1) / Determinant();
-        return Matrix2( M[1][1] * rcpDet, -M[0][1] * rcpDet,
-                       -M[1][0] * rcpDet,  M[0][0] * rcpDet);
-    }
-
-    // Outer Product of two column vectors: a * b.Transpose()
-    static Matrix2 OuterProduct(const Vector2<T>& a, const Vector2<T>& b)
-    {
-        return Matrix2(a.x*b.x, a.x*b.y,
-                       a.y*b.x, a.y*b.y);
-    }
-
-    // Angle in radians between two rotation matrices
-    T Angle(const Matrix2& b) const
-    {
-        const Matrix2& a = *this;
-        return Acos(a(0, 0)*b(0, 0) + a(1, 0)*b(1, 0));
-    }
-};
-
-typedef Matrix2<float>  Matrix2f;
-typedef Matrix2<double> Matrix2d;
-
-//-------------------------------------------------------------------------------------
-
-template<class T>
-class SymMat3
-{
-private:
-    typedef SymMat3<T> this_type;
-
-public:
-    typedef T Value_t;
-    // Upper symmetric
-    T v[6]; // _00 _01 _02 _11 _12 _22
-
-    inline SymMat3() {}
-
-    inline explicit SymMat3(T s)
-    {
-        v[0] = v[3] = v[5] = s;
-        v[1] = v[2] = v[4] = T(0);
-    }
-
-    inline explicit SymMat3(T a00, T a01, T a02, T a11, T a12, T a22)
-    {
-        v[0] = a00; v[1] = a01; v[2] = a02;
-        v[3] = a11; v[4] = a12;
-        v[5] = a22;
-    }
-
-    // Cast to symmetric Matrix3
-    operator Matrix3<T>() const
-    {
-        return Matrix3<T>(v[0], v[1], v[2],
-                          v[1], v[3], v[4],
-                          v[2], v[4], v[5]);
-    }
-
-    static inline int Index(unsigned int i, unsigned int j)
-    {
-        return (i <= j) ? (3*i - i*(i+1)/2 + j) : (3*j - j*(j+1)/2 + i);
-    }
-
-    inline T operator()(int i, int j) const { return v[Index(i,j)]; }
-    
-    inline T &operator()(int i, int j) { return v[Index(i,j)]; }
-
-    inline this_type& operator+=(const this_type& b)
-    {
-        v[0]+=b.v[0];
-        v[1]+=b.v[1];
-        v[2]+=b.v[2];
-        v[3]+=b.v[3];
-        v[4]+=b.v[4];
-        v[5]+=b.v[5];
-        return *this;
-    }
-
-    inline this_type& operator-=(const this_type& b)
-    {
-        v[0]-=b.v[0];
-        v[1]-=b.v[1];
-        v[2]-=b.v[2];
-        v[3]-=b.v[3];
-        v[4]-=b.v[4];
-        v[5]-=b.v[5];
-
-        return *this;
-    }
-
-    inline this_type& operator*=(T s)
-    {
-        v[0]*=s;
-        v[1]*=s;
-        v[2]*=s;
-        v[3]*=s;
-        v[4]*=s;
-        v[5]*=s;
-
-        return *this;
-    }
-        
-    inline SymMat3 operator*(T s) const
-    {
-        SymMat3 d;
-        d.v[0] = v[0]*s; 
-        d.v[1] = v[1]*s; 
-        d.v[2] = v[2]*s; 
-        d.v[3] = v[3]*s; 
-        d.v[4] = v[4]*s; 
-        d.v[5] = v[5]*s; 
-                        
-        return d;
-    }
-
-    // Multiplies two matrices into destination with minimum copying.
-    static SymMat3& Multiply(SymMat3* d, const SymMat3& a, const SymMat3& b)
-    {        
-        // _00 _01 _02 _11 _12 _22
-
-        d->v[0] = a.v[0] * b.v[0];
-        d->v[1] = a.v[0] * b.v[1] + a.v[1] * b.v[3];
-        d->v[2] = a.v[0] * b.v[2] + a.v[1] * b.v[4];
-                    
-        d->v[3] = a.v[3] * b.v[3];
-        d->v[4] = a.v[3] * b.v[4] + a.v[4] * b.v[5];
-                
-        d->v[5] = a.v[5] * b.v[5];
-    
-        return *d;
-    }
-    
-    inline T Determinant() const
-    {
-        const this_type& m = *this;
-        T d; 
-
-        d  = m(0,0) * (m(1,1)*m(2,2) - m(1,2) * m(2,1));
-        d -= m(0,1) * (m(1,0)*m(2,2) - m(1,2) * m(2,0));
-        d += m(0,2) * (m(1,0)*m(2,1) - m(1,1) * m(2,0));
-
-        return d;
-    }
-
-    inline this_type Inverse() const
-    {
-        this_type a;
-        const this_type& m = *this;
-        T d = Determinant();
-
-        OVR_MATH_ASSERT(d != 0);
-        T s = T(1)/d;
-
-        a(0,0) = s * (m(1,1) * m(2,2) - m(1,2) * m(2,1));   
-
-        a(0,1) = s * (m(0,2) * m(2,1) - m(0,1) * m(2,2));   
-        a(1,1) = s * (m(0,0) * m(2,2) - m(0,2) * m(2,0));   
-
-        a(0,2) = s * (m(0,1) * m(1,2) - m(0,2) * m(1,1));   
-        a(1,2) = s * (m(0,2) * m(1,0) - m(0,0) * m(1,2));   
-        a(2,2) = s * (m(0,0) * m(1,1) - m(0,1) * m(1,0));   
-
-        return a;
-    }
-
-    inline T Trace() const { return v[0] + v[3] + v[5]; }
-
-    // M = a*a.t()
-    inline void Rank1(const Vector3<T> &a)
-    {
-        v[0] = a.x*a.x; v[1] = a.x*a.y; v[2] = a.x*a.z;
-        v[3] = a.y*a.y; v[4] = a.y*a.z;
-        v[5] = a.z*a.z;
-    }
-
-    // M += a*a.t()
-    inline void Rank1Add(const Vector3<T> &a)
-    {
-        v[0] += a.x*a.x; v[1] += a.x*a.y; v[2] += a.x*a.z;
-        v[3] += a.y*a.y; v[4] += a.y*a.z;
-        v[5] += a.z*a.z;
-    }
-
-    // M -= a*a.t()
-    inline void Rank1Sub(const Vector3<T> &a)
-    {
-        v[0] -= a.x*a.x; v[1] -= a.x*a.y; v[2] -= a.x*a.z;
-        v[3] -= a.y*a.y; v[4] -= a.y*a.z;
-        v[5] -= a.z*a.z;
-    }
-};
-
-typedef SymMat3<float>  SymMat3f;
-typedef SymMat3<double> SymMat3d;
-
-template<class T>
-inline Matrix3<T> operator*(const SymMat3<T>& a, const SymMat3<T>& b)
-{
-    #define AJB_ARBC(r,c) (a(r,0)*b(0,c)+a(r,1)*b(1,c)+a(r,2)*b(2,c))
-    return Matrix3<T>(
-        AJB_ARBC(0,0), AJB_ARBC(0,1), AJB_ARBC(0,2),
-        AJB_ARBC(1,0), AJB_ARBC(1,1), AJB_ARBC(1,2),
-        AJB_ARBC(2,0), AJB_ARBC(2,1), AJB_ARBC(2,2));
-    #undef AJB_ARBC
-}
-
-template<class T>
-inline Matrix3<T> operator*(const Matrix3<T>& a, const SymMat3<T>& b)
-{
-    #define AJB_ARBC(r,c) (a(r,0)*b(0,c)+a(r,1)*b(1,c)+a(r,2)*b(2,c))
-    return Matrix3<T>(
-        AJB_ARBC(0,0), AJB_ARBC(0,1), AJB_ARBC(0,2),
-        AJB_ARBC(1,0), AJB_ARBC(1,1), AJB_ARBC(1,2),
-        AJB_ARBC(2,0), AJB_ARBC(2,1), AJB_ARBC(2,2));
-    #undef AJB_ARBC
-}
-
-//-------------------------------------------------------------------------------------
-// ***** Angle
-
-// Cleanly representing the algebra of 2D rotations.
-// The operations maintain the angle between -Pi and Pi, the same range as atan2.
-
-template<class T>
-class Angle
-{
-public:
-    enum AngularUnits
-    {
-        Radians = 0,
-        Degrees = 1
-    };
-
-    Angle() : a(0) {}
-    
-    // Fix the range to be between -Pi and Pi
-    Angle(T a_, AngularUnits u = Radians) : a((u == Radians) ? a_ : a_*((T)MATH_DOUBLE_DEGREETORADFACTOR)) { FixRange(); }
-
-    T    Get(AngularUnits u = Radians) const       { return (u == Radians) ? a : a*((T)MATH_DOUBLE_RADTODEGREEFACTOR); }
-    void Set(const T& x, AngularUnits u = Radians) { a = (u == Radians) ? x : x*((T)MATH_DOUBLE_DEGREETORADFACTOR); FixRange(); }
-    int Sign() const                               { if (a == 0) return 0; else return (a > 0) ? 1 : -1; }
-    T   Abs() const                                { return (a >= 0) ? a : -a; }
-
-    bool operator== (const Angle& b) const    { return a == b.a; }
-    bool operator!= (const Angle& b) const    { return a != b.a; }
-//    bool operator<  (const Angle& b) const    { return a < a.b; } 
-//    bool operator>  (const Angle& b) const    { return a > a.b; } 
-//    bool operator<= (const Angle& b) const    { return a <= a.b; } 
-//    bool operator>= (const Angle& b) const    { return a >= a.b; } 
-//    bool operator= (const T& x)               { a = x; FixRange(); }
-
-    // These operations assume a is already between -Pi and Pi.
-    Angle& operator+= (const Angle& b)        { a = a + b.a; FastFixRange(); return *this; }
-    Angle& operator+= (const T& x)            { a = a + x; FixRange(); return *this; }
-    Angle  operator+  (const Angle& b) const  { Angle res = *this; res += b; return res; }
-    Angle  operator+  (const T& x) const      { Angle res = *this; res += x; return res; }
-    Angle& operator-= (const Angle& b)        { a = a - b.a; FastFixRange(); return *this; }
-    Angle& operator-= (const T& x)            { a = a - x; FixRange(); return *this; }
-    Angle  operator-  (const Angle& b) const  { Angle res = *this; res -= b; return res; }
-    Angle  operator-  (const T& x) const      { Angle res = *this; res -= x; return res; }
-    
-    T   Distance(const Angle& b)              { T c = fabs(a - b.a); return (c <= ((T)MATH_DOUBLE_PI)) ? c : ((T)MATH_DOUBLE_TWOPI) - c; }
-
-private:
-
-    // The stored angle, which should be maintained between -Pi and Pi
-    T a;
-
-    // Fixes the angle range to [-Pi,Pi], but assumes no more than 2Pi away on either side 
-    inline void FastFixRange()
-    {
-        if (a < -((T)MATH_DOUBLE_PI))
-            a += ((T)MATH_DOUBLE_TWOPI);
-        else if (a > ((T)MATH_DOUBLE_PI))
-            a -= ((T)MATH_DOUBLE_TWOPI);
-    }
-
-    // Fixes the angle range to [-Pi,Pi] for any given range, but slower then the fast method
-    inline void FixRange()
-    {
-        // do nothing if the value is already in the correct range, since fmod call is expensive
-        if (a >= -((T)MATH_DOUBLE_PI) && a <= ((T)MATH_DOUBLE_PI))
-            return;
-        a = fmod(a,((T)MATH_DOUBLE_TWOPI));
-        if (a < -((T)MATH_DOUBLE_PI))
-            a += ((T)MATH_DOUBLE_TWOPI);
-        else if (a > ((T)MATH_DOUBLE_PI))
-            a -= ((T)MATH_DOUBLE_TWOPI);
-    }
-};
-
-
-typedef Angle<float>  Anglef;
-typedef Angle<double> Angled;
-
-
-//-------------------------------------------------------------------------------------
-// ***** Plane
-
-// Consists of a normal vector and distance from the origin where the plane is located.
-
-template<class T>
-class Plane
-{
-public:
-    Vector3<T> N;
-    T          D;
-
-    Plane() : D(0) {}
-
-    // Normals must already be normalized
-    Plane(const Vector3<T>& n, T d) : N(n), D(d) {}
-    Plane(T x, T y, T z, T d) : N(x,y,z), D(d) {}
-
-    // construct from a point on the plane and the normal
-    Plane(const Vector3<T>& p, const Vector3<T>& n) : N(n), D(-(p * n)) {}
-
-    // Find the point to plane distance. The sign indicates what side of the plane the point is on (0 = point on plane).
-    T TestSide(const Vector3<T>& p) const
-    {
-        return (N.Dot(p)) + D;
-    }
-
-    Plane<T> Flipped() const
-    {
-        return Plane(-N, -D);
-    }
-
-    void Flip()
-    {
-        N = -N;
-        D = -D;
-    }
-
-    bool operator==(const Plane<T>& rhs) const
-    {
-        return (this->D == rhs.D && this->N == rhs.N);
-    }
-};
-
-typedef Plane<float> Planef;
-typedef Plane<double> Planed;
-
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** ScaleAndOffset2D
-
-struct ScaleAndOffset2D
-{
-    Vector2f Scale;
-    Vector2f Offset;
-
-    ScaleAndOffset2D(float sx = 0.0f, float sy = 0.0f, float ox = 0.0f, float oy = 0.0f)
-        : Scale(sx, sy), Offset(ox, oy)        
-    { }
-};
-
-
-//-----------------------------------------------------------------------------------
-// ***** FovPort
-
-// FovPort describes Field Of View (FOV) of a viewport.
-// This class has values for up, down, left and right, stored in 
-// tangent of the angle units to simplify calculations.
-//
-// As an example, for a standard 90 degree vertical FOV, we would 
-// have: { UpTan = tan(90 degrees / 2), DownTan = tan(90 degrees / 2) }.
-//
-// CreateFromRadians/Degrees helper functions can be used to
-// access FOV in different units.
-
-
-// ***** FovPort
-
-struct FovPort
-{
-    float UpTan;
-    float DownTan;
-    float LeftTan;
-    float RightTan;
-
-    FovPort ( float sideTan = 0.0f ) :
-        UpTan(sideTan), DownTan(sideTan), LeftTan(sideTan), RightTan(sideTan) { }
-    FovPort ( float u, float d, float l, float r ) :
-        UpTan(u), DownTan(d), LeftTan(l), RightTan(r) { }
-
-    // C-interop support: FovPort <-> ovrFovPort (implementation in OVR_CAPI.cpp).
-    FovPort(const ovrFovPort &src)
-        : UpTan(src.UpTan), DownTan(src.DownTan), LeftTan(src.LeftTan), RightTan(src.RightTan)
-    { }    
-
-    operator ovrFovPort () const
-    {
-        ovrFovPort result;
-        result.LeftTan  = LeftTan;
-        result.RightTan = RightTan;
-        result.UpTan    = UpTan;
-        result.DownTan  = DownTan;
-        return result;
-    }
-
-    static FovPort CreateFromRadians(float horizontalFov, float verticalFov)
-    {
-        FovPort result;
-        result.UpTan    = tanf (   verticalFov * 0.5f );
-        result.DownTan  = tanf (   verticalFov * 0.5f );
-        result.LeftTan  = tanf ( horizontalFov * 0.5f );
-        result.RightTan = tanf ( horizontalFov * 0.5f );
-        return result;
-    }
-
-    static FovPort CreateFromDegrees(float horizontalFovDegrees,
-                                     float verticalFovDegrees)
-    {
-        return CreateFromRadians(DegreeToRad(horizontalFovDegrees),
-                                 DegreeToRad(verticalFovDegrees));
-    }
-
-    //  Get Horizontal/Vertical components of Fov in radians.
-    float GetVerticalFovRadians() const     { return atanf(UpTan)    + atanf(DownTan); }
-    float GetHorizontalFovRadians() const   { return atanf(LeftTan)  + atanf(RightTan); }
-    //  Get Horizontal/Vertical components of Fov in degrees.
-    float GetVerticalFovDegrees() const     { return RadToDegree(GetVerticalFovRadians()); }
-    float GetHorizontalFovDegrees() const   { return RadToDegree(GetHorizontalFovRadians()); }
-
-    // Compute maximum tangent value among all four sides.
-    float GetMaxSideTan() const
-    {
-        return OVRMath_Max(OVRMath_Max(UpTan, DownTan), OVRMath_Max(LeftTan, RightTan));
-    }
-
-    static ScaleAndOffset2D CreateNDCScaleAndOffsetFromFov ( FovPort tanHalfFov )
-    {
-        float projXScale = 2.0f / ( tanHalfFov.LeftTan + tanHalfFov.RightTan );
-        float projXOffset = ( tanHalfFov.LeftTan - tanHalfFov.RightTan ) * projXScale * 0.5f;
-        float projYScale = 2.0f / ( tanHalfFov.UpTan + tanHalfFov.DownTan );
-        float projYOffset = ( tanHalfFov.UpTan - tanHalfFov.DownTan ) * projYScale * 0.5f;
-
-        ScaleAndOffset2D result;
-        result.Scale    = Vector2f(projXScale, projYScale);
-        result.Offset   = Vector2f(projXOffset, projYOffset);
-        // Hey - why is that Y.Offset negated?
-        // It's because a projection matrix transforms from world coords with Y=up,
-        // whereas this is from NDC which is Y=down.
-
-        return result;
-    }
-
-    // Converts Fov Tan angle units to [-1,1] render target NDC space
-    Vector2f TanAngleToRendertargetNDC(Vector2f const &tanEyeAngle)
-    {  
-        ScaleAndOffset2D eyeToSourceNDC = CreateNDCScaleAndOffsetFromFov(*this);
-        return tanEyeAngle * eyeToSourceNDC.Scale + eyeToSourceNDC.Offset;
-    }
-
-    // Compute per-channel minimum and maximum of Fov.
-    static FovPort Min(const FovPort& a, const FovPort& b)
-    {   
-        FovPort fov( OVRMath_Min( a.UpTan   , b.UpTan    ),   
-                     OVRMath_Min( a.DownTan , b.DownTan  ),
-                     OVRMath_Min( a.LeftTan , b.LeftTan  ),
-                     OVRMath_Min( a.RightTan, b.RightTan ) );
-        return fov;
-    }
-
-    static FovPort Max(const FovPort& a, const FovPort& b)
-    {   
-        FovPort fov( OVRMath_Max( a.UpTan   , b.UpTan    ),   
-                     OVRMath_Max( a.DownTan , b.DownTan  ),
-                     OVRMath_Max( a.LeftTan , b.LeftTan  ),
-                     OVRMath_Max( a.RightTan, b.RightTan ) );
-        return fov;
-    }
-};
-
-
-} // Namespace OVR
-
-
-#if defined(_MSC_VER)
-    #pragma warning(pop)
-#endif
-
-
-#endif

+ 0 - 70
src/external/OculusSDK/LibOVR/Include/Extras/OVR_StereoProjection.h

@@ -1,70 +0,0 @@
-/************************************************************************************
-
-Filename    :   OVR_StereoProjection.h
-Content     :   Stereo projection functions
-Created     :   November 30, 2013
-Authors     :   Tom Fosyth
-
-Copyright   :   Copyright 2014-2016 Oculus VR, LLC All Rights reserved.
-
-Licensed under the Oculus VR Rift SDK License Version 3.3 (the "License"); 
-you may not use the Oculus VR Rift SDK except in compliance with the License, 
-which is provided at the time of installation or download, or which 
-otherwise accompanies this software in either electronic or hard copy form.
-
-You may obtain a copy of the License at
-
-http://www.oculusvr.com/licenses/LICENSE-3.3 
-
-Unless required by applicable law or agreed to in writing, the Oculus VR SDK 
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-
-*************************************************************************************/
-
-#ifndef OVR_StereoProjection_h
-#define OVR_StereoProjection_h
-
-
-#include "Extras/OVR_Math.h"
-
-
-namespace OVR {
-
-
-//-----------------------------------------------------------------------------------
-// ***** Stereo Enumerations
-
-// StereoEye specifies which eye we are rendering for; it is used to
-// retrieve StereoEyeParams.
-enum StereoEye
-{
-    StereoEye_Left,
-    StereoEye_Right,
-    StereoEye_Center
-};
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** Propjection functions
-
-Matrix4f            CreateProjection ( bool rightHanded, bool isOpenGL, FovPort fov, StereoEye eye,
-                                       float zNear = 0.01f, float zFar = 10000.0f,
-                                       bool flipZ = false, bool farAtInfinity = false);
-
-Matrix4f            CreateOrthoSubProjection ( bool rightHanded, StereoEye eyeType,
-                                               float tanHalfFovX, float tanHalfFovY,
-                                               float unitsX, float unitsY, float distanceFromCamera,
-                                               float interpupillaryDistance, Matrix4f const &projection,
-                                               float zNear = 0.0f, float zFar = 0.0f,
-                                               bool flipZ = false, bool farAtInfinity = false);
-
-ScaleAndOffset2D    CreateNDCScaleAndOffsetFromFov ( FovPort fov );
-
-
-} //namespace OVR
-
-#endif // OVR_StereoProjection_h

+ 0 - 2234
src/external/OculusSDK/LibOVR/Include/OVR_CAPI.h

@@ -1,2234 +0,0 @@
-/********************************************************************************//**
-\file      OVR_CAPI.h
-\brief     C Interface to the Oculus PC SDK tracking and rendering library.
-\copyright Copyright 2014 Oculus VR, LLC All Rights reserved.
-************************************************************************************/
-
-#ifndef OVR_CAPI_h  //   We don't use version numbers within this name, as all versioned variations of this file are currently mutually exclusive.
-#define OVR_CAPI_h  ///< Header include guard
-
-
-#include "OVR_CAPI_Keys.h"
-#include "OVR_Version.h"
-#include "OVR_ErrorCode.h"
-
-
-#include <stdint.h>
-
-#if defined(_MSC_VER)
-    #pragma warning(push)
-    #pragma warning(disable: 4324) // structure was padded due to __declspec(align())
-    #pragma warning(disable: 4359) // The alignment specified for a type is less than the alignment of the type of one of its data members
-#endif
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** OVR_OS
-//
-#if !defined(OVR_OS_WIN32) && defined(_WIN32)
-    #define OVR_OS_WIN32
-#endif
-
-#if !defined(OVR_OS_MAC) && defined(__APPLE__)
-    #define OVR_OS_MAC
-#endif
-
-#if !defined(OVR_OS_LINUX) && defined(__linux__)
-    #define OVR_OS_LINUX
-#endif
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** OVR_CPP
-//
-#if !defined(OVR_CPP)
-    #if defined(__cplusplus)
-        #define OVR_CPP(x) x
-    #else
-        #define OVR_CPP(x) /* Not C++ */
-    #endif
-#endif
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** OVR_CDECL
-//
-/// LibOVR calling convention for 32-bit Windows builds.
-//
-#if !defined(OVR_CDECL)
-    #if defined(_WIN32)
-        #define OVR_CDECL __cdecl
-    #else
-        #define OVR_CDECL
-    #endif
-#endif
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** OVR_EXTERN_C
-//
-/// Defined as extern "C" when built from C++ code.
-//
-#if !defined(OVR_EXTERN_C)
-    #ifdef __cplusplus
-        #define OVR_EXTERN_C extern "C"
-    #else
-        #define OVR_EXTERN_C
-    #endif
-#endif
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** OVR_PUBLIC_FUNCTION / OVR_PRIVATE_FUNCTION
-//
-// OVR_PUBLIC_FUNCTION  - Functions that externally visible from a shared library. Corresponds to Microsoft __dllexport.
-// OVR_PUBLIC_CLASS     - C++ structs and classes that are externally visible from a shared library. Corresponds to Microsoft __dllexport.
-// OVR_PRIVATE_FUNCTION - Functions that are not visible outside of a shared library. They are private to the shared library.
-// OVR_PRIVATE_CLASS    - C++ structs and classes that are not visible outside of a shared library. They are private to the shared library.
-//
-// OVR_DLL_BUILD        - Used to indicate that the current compilation unit is of a shared library.
-// OVR_DLL_IMPORT       - Used to indicate that the current compilation unit is a user of the corresponding shared library.
-// OVR_STATIC_BUILD     - used to indicate that the current compilation unit is not a shared library but rather statically linked code.
-//
-#if !defined(OVR_PUBLIC_FUNCTION)
-    #if defined(OVR_DLL_BUILD)
-        #if defined(_WIN32)
-            #define OVR_PUBLIC_FUNCTION(rval) OVR_EXTERN_C __declspec(dllexport) rval OVR_CDECL
-            #define OVR_PUBLIC_CLASS          __declspec(dllexport)
-            #define OVR_PRIVATE_FUNCTION(rval) rval OVR_CDECL
-            #define OVR_PRIVATE_CLASS
-        #else
-            #define OVR_PUBLIC_FUNCTION(rval) OVR_EXTERN_C __attribute__((visibility("default"))) rval OVR_CDECL /* Requires GCC 4.0+ */
-            #define OVR_PUBLIC_CLASS          __attribute__((visibility("default"))) /* Requires GCC 4.0+ */
-            #define OVR_PRIVATE_FUNCTION(rval) __attribute__((visibility("hidden"))) rval OVR_CDECL
-            #define OVR_PRIVATE_CLASS         __attribute__((visibility("hidden")))
-        #endif
-    #elif defined(OVR_DLL_IMPORT)
-        #if defined(_WIN32)
-            #define OVR_PUBLIC_FUNCTION(rval) OVR_EXTERN_C __declspec(dllimport) rval OVR_CDECL
-            #define OVR_PUBLIC_CLASS          __declspec(dllimport)
-        #else
-            #define OVR_PUBLIC_FUNCTION(rval) OVR_EXTERN_C rval OVR_CDECL
-            #define OVR_PUBLIC_CLASS
-        #endif
-        #define OVR_PRIVATE_FUNCTION(rval) rval OVR_CDECL
-        #define OVR_PRIVATE_CLASS
-    #else // OVR_STATIC_BUILD
-        #define OVR_PUBLIC_FUNCTION(rval)     OVR_EXTERN_C rval OVR_CDECL
-        #define OVR_PUBLIC_CLASS
-        #define OVR_PRIVATE_FUNCTION(rval) rval OVR_CDECL
-        #define OVR_PRIVATE_CLASS
-    #endif
-#endif
-
-
-//-----------------------------------------------------------------------------------
-// ***** OVR_EXPORT
-//
-/// Provided for backward compatibility with older versions of this library.
-//
-#if !defined(OVR_EXPORT)
-    #ifdef OVR_OS_WIN32
-        #define OVR_EXPORT __declspec(dllexport)
-    #else
-        #define OVR_EXPORT
-    #endif
-#endif
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** OVR_ALIGNAS
-//
-#if !defined(OVR_ALIGNAS)
-    #if defined(__GNUC__) || defined(__clang__)
-        #define OVR_ALIGNAS(n) __attribute__((aligned(n)))
-    #elif defined(_MSC_VER) || defined(__INTEL_COMPILER)
-        #define OVR_ALIGNAS(n) __declspec(align(n))
-    #elif defined(__CC_ARM)
-        #define OVR_ALIGNAS(n) __align(n)
-    #else
-        #error Need to define OVR_ALIGNAS
-    #endif
-#endif
-
-
-//-----------------------------------------------------------------------------------
-// ***** OVR_CC_HAS_FEATURE
-//
-// This is a portable way to use compile-time feature identification available
-// with some compilers in a clean way. Direct usage of __has_feature in preprocessing
-// statements of non-supporting compilers results in a preprocessing error.
-//
-// Example usage:
-//     #if OVR_CC_HAS_FEATURE(is_pod)
-//         if(__is_pod(T)) // If the type is plain data then we can safely memcpy it.
-//             memcpy(&destObject, &srcObject, sizeof(object));
-//     #endif
-//
-#if !defined(OVR_CC_HAS_FEATURE)
-    #if defined(__clang__) // http://clang.llvm.org/docs/LanguageExtensions.html#id2
-        #define OVR_CC_HAS_FEATURE(x) __has_feature(x)
-    #else
-        #define OVR_CC_HAS_FEATURE(x) 0
-    #endif
-#endif
-
-
-// ------------------------------------------------------------------------
-// ***** OVR_STATIC_ASSERT
-//
-// Portable support for C++11 static_assert().
-// Acts as if the following were declared:
-//     void OVR_STATIC_ASSERT(bool const_expression, const char* msg);
-//
-// Example usage:
-//     OVR_STATIC_ASSERT(sizeof(int32_t) == 4, "int32_t expected to be 4 bytes.");
-
-#if !defined(OVR_STATIC_ASSERT)
-    #if !(defined(__cplusplus) && (__cplusplus >= 201103L)) /* Other */ && \
-        !(defined(__GXX_EXPERIMENTAL_CXX0X__)) /* GCC */ && \
-        !(defined(__clang__) && defined(__cplusplus) && OVR_CC_HAS_FEATURE(cxx_static_assert)) /* clang */ && \
-        !(defined(_MSC_VER) && (_MSC_VER >= 1600) && defined(__cplusplus)) /* VS2010+  */
-
-        #if !defined(OVR_SA_UNUSED)
-        #if defined(OVR_CC_GNU) || defined(OVR_CC_CLANG)
-            #define OVR_SA_UNUSED __attribute__((unused))
-        #else
-            #define OVR_SA_UNUSED
-        #endif
-        #define OVR_SA_PASTE(a,b) a##b
-        #define OVR_SA_HELP(a,b)  OVR_SA_PASTE(a,b)
-        #endif
-
-        #if defined(__COUNTER__)
-            #define OVR_STATIC_ASSERT(expression, msg) typedef char OVR_SA_HELP(compileTimeAssert, __COUNTER__) [((expression) != 0) ? 1 : -1] OVR_SA_UNUSED
-        #else
-            #define OVR_STATIC_ASSERT(expression, msg) typedef char OVR_SA_HELP(compileTimeAssert, __LINE__) [((expression) != 0) ? 1 : -1] OVR_SA_UNUSED
-        #endif
-
-    #else
-        #define OVR_STATIC_ASSERT(expression, msg) static_assert(expression, msg)
-    #endif
-#endif
-
-
-//-----------------------------------------------------------------------------------
-// ***** Padding
-//
-/// Defines explicitly unused space for a struct.
-/// When used correcly, usage of this macro should not change the size of the struct.
-/// Compile-time and runtime behavior with and without this defined should be identical.
-///
-#if !defined(OVR_UNUSED_STRUCT_PAD)
-    #define OVR_UNUSED_STRUCT_PAD(padName, size) char padName[size];
-#endif
-
-
-//-----------------------------------------------------------------------------------
-// ***** Word Size
-//
-/// Specifies the size of a pointer on the given platform.
-///
-#if !defined(OVR_PTR_SIZE)
-    #if defined(__WORDSIZE)
-        #define OVR_PTR_SIZE ((__WORDSIZE) / 8)
-    #elif defined(_WIN64) || defined(__LP64__) || defined(_LP64) || defined(_M_IA64) || defined(__ia64__) || defined(__arch64__) || defined(__64BIT__) || defined(__Ptr_Is_64)
-        #define OVR_PTR_SIZE 8
-    #elif defined(__CC_ARM) && (__sizeof_ptr == 8)
-        #define OVR_PTR_SIZE 8
-    #else
-        #define OVR_PTR_SIZE 4
-    #endif
-#endif
-
-
-//-----------------------------------------------------------------------------------
-// ***** OVR_ON32 / OVR_ON64
-//
-#if OVR_PTR_SIZE == 8
-    #define OVR_ON32(x)
-    #define OVR_ON64(x) x
-#else
-    #define OVR_ON32(x) x
-    #define OVR_ON64(x)
-#endif
-
-
-//-----------------------------------------------------------------------------------
-// ***** ovrBool
-
-typedef char ovrBool;   ///< Boolean type
-#define ovrFalse 0      ///< ovrBool value of false.
-#define ovrTrue  1      ///< ovrBool value of true.
-
-
-//-----------------------------------------------------------------------------------
-// ***** Simple Math Structures
-
-/// A RGBA color with normalized float components.
-typedef struct OVR_ALIGNAS(4) ovrColorf_
-{
-    float r, g, b, a;
-} ovrColorf;
-
-/// A 2D vector with integer components.
-typedef struct OVR_ALIGNAS(4) ovrVector2i_
-{
-    int x, y;
-} ovrVector2i;
-
-/// A 2D size with integer components.
-typedef struct OVR_ALIGNAS(4) ovrSizei_
-{
-    int w, h;
-} ovrSizei;
-
-/// A 2D rectangle with a position and size.
-/// All components are integers.
-typedef struct OVR_ALIGNAS(4) ovrRecti_
-{
-    ovrVector2i Pos;
-    ovrSizei    Size;
-} ovrRecti;
-
-/// A quaternion rotation.
-typedef struct OVR_ALIGNAS(4) ovrQuatf_
-{
-    float x, y, z, w;
-} ovrQuatf;
-
-/// A 2D vector with float components.
-typedef struct OVR_ALIGNAS(4) ovrVector2f_
-{
-    float x, y;
-} ovrVector2f;
-
-/// A 3D vector with float components.
-typedef struct OVR_ALIGNAS(4) ovrVector3f_
-{
-    float x, y, z;
-} ovrVector3f;
-
-/// A 4x4 matrix with float elements.
-typedef struct OVR_ALIGNAS(4) ovrMatrix4f_
-{
-    float M[4][4];
-} ovrMatrix4f;
-
-
-/// Position and orientation together.
-typedef struct OVR_ALIGNAS(4) ovrPosef_
-{
-    ovrQuatf     Orientation;
-    ovrVector3f  Position;
-} ovrPosef;
-
-/// A full pose (rigid body) configuration with first and second derivatives.
-///
-/// Body refers to any object for which ovrPoseStatef is providing data.
-/// It can be the HMD, Touch controller, sensor or something else. The context
-/// depends on the usage of the struct.
-typedef struct OVR_ALIGNAS(8) ovrPoseStatef_
-{
-    ovrPosef     ThePose;               ///< Position and orientation.
-    ovrVector3f  AngularVelocity;       ///< Angular velocity in radians per second.
-    ovrVector3f  LinearVelocity;        ///< Velocity in meters per second.
-    ovrVector3f  AngularAcceleration;   ///< Angular acceleration in radians per second per second.
-    ovrVector3f  LinearAcceleration;    ///< Acceleration in meters per second per second.
-    OVR_UNUSED_STRUCT_PAD(pad0, 4)      ///< \internal struct pad.
-    double       TimeInSeconds;         ///< Absolute time that this pose refers to. \see ovr_GetTimeInSeconds
-} ovrPoseStatef;
-
-/// Describes the up, down, left, and right angles of the field of view.
-///
-/// Field Of View (FOV) tangent of the angle units.
-/// \note For a standard 90 degree vertical FOV, we would
-/// have: { UpTan = tan(90 degrees / 2), DownTan = tan(90 degrees / 2) }.
-typedef struct OVR_ALIGNAS(4) ovrFovPort_
-{
-    float UpTan;    ///< The tangent of the angle between the viewing vector and the top edge of the field of view.
-    float DownTan;  ///< The tangent of the angle between the viewing vector and the bottom edge of the field of view.
-    float LeftTan;  ///< The tangent of the angle between the viewing vector and the left edge of the field of view.
-    float RightTan; ///< The tangent of the angle between the viewing vector and the right edge of the field of view.
-} ovrFovPort;
-
-
-//-----------------------------------------------------------------------------------
-// ***** HMD Types
-
-/// Enumerates all HMD types that we support.
-///
-/// The currently released developer kits are ovrHmd_DK1 and ovrHmd_DK2. The other enumerations are for internal use only.
-typedef enum ovrHmdType_
-{
-    ovrHmd_None      = 0,
-    ovrHmd_DK1       = 3,
-    ovrHmd_DKHD      = 4,
-    ovrHmd_DK2       = 6,
-    ovrHmd_CB        = 8,
-    ovrHmd_Other     = 9,
-    ovrHmd_E3_2015   = 10,
-    ovrHmd_ES06      = 11,
-    ovrHmd_ES09      = 12,
-    ovrHmd_ES11      = 13,
-    ovrHmd_CV1       = 14,
-
-    ovrHmd_EnumSize  = 0x7fffffff ///< \internal Force type int32_t.
-} ovrHmdType;
-
-
-/// HMD capability bits reported by device.
-///
-typedef enum ovrHmdCaps_
-{
-    // Read-only flags
-    ovrHmdCap_DebugDevice             = 0x0010,   ///< <B>(read only)</B> Specifies that the HMD is a virtual debug device.
-
-
-    ovrHmdCap_EnumSize            = 0x7fffffff ///< \internal Force type int32_t.
-} ovrHmdCaps;
-
-
-/// Tracking capability bits reported by the device.
-/// Used with ovr_GetTrackingCaps.
-typedef enum ovrTrackingCaps_
-{
-    ovrTrackingCap_Orientation      = 0x0010,    ///< Supports orientation tracking (IMU).
-    ovrTrackingCap_MagYawCorrection = 0x0020,    ///< Supports yaw drift correction via a magnetometer or other means.
-    ovrTrackingCap_Position         = 0x0040,    ///< Supports positional tracking.
-    ovrTrackingCap_EnumSize         = 0x7fffffff ///< \internal Force type int32_t.
-} ovrTrackingCaps;
-
-
-/// Specifies which eye is being used for rendering.
-/// This type explicitly does not include a third "NoStereo" monoscopic option, as such is
-/// not required for an HMD-centered API.
-typedef enum ovrEyeType_
-{
-    ovrEye_Left     = 0,         ///< The left eye, from the viewer's perspective.
-    ovrEye_Right    = 1,         ///< The right eye, from the viewer's perspective.
-    ovrEye_Count    = 2,         ///< \internal Count of enumerated elements.
-    ovrEye_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrEyeType;
-
-/// Specifies the coordinate system ovrTrackingState returns tracking poses in.
-/// Used with ovr_SetTrackingOriginType()
-typedef enum ovrTrackingOrigin_
-{
-    /// \brief Tracking system origin reported at eye (HMD) height
-    /// \details Prefer using this origin when your application requires
-    /// matching user's current physical head pose to a virtual head pose
-    /// without any regards to a the height of the floor. Cockpit-based,
-    /// or 3rd-person experiences are ideal candidates.
-    /// When used, all poses in ovrTrackingState are reported as an offset
-    /// transform from the profile calibrated or recentered HMD pose.
-    /// It is recommended that apps using this origin type call ovr_RecenterTrackingOrigin
-    /// prior to starting the VR experience, but notify the user before doing so
-    /// to make sure the user is in a comfortable pose, facing a comfortable
-    /// direction.
-    ovrTrackingOrigin_EyeLevel = 0,
-    /// \brief Tracking system origin reported at floor height
-    /// \details Prefer using this origin when your application requires the
-    /// physical floor height to match the virtual floor height, such as
-    /// standing experiences.
-    /// When used, all poses in ovrTrackingState are reported as an offset
-    /// transform from the profile calibrated floor pose. Calling ovr_RecenterTrackingOrigin
-    /// will recenter the X & Z axes as well as yaw, but the Y-axis (i.e. height) will continue
-    /// to be reported using the floor height as the origin for all poses.
-    ovrTrackingOrigin_FloorLevel = 1,
-    ovrTrackingOrigin_Count = 2,            ///< \internal Count of enumerated elements.
-    ovrTrackingOrigin_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrTrackingOrigin;
-
-/// Identifies a graphics device in a platform-specific way.
-/// For Windows this is a LUID type.
-typedef struct OVR_ALIGNAS(OVR_PTR_SIZE) ovrGraphicsLuid_
-{
-    // Public definition reserves space for graphics API-specific implementation
-    char        Reserved[8];
-} ovrGraphicsLuid;
-
-
-/// This is a complete descriptor of the HMD.
-typedef struct OVR_ALIGNAS(OVR_PTR_SIZE) ovrHmdDesc_
-{
-    ovrHmdType   Type;                         ///< The type of HMD.
-    OVR_ON64(OVR_UNUSED_STRUCT_PAD(pad0, 4))   ///< \internal struct paddding.
-    char         ProductName[64];              ///< UTF8-encoded product identification string (e.g. "Oculus Rift DK1").
-    char         Manufacturer[64];             ///< UTF8-encoded HMD manufacturer identification string.
-    short        VendorId;                     ///< HID (USB) vendor identifier of the device.
-    short        ProductId;                    ///< HID (USB) product identifier of the device.
-    char         SerialNumber[24];             ///< HMD serial number.
-    short        FirmwareMajor;                ///< HMD firmware major version.
-    short        FirmwareMinor;                ///< HMD firmware minor version.
-    unsigned int AvailableHmdCaps;             ///< Capability bits described by ovrHmdCaps which the HMD currently supports.
-    unsigned int DefaultHmdCaps;               ///< Capability bits described by ovrHmdCaps which are default for the current Hmd.
-    unsigned int AvailableTrackingCaps;        ///< Capability bits described by ovrTrackingCaps which the system currently supports.
-    unsigned int DefaultTrackingCaps;          ///< Capability bits described by ovrTrackingCaps which are default for the current system.
-    ovrFovPort   DefaultEyeFov[ovrEye_Count];  ///< Defines the recommended FOVs for the HMD.
-    ovrFovPort   MaxEyeFov[ovrEye_Count];      ///< Defines the maximum FOVs for the HMD.
-    ovrSizei     Resolution;                   ///< Resolution of the full HMD screen (both eyes) in pixels.
-    float        DisplayRefreshRate;           ///< Nominal refresh rate of the display in cycles per second at the time of HMD creation.
-    OVR_ON64(OVR_UNUSED_STRUCT_PAD(pad1, 4))   ///< \internal struct paddding.
-} ovrHmdDesc;
-
-
-/// Used as an opaque pointer to an OVR session.
-typedef struct ovrHmdStruct* ovrSession;
-
-
-
-/// Bit flags describing the current status of sensor tracking.
-///  The values must be the same as in enum StatusBits
-///
-/// \see ovrTrackingState
-///
-typedef enum ovrStatusBits_
-{
-    ovrStatus_OrientationTracked    = 0x0001,    ///< Orientation is currently tracked (connected and in use).
-    ovrStatus_PositionTracked       = 0x0002,    ///< Position is currently tracked (false if out of range).
-    ovrStatus_EnumSize              = 0x7fffffff ///< \internal Force type int32_t.
-} ovrStatusBits;
-
-
-///  Specifies the description of a single sensor.
-///
-/// \see ovr_GetTrackerDesc
-///
-typedef struct OVR_ALIGNAS(OVR_PTR_SIZE) ovrTrackerDesc_
-{
-    float FrustumHFovInRadians;      ///< Sensor frustum horizontal field-of-view (if present).
-    float FrustumVFovInRadians;      ///< Sensor frustum vertical field-of-view (if present).
-    float FrustumNearZInMeters;      ///< Sensor frustum near Z (if present).
-    float FrustumFarZInMeters;       ///< Sensor frustum far Z (if present).
-} ovrTrackerDesc;
-
-
-///  Specifies sensor flags.
-///
-///  /see ovrTrackerPose
-///
-typedef enum ovrTrackerFlags_
-{
-    ovrTracker_Connected   = 0x0020,      ///< The sensor is present, else the sensor is absent or offline.
-    ovrTracker_PoseTracked = 0x0004       ///< The sensor has a valid pose, else the pose is unavailable. This will only be set if ovrTracker_Connected is set.
-} ovrTrackerFlags;
-
-
-///  Specifies the pose for a single sensor.
-///
-typedef struct OVR_ALIGNAS(8) _ovrTrackerPose
-{
-    unsigned int TrackerFlags;      ///< ovrTrackerFlags.
-    ovrPosef     Pose;              ///< The sensor's pose. This pose includes sensor tilt (roll and pitch). For a leveled coordinate system use LeveledPose.
-    ovrPosef     LeveledPose;       ///< The sensor's leveled pose, aligned with gravity. This value includes position and yaw of the sensor, but not roll and pitch. It can be used as a reference point to render real-world objects in the correct location.
-    OVR_UNUSED_STRUCT_PAD(pad0, 4)  ///< \internal struct pad.
-} ovrTrackerPose;
-
-
-/// Tracking state at a given absolute time (describes predicted HMD pose, etc.).
-/// Returned by ovr_GetTrackingState.
-///
-/// \see ovr_GetTrackingState
-///
-typedef struct OVR_ALIGNAS(8) ovrTrackingState_
-{
-    /// Predicted head pose (and derivatives) at the requested absolute time.
-    ovrPoseStatef  HeadPose;
-
-    /// HeadPose tracking status described by ovrStatusBits.
-    unsigned int   StatusFlags;
-
-    /// The most recent calculated pose for each hand when hand controller tracking is present.
-    /// HandPoses[ovrHand_Left] refers to the left hand and HandPoses[ovrHand_Right] to the right hand.
-    /// These values can be combined with ovrInputState for complete hand controller information.
-    ovrPoseStatef  HandPoses[2];
-
-    /// HandPoses status flags described by ovrStatusBits.
-    /// Only ovrStatus_OrientationTracked and ovrStatus_PositionTracked are reported.
-    unsigned int   HandStatusFlags[2];
-
-    /// The pose of the origin captured during calibration.
-    /// Like all other poses here, this is expressed in the space set by ovr_RecenterTrackingOrigin,
-    /// and so will change every time that is called. This pose can be used to calculate
-    /// where the calibrated origin lands in the new recentered space.
-    /// If an application never calls ovr_RecenterTrackingOrigin, expect this value to be the identity
-    /// pose and as such will point respective origin based on ovrTrackingOrigin requested when
-    /// calling ovr_GetTrackingState.
-    ovrPosef      CalibratedOrigin;
-
-} ovrTrackingState;
-
-
-/// Rendering information for each eye. Computed by ovr_GetRenderDesc() based on the
-/// specified FOV. Note that the rendering viewport is not included
-/// here as it can be specified separately and modified per frame by
-/// passing different Viewport values in the layer structure.
-///
-/// \see ovr_GetRenderDesc
-///
-typedef struct OVR_ALIGNAS(4) ovrEyeRenderDesc_
-{
-    ovrEyeType  Eye;                        ///< The eye index to which this instance corresponds.
-    ovrFovPort  Fov;                        ///< The field of view.
-    ovrRecti    DistortedViewport;          ///< Distortion viewport.
-    ovrVector2f PixelsPerTanAngleAtCenter;  ///< How many display pixels will fit in tan(angle) = 1.
-    ovrVector3f HmdToEyeOffset;             ///< Translation of each eye, in meters.
-} ovrEyeRenderDesc;
-
-
-/// Projection information for ovrLayerEyeFovDepth.
-///
-/// Use the utility function ovrTimewarpProjectionDesc_FromProjection to
-/// generate this structure from the application's projection matrix.
-///
-/// \see ovrLayerEyeFovDepth, ovrTimewarpProjectionDesc_FromProjection
-///
-typedef struct OVR_ALIGNAS(4) ovrTimewarpProjectionDesc_
-{
-    float Projection22;     ///< Projection matrix element [2][2].
-    float Projection23;     ///< Projection matrix element [2][3].
-    float Projection32;     ///< Projection matrix element [3][2].
-} ovrTimewarpProjectionDesc;
-
-
-/// Contains the data necessary to properly calculate position info for various layer types.
-/// - HmdToEyeOffset is the same value pair provided in ovrEyeRenderDesc.
-/// - HmdSpaceToWorldScaleInMeters is used to scale player motion into in-application units.
-///   In other words, it is how big an in-application unit is in the player's physical meters.
-///   For example, if the application uses inches as its units then HmdSpaceToWorldScaleInMeters would be 0.0254.
-///   Note that if you are scaling the player in size, this must also scale. So if your application
-///   units are inches, but you're shrinking the player to half their normal size, then
-///   HmdSpaceToWorldScaleInMeters would be 0.0254*2.0.
-///
-/// \see ovrEyeRenderDesc, ovr_SubmitFrame
-///
-typedef struct OVR_ALIGNAS(4) ovrViewScaleDesc_
-{
-    ovrVector3f HmdToEyeOffset[ovrEye_Count];   ///< Translation of each eye.
-    float       HmdSpaceToWorldScaleInMeters;   ///< Ratio of viewer units to meter units.
-} ovrViewScaleDesc;
-
-
-//-----------------------------------------------------------------------------------
-// ***** Platform-independent Rendering Configuration
-
-/// The type of texture resource.
-///
-/// \see ovrTextureSwapChainDesc
-///
-typedef enum ovrTextureType_
-{
-    ovrTexture_2D,              ///< 2D textures.
-    ovrTexture_2D_External,     ///< External 2D texture. Not used on PC
-    ovrTexture_Cube,            ///< Cube maps. Not currently supported on PC.
-    ovrTexture_Count,
-    ovrTexture_EnumSize = 0x7fffffff  ///< \internal Force type int32_t.
-} ovrTextureType;
-
-/// The bindings required for texture swap chain.
-///
-/// All texture swap chains are automatically bindable as shader
-/// input resources since the Oculus runtime needs this to read them.
-///
-/// \see ovrTextureSwapChainDesc
-///
-typedef enum ovrTextureBindFlags_
-{
-    ovrTextureBind_None,
-    ovrTextureBind_DX_RenderTarget = 0x0001,    ///< The application can write into the chain with pixel shader
-    ovrTextureBind_DX_UnorderedAccess = 0x0002, ///< The application can write to the chain with compute shader
-    ovrTextureBind_DX_DepthStencil = 0x0004,    ///< The chain buffers can be bound as depth and/or stencil buffers
-
-    ovrTextureBind_EnumSize = 0x7fffffff  ///< \internal Force type int32_t.
-} ovrTextureBindFlags;
-
-/// The format of a texture.
-///
-/// \see ovrTextureSwapChainDesc
-///
-typedef enum ovrTextureFormat_
-{
-    OVR_FORMAT_UNKNOWN,
-    OVR_FORMAT_B5G6R5_UNORM,    ///< Not currently supported on PC. Would require a DirectX 11.1 device.
-    OVR_FORMAT_B5G5R5A1_UNORM,  ///< Not currently supported on PC. Would require a DirectX 11.1 device.
-    OVR_FORMAT_B4G4R4A4_UNORM,  ///< Not currently supported on PC. Would require a DirectX 11.1 device.
-    OVR_FORMAT_R8G8B8A8_UNORM,
-    OVR_FORMAT_R8G8B8A8_UNORM_SRGB,
-    OVR_FORMAT_B8G8R8A8_UNORM,
-    OVR_FORMAT_B8G8R8A8_UNORM_SRGB, ///< Not supported for OpenGL applications
-    OVR_FORMAT_B8G8R8X8_UNORM,      ///< Not supported for OpenGL applications
-    OVR_FORMAT_B8G8R8X8_UNORM_SRGB, ///< Not supported for OpenGL applications
-    OVR_FORMAT_R16G16B16A16_FLOAT,
-    OVR_FORMAT_D16_UNORM,
-    OVR_FORMAT_D24_UNORM_S8_UINT,
-    OVR_FORMAT_D32_FLOAT,
-    OVR_FORMAT_D32_FLOAT_S8X24_UINT,
-
-    // Added in 1.5 compressed formats can be used for static layers
-    OVR_FORMAT_BC1_UNORM,
-    OVR_FORMAT_BC1_UNORM_SRGB,
-    OVR_FORMAT_BC2_UNORM,
-    OVR_FORMAT_BC2_UNORM_SRGB,
-    OVR_FORMAT_BC3_UNORM,
-    OVR_FORMAT_BC3_UNORM_SRGB,
-    OVR_FORMAT_BC6H_UF16,
-    OVR_FORMAT_BC6H_SF16,
-    OVR_FORMAT_BC7_UNORM,
-    OVR_FORMAT_BC7_UNORM_SRGB,
-
-    OVR_FORMAT_ENUMSIZE = 0x7fffffff  ///< \internal Force type int32_t.
-} ovrTextureFormat;
-
-/// Misc flags overriding particular
-///   behaviors of a texture swap chain
-///
-/// \see ovrTextureSwapChainDesc
-///
-typedef enum ovrTextureMiscFlags_
-{
-    ovrTextureMisc_None,
-
-    /// DX only: The underlying texture is created with a TYPELESS equivalent of the
-    /// format specified in the texture desc. The SDK will still access the
-    /// texture using the format specified in the texture desc, but the app can
-    /// create views with different formats if this is specified.
-    ovrTextureMisc_DX_Typeless = 0x0001,
-
-    /// DX only: Allow generation of the mip chain on the GPU via the GenerateMips
-    /// call. This flag requires that RenderTarget binding also be specified.
-    ovrTextureMisc_AllowGenerateMips = 0x0002,
-
-    /// Texture swap chain contains protected content, and requires
-    /// HDCP connection in order to display to HMD. Also prevents
-    /// mirroring or other redirection of any frame containing this contents
-    ovrTextureMisc_ProtectedContent = 0x0004,
-
-    ovrTextureMisc_EnumSize = 0x7fffffff  ///< \internal Force type int32_t.
-} ovrTextureFlags;
-
-/// Description used to create a texture swap chain.
-///
-/// \see ovr_CreateTextureSwapChainDX
-/// \see ovr_CreateTextureSwapChainGL
-///
-typedef struct ovrTextureSwapChainDesc_
-{
-    ovrTextureType      Type;
-    ovrTextureFormat    Format;
-    int                 ArraySize;      ///< Only supported with ovrTexture_2D. Not supported on PC at this time.
-    int                 Width;
-    int                 Height;
-    int                 MipLevels;
-    int                 SampleCount;    ///< Current only supported on depth textures
-    ovrBool             StaticImage;    ///< Not buffered in a chain. For images that don't change
-    unsigned int        MiscFlags;      ///< ovrTextureFlags
-    unsigned int        BindFlags;      ///< ovrTextureBindFlags. Not used for GL.
-} ovrTextureSwapChainDesc;
-
-/// Description used to create a mirror texture.
-///
-/// \see ovr_CreateMirrorTextureDX
-/// \see ovr_CreateMirrorTextureGL
-///
-typedef struct ovrMirrorTextureDesc_
-{
-    ovrTextureFormat    Format;
-    int                 Width;
-    int                 Height;
-    unsigned int        MiscFlags;      ///< ovrTextureFlags
-} ovrMirrorTextureDesc;
-
-typedef struct ovrTextureSwapChainData* ovrTextureSwapChain;
-typedef struct ovrMirrorTextureData* ovrMirrorTexture;
-
-//-----------------------------------------------------------------------------------
-
-/// Describes button input types.
-/// Button inputs are combined; that is they will be reported as pressed if they are
-/// pressed on either one of the two devices.
-/// The ovrButton_Up/Down/Left/Right map to both XBox D-Pad and directional buttons.
-/// The ovrButton_Enter and ovrButton_Return map to Start and Back controller buttons, respectively.
-typedef enum ovrButton_
-{
-    ovrButton_A         = 0x00000001,
-    ovrButton_B         = 0x00000002,
-    ovrButton_RThumb    = 0x00000004,
-    ovrButton_RShoulder = 0x00000008,
-
-    ovrButton_X         = 0x00000100,
-    ovrButton_Y         = 0x00000200,
-    ovrButton_LThumb    = 0x00000400,
-    ovrButton_LShoulder = 0x00000800,
-
-    // Navigation through DPad.
-    ovrButton_Up        = 0x00010000,
-    ovrButton_Down      = 0x00020000,
-    ovrButton_Left      = 0x00040000,
-    ovrButton_Right     = 0x00080000,
-    ovrButton_Enter     = 0x00100000, // Start on XBox controller.
-    ovrButton_Back      = 0x00200000, // Back on Xbox controller.
-    ovrButton_VolUp     = 0x00400000,  // only supported by Remote.
-    ovrButton_VolDown   = 0x00800000,  // only supported by Remote.
-    ovrButton_Home      = 0x01000000,
-    ovrButton_Private   = ovrButton_VolUp | ovrButton_VolDown | ovrButton_Home,
-
-    // Bit mask of all buttons on the right Touch controller
-    ovrButton_RMask = ovrButton_A | ovrButton_B | ovrButton_RThumb | ovrButton_RShoulder,
-
-    // Bit mask of all buttons on the left Touch controller
-    ovrButton_LMask = ovrButton_X | ovrButton_Y | ovrButton_LThumb | ovrButton_LShoulder |
-                      ovrButton_Enter,
-
-
-    ovrButton_EnumSize  = 0x7fffffff ///< \internal Force type int32_t.
-} ovrButton;
-
-/// Describes touch input types.
-/// These values map to capacitive touch values reported ovrInputState::Touch.
-/// Some of these values are mapped to button bits for consistency.
-typedef enum ovrTouch_
-{
-    ovrTouch_A              = ovrButton_A,
-    ovrTouch_B              = ovrButton_B,
-    ovrTouch_RThumb         = ovrButton_RThumb,
-    ovrTouch_RThumbRest     = 0x00000008,
-    ovrTouch_RIndexTrigger  = 0x00000010,
-
-    // Bit mask of all the button touches on the right controller
-    ovrTouch_RButtonMask    = ovrTouch_A | ovrTouch_B | ovrTouch_RThumb | ovrTouch_RThumbRest | ovrTouch_RIndexTrigger,
-
-    ovrTouch_X              = ovrButton_X,
-    ovrTouch_Y              = ovrButton_Y,
-    ovrTouch_LThumb         = ovrButton_LThumb,
-    ovrTouch_LThumbRest     = 0x00000800,
-    ovrTouch_LIndexTrigger  = 0x00001000,
-
-    // Bit mask of all the button touches on the left controller
-    ovrTouch_LButtonMask    = ovrTouch_X | ovrTouch_Y | ovrTouch_LThumb | ovrTouch_LThumbRest | ovrTouch_LIndexTrigger,
-
-    // Finger pose state
-    // Derived internally based on distance, proximity to sensors and filtering.
-    ovrTouch_RIndexPointing = 0x00000020,
-    ovrTouch_RThumbUp       = 0x00000040,
-
-    // Bit mask of all right controller poses
-    ovrTouch_RPoseMask      = ovrTouch_RIndexPointing | ovrTouch_RThumbUp,
-
-    ovrTouch_LIndexPointing = 0x00002000,
-    ovrTouch_LThumbUp       = 0x00004000,
-
-    // Bit mask of all left controller poses
-    ovrTouch_LPoseMask      = ovrTouch_LIndexPointing | ovrTouch_LThumbUp,
-
-    ovrTouch_EnumSize       = 0x7fffffff ///< \internal Force type int32_t.
-} ovrTouch;
-
-/// Describes the Touch Haptics engine.
-/// Currently, those values will NOT change during a session.
-typedef struct OVR_ALIGNAS(OVR_PTR_SIZE) ovrTouchHapticsDesc_
-{
-    // Haptics engine frequency/sample-rate, sample time in seconds equals 1.0/sampleRateHz
-    int SampleRateHz;
-    // Size of each Haptics sample, sample value range is [0, 2^(Bytes*8)-1]
-    int SampleSizeInBytes;
-
-    // Queue size that would guarantee Haptics engine would not starve for data
-    // Make sure size doesn't drop below it for best results
-    int QueueMinSizeToAvoidStarvation;
-
-    // Minimum, Maximum and Optimal number of samples that can be sent to Haptics through ovr_SubmitControllerVibration
-    int SubmitMinSamples;
-    int SubmitMaxSamples;
-    int SubmitOptimalSamples;
-} ovrTouchHapticsDesc;
-
-/// Specifies which controller is connected; multiple can be connected at once.
-typedef enum ovrControllerType_
-{
-    ovrControllerType_None      = 0x00,
-    ovrControllerType_LTouch    = 0x01,
-    ovrControllerType_RTouch    = 0x02,
-    ovrControllerType_Touch     = 0x03,
-    ovrControllerType_Remote    = 0x04,
-    ovrControllerType_XBox      = 0x10,
-
-    ovrControllerType_Active    = 0xff,      ///< Operate on or query whichever controller is active.
-
-    ovrControllerType_EnumSize  = 0x7fffffff ///< \internal Force type int32_t.
-} ovrControllerType;
-
-/// Haptics buffer submit mode
-typedef enum ovrHapticsBufferSubmitMode_
-{
-    // Enqueue buffer for later playback
-    ovrHapticsBufferSubmit_Enqueue
-} ovrHapticsBufferSubmitMode;
-
-/// Haptics buffer descriptor, contains amplitude samples used for Touch vibration
-typedef struct ovrHapticsBuffer_
-{
-    const void* Samples;
-    int SamplesCount;
-    ovrHapticsBufferSubmitMode SubmitMode;
-} ovrHapticsBuffer;
-
-/// State of the Haptics playback for Touch vibration
-typedef struct ovrHapticsPlaybackState_
-{
-    // Remaining space available to queue more samples
-    int RemainingQueueSpace;
-
-    // Number of samples currently queued
-    int SamplesQueued;
-} ovrHapticsPlaybackState;
-
-/// Position tracked devices
-typedef enum ovrTrackedDeviceType_
-{
-    ovrTrackedDevice_HMD        = 0x0001,
-    ovrTrackedDevice_LTouch     = 0x0002,
-    ovrTrackedDevice_RTouch     = 0x0004,
-    ovrTrackedDevice_Touch      = 0x0006,
-    ovrTrackedDevice_All        = 0xFFFF,
-} ovrTrackedDeviceType;
-
-/// Provides names for the left and right hand array indexes.
-///
-/// \see ovrInputState, ovrTrackingState
-///
-typedef enum ovrHandType_
-{
-    ovrHand_Left  = 0,
-    ovrHand_Right = 1,
-    ovrHand_Count = 2,
-    ovrHand_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrHandType;
-
-
-
-/// ovrInputState describes the complete controller input state, including Oculus Touch,
-/// and XBox gamepad. If multiple inputs are connected and used at the same time,
-/// their inputs are combined.
-typedef struct ovrInputState_
-{
-    /// System type when the controller state was last updated.
-    double              TimeInSeconds;
-
-    /// Values for buttons described by ovrButton.
-    unsigned int        Buttons;
-
-    /// Touch values for buttons and sensors as described by ovrTouch.
-    unsigned int        Touches;
-
-    /// Left and right finger trigger values (ovrHand_Left and ovrHand_Right), in the range 0.0 to 1.0f.
-    /// Returns 0 if the value would otherwise be less than 0.1176, for ovrControllerType_XBox
-    float               IndexTrigger[ovrHand_Count];
-
-    /// Left and right hand trigger values (ovrHand_Left and ovrHand_Right), in the range 0.0 to 1.0f.
-    float               HandTrigger[ovrHand_Count];
-
-    /// Horizontal and vertical thumbstick axis values (ovrHand_Left and ovrHand_Right), in the range -1.0f to 1.0f.
-    /// Returns a deadzone (value 0) per each axis if the value on that axis would otherwise have been between -.2746 to +.2746, for ovrControllerType_XBox
-    ovrVector2f         Thumbstick[ovrHand_Count];
-
-    /// The type of the controller this state is for.
-    ovrControllerType   ControllerType;
-
-    /// Left and right finger trigger values (ovrHand_Left and ovrHand_Right), in the range 0.0 to 1.0f.
-    /// Does not apply a deadzone
-    /// Added in 1.7
-    float               IndexTriggerNoDeadzone[ovrHand_Count];
-
-    /// Left and right hand trigger values (ovrHand_Left and ovrHand_Right), in the range 0.0 to 1.0f.
-    /// Does not apply a deadzone
-    /// Added in 1.7
-    float               HandTriggerNoDeadzone[ovrHand_Count];
-
-    /// Horizontal and vertical thumbstick axis values (ovrHand_Left and ovrHand_Right), in the range -1.0f to 1.0f
-    /// Does not apply a deadzone
-    /// Added in 1.7
-    ovrVector2f         ThumbstickNoDeadzone[ovrHand_Count];
-} ovrInputState;
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** Initialize structures
-
-/// Initialization flags.
-///
-/// \see ovrInitParams, ovr_Initialize
-///
-typedef enum ovrInitFlags_
-{
-    /// When a debug library is requested, a slower debugging version of the library will
-    /// run which can be used to help solve problems in the library and debug application code.
-    ovrInit_Debug          = 0x00000001,
-
-    /// When a version is requested, the LibOVR runtime respects the RequestedMinorVersion
-    /// field and verifies that the RequestedMinorVersion is supported.
-    ovrInit_RequestVersion = 0x00000004,
-
-    // These bits are writable by user code.
-    ovrinit_WritableBits   = 0x00ffffff,
-
-    ovrInit_EnumSize       = 0x7fffffff ///< \internal Force type int32_t.
-} ovrInitFlags;
-
-
-/// Logging levels
-///
-/// \see ovrInitParams, ovrLogCallback
-///
-typedef enum ovrLogLevel_
-{
-    ovrLogLevel_Debug    = 0, ///< Debug-level log event.
-    ovrLogLevel_Info     = 1, ///< Info-level log event.
-    ovrLogLevel_Error    = 2, ///< Error-level log event.
-
-    ovrLogLevel_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrLogLevel;
-
-
-/// Signature of the logging callback function pointer type.
-///
-/// \param[in] userData is an arbitrary value specified by the user of ovrInitParams.
-/// \param[in] level is one of the ovrLogLevel constants.
-/// \param[in] message is a UTF8-encoded null-terminated string.
-/// \see ovrInitParams, ovrLogLevel, ovr_Initialize
-///
-typedef void (OVR_CDECL* ovrLogCallback)(uintptr_t userData, int level, const char* message);
-
-
-/// Parameters for ovr_Initialize.
-///
-/// \see ovr_Initialize
-///
-typedef struct OVR_ALIGNAS(8) ovrInitParams_
-{
-    /// Flags from ovrInitFlags to override default behavior.
-    /// Use 0 for the defaults.
-    uint32_t       Flags;
-
-    /// Requests a specific minimum minor version of the LibOVR runtime.
-    /// Flags must include ovrInit_RequestVersion or this will be ignored
-    /// and OVR_MINOR_VERSION will be used.
-    uint32_t       RequestedMinorVersion;
-
-    /// User-supplied log callback function, which may be called at any time
-    /// asynchronously from multiple threads until ovr_Shutdown completes.
-    /// Use NULL to specify no log callback.
-    ovrLogCallback LogCallback;
-
-    /// User-supplied data which is passed as-is to LogCallback. Typically this
-    /// is used to store an application-specific pointer which is read in the
-    /// callback function.
-    uintptr_t      UserData;
-
-    /// Relative number of milliseconds to wait for a connection to the server
-    /// before failing. Use 0 for the default timeout.
-    uint32_t       ConnectionTimeoutMS;
-
-    OVR_ON64(OVR_UNUSED_STRUCT_PAD(pad0, 4)) ///< \internal
-
-} ovrInitParams;
-
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#if !defined(OVR_EXPORTING_CAPI)
-
-// -----------------------------------------------------------------------------------
-// ***** API Interfaces
-
-/// Initializes LibOVR
-///
-/// Initialize LibOVR for application usage. This includes finding and loading the LibOVRRT
-/// shared library. No LibOVR API functions, other than ovr_GetLastErrorInfo and ovr_Detect, can
-/// be called unless ovr_Initialize succeeds. A successful call to ovr_Initialize must be eventually
-/// followed by a call to ovr_Shutdown. ovr_Initialize calls are idempotent.
-/// Calling ovr_Initialize twice does not require two matching calls to ovr_Shutdown.
-/// If already initialized, the return value is ovr_Success.
-///
-/// LibOVRRT shared library search order:
-///      -# Current working directory (often the same as the application directory).
-///      -# Module directory (usually the same as the application directory,
-///         but not if the module is a separate shared library).
-///      -# Application directory
-///      -# Development directory (only if OVR_ENABLE_DEVELOPER_SEARCH is enabled,
-///         which is off by default).
-///      -# Standard OS shared library search location(s) (OS-specific).
-///
-/// \param params Specifies custom initialization options. May be NULL to indicate default options.
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-///         ovr_GetLastErrorInfo to get more information. Example failed results include:
-///     - ovrError_Initialize: Generic initialization error.
-///     - ovrError_LibLoad: Couldn't load LibOVRRT.
-///     - ovrError_LibVersion: LibOVRRT version incompatibility.
-///     - ovrError_ServiceConnection: Couldn't connect to the OVR Service.
-///     - ovrError_ServiceVersion: OVR Service version incompatibility.
-///     - ovrError_IncompatibleOS: The operating system version is incompatible.
-///     - ovrError_DisplayInit: Unable to initialize the HMD display.
-///     - ovrError_ServerStart:  Unable to start the server. Is it already running?
-///     - ovrError_Reinitialization: Attempted to re-initialize with a different version.
-///
-/// <b>Example code</b>
-///     \code{.cpp}
-///         ovrResult result = ovr_Initialize(NULL);
-///         if(OVR_FAILURE(result)) {
-///             ovrErrorInfo errorInfo;
-///             ovr_GetLastErrorInfo(&errorInfo);
-///             DebugLog("ovr_Initialize failed: %s", errorInfo.ErrorString);
-///             return false;
-///         }
-///         [...]
-///     \endcode
-///
-/// \see ovr_Shutdown
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_Initialize(const ovrInitParams* params);
-
-
-/// Shuts down LibOVR
-///
-/// A successful call to ovr_Initialize must be eventually matched by a call to ovr_Shutdown.
-/// After calling ovr_Shutdown, no LibOVR functions can be called except ovr_GetLastErrorInfo
-/// or another ovr_Initialize. ovr_Shutdown invalidates all pointers, references, and created objects
-/// previously returned by LibOVR functions. The LibOVRRT shared library can be unloaded by
-/// ovr_Shutdown.
-///
-/// \see ovr_Initialize
-///
-OVR_PUBLIC_FUNCTION(void) ovr_Shutdown();
-
-/// Returns information about the most recent failed return value by the
-/// current thread for this library.
-///
-/// This function itself can never generate an error.
-/// The last error is never cleared by LibOVR, but will be overwritten by new errors.
-/// Do not use this call to determine if there was an error in the last API
-/// call as successful API calls don't clear the last ovrErrorInfo.
-/// To avoid any inconsistency, ovr_GetLastErrorInfo should be called immediately
-/// after an API function that returned a failed ovrResult, with no other API
-/// functions called in the interim.
-///
-/// \param[out] errorInfo The last ovrErrorInfo for the current thread.
-///
-/// \see ovrErrorInfo
-///
-OVR_PUBLIC_FUNCTION(void) ovr_GetLastErrorInfo(ovrErrorInfo* errorInfo);
-
-
-/// Returns the version string representing the LibOVRRT version.
-///
-/// The returned string pointer is valid until the next call to ovr_Shutdown.
-///
-/// Note that the returned version string doesn't necessarily match the current
-/// OVR_MAJOR_VERSION, etc., as the returned string refers to the LibOVRRT shared
-/// library version and not the locally compiled interface version.
-///
-/// The format of this string is subject to change in future versions and its contents
-/// should not be interpreted.
-///
-/// \return Returns a UTF8-encoded null-terminated version string.
-///
-OVR_PUBLIC_FUNCTION(const char*) ovr_GetVersionString();
-
-
-/// Writes a message string to the LibOVR tracing mechanism (if enabled).
-///
-/// This message will be passed back to the application via the ovrLogCallback if
-/// it was registered.
-///
-/// \param[in] level One of the ovrLogLevel constants.
-/// \param[in] message A UTF8-encoded null-terminated string.
-/// \return returns the strlen of the message or a negative value if the message is too large.
-///
-/// \see ovrLogLevel, ovrLogCallback
-///
-OVR_PUBLIC_FUNCTION(int) ovr_TraceMessage(int level, const char* message);
-
-
-/// Identify client application info.
-///
-/// The string is one or more newline-delimited lines of optional info
-/// indicating engine name, engine version, engine plugin name, engine plugin
-/// version, engine editor. The order of the lines is not relevant. Individual
-/// lines are optional. A newline is not necessary at the end of the last line.
-/// Call after ovr_Initialize and before the first call to ovr_Create.
-/// Each value is limited to 20 characters. Key names such as 'EngineName:'
-/// 'EngineVersion:' do not count towards this limit.
-///
-/// \param[in] identity Specifies one or more newline-delimited lines of optional info:
-///             EngineName: %s\n
-///             EngineVersion: %s\n
-///             EnginePluginName: %s\n
-///             EnginePluginVersion: %s\n
-///             EngineEditor: <boolean> ('true' or 'false')\n
-///
-/// <b>Example code</b>
-///     \code{.cpp}
-///     ovr_IdentifyClient("EngineName: Unity\n"
-///                        "EngineVersion: 5.3.3\n"
-///                        "EnginePluginName: OVRPlugin\n"
-///                        "EnginePluginVersion: 1.2.0\n"
-///                        "EngineEditor: true");
-///     \endcode
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_IdentifyClient(const char* identity);
-
-
-//-------------------------------------------------------------------------------------
-/// @name HMD Management
-///
-/// Handles the enumeration, creation, destruction, and properties of an HMD (head-mounted display).
-///@{
-
-
-/// Returns information about the current HMD.
-///
-/// ovr_Initialize must have first been called in order for this to succeed, otherwise ovrHmdDesc::Type
-/// will be reported as ovrHmd_None.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create, else NULL in which
-///                case this function detects whether an HMD is present and returns its info if so.
-///
-/// \return Returns an ovrHmdDesc. If the hmd is NULL and ovrHmdDesc::Type is ovrHmd_None then
-///         no HMD is present.
-///
-OVR_PUBLIC_FUNCTION(ovrHmdDesc) ovr_GetHmdDesc(ovrSession session);
-
-
-/// Returns the number of sensors.
-///
-/// The number of sensors may change at any time, so this function should be called before use
-/// as opposed to once on startup.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-///
-/// \return Returns unsigned int count.
-///
-OVR_PUBLIC_FUNCTION(unsigned int) ovr_GetTrackerCount(ovrSession session);
-
-
-/// Returns a given sensor description.
-///
-/// It's possible that sensor desc [0] may indicate a unconnnected or non-pose tracked sensor, but
-/// sensor desc [1] may be connected.
-///
-/// ovr_Initialize must have first been called in order for this to succeed, otherwise the returned
-/// trackerDescArray will be zero-initialized. The data returned by this function can change at runtime.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-///
-/// \param[in] trackerDescIndex Specifies a sensor index. The valid indexes are in the range of 0 to
-///            the sensor count returned by ovr_GetTrackerCount.
-///
-/// \return Returns ovrTrackerDesc. An empty ovrTrackerDesc will be returned if trackerDescIndex is out of range.
-///
-/// \see ovrTrackerDesc, ovr_GetTrackerCount
-///
-OVR_PUBLIC_FUNCTION(ovrTrackerDesc) ovr_GetTrackerDesc(ovrSession session, unsigned int trackerDescIndex);
-
-
-/// Creates a handle to a VR session.
-///
-/// Upon success the returned ovrSession must be eventually freed with ovr_Destroy when it is no longer needed.
-/// A second call to ovr_Create will result in an error return value if the previous session has not been destroyed.
-///
-/// \param[out] pSession Provides a pointer to an ovrSession which will be written to upon success.
-/// \param[out] luid Provides a system specific graphics adapter identifier that locates which
-/// graphics adapter has the HMD attached. This must match the adapter used by the application
-/// or no rendering output will be possible. This is important for stability on multi-adapter systems. An
-/// application that simply chooses the default adapter will not run reliably on multi-adapter systems.
-/// \return Returns an ovrResult indicating success or failure. Upon failure
-///         the returned ovrSession will be NULL.
-///
-/// <b>Example code</b>
-///     \code{.cpp}
-///         ovrSession session;
-///         ovrGraphicsLuid luid;
-///         ovrResult result = ovr_Create(&session, &luid);
-///         if(OVR_FAILURE(result))
-///            ...
-///     \endcode
-///
-/// \see ovr_Destroy
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_Create(ovrSession* pSession, ovrGraphicsLuid* pLuid);
-
-
-/// Destroys the session.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \see ovr_Create
-///
-OVR_PUBLIC_FUNCTION(void) ovr_Destroy(ovrSession session);
-
-#endif // !defined(OVR_EXPORTING_CAPI)
-
-/// Specifies status information for the current session.
-///
-/// \see ovr_GetSessionStatus
-///
-typedef struct ovrSessionStatus_
-{
-    ovrBool IsVisible;    ///< True if the process has VR focus and thus is visible in the HMD.
-    ovrBool HmdPresent;   ///< True if an HMD is present.
-    ovrBool HmdMounted;   ///< True if the HMD is on the user's head.
-    ovrBool DisplayLost;  ///< True if the session is in a display-lost state. See ovr_SubmitFrame.
-    ovrBool ShouldQuit;   ///< True if the application should initiate shutdown.
-    ovrBool ShouldRecenter;  ///< True if UX has requested re-centering. Must call ovr_ClearShouldRecenterFlag or ovr_RecenterTrackingOrigin.
-}ovrSessionStatus;
-
-#if !defined(OVR_EXPORTING_CAPI)
-
-/// Returns status information for the application.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[out] sessionStatus Provides an ovrSessionStatus that is filled in.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of
-///         failure, use ovr_GetLastErrorInfo to get more information.
-//          Return values include but aren't limited to:
-///     - ovrSuccess: Completed successfully.
-///     - ovrError_ServiceConnection: The service connection was lost and the application
-//        must destroy the session.
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetSessionStatus(ovrSession session, ovrSessionStatus* sessionStatus);
-
-
-//@}
-
-
-
-//-------------------------------------------------------------------------------------
-/// @name Tracking
-///
-/// Tracking functions handle the position, orientation, and movement of the HMD in space.
-///
-/// All tracking interface functions are thread-safe, allowing tracking state to be sampled
-/// from different threads.
-///
-///@{
-
-
-
-/// Sets the tracking origin type
-///
-/// When the tracking origin is changed, all of the calls that either provide
-/// or accept ovrPosef will use the new tracking origin provided.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] origin Specifies an ovrTrackingOrigin to be used for all ovrPosef
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-///         ovr_GetLastErrorInfo to get more information.
-///
-/// \see ovrTrackingOrigin, ovr_GetTrackingOriginType
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_SetTrackingOriginType(ovrSession session, ovrTrackingOrigin origin);
-
-
-/// Gets the tracking origin state
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-///
-/// \return Returns the ovrTrackingOrigin that was either set by default, or previous set by the application.
-///
-/// \see ovrTrackingOrigin, ovr_SetTrackingOriginType
-OVR_PUBLIC_FUNCTION(ovrTrackingOrigin) ovr_GetTrackingOriginType(ovrSession session);
-
-
-/// Re-centers the sensor position and orientation.
-///
-/// This resets the (x,y,z) positional components and the yaw orientation component.
-/// The Roll and pitch orientation components are always determined by gravity and cannot
-/// be redefined. All future tracking will report values relative to this new reference position.
-/// If you are using ovrTrackerPoses then you will need to call ovr_GetTrackerPose after
-/// this, because the sensor position(s) will change as a result of this.
-///
-/// The headset cannot be facing vertically upward or downward but rather must be roughly
-/// level otherwise this function will fail with ovrError_InvalidHeadsetOrientation.
-///
-/// For more info, see the notes on each ovrTrackingOrigin enumeration to understand how
-/// recenter will vary slightly in its behavior based on the current ovrTrackingOrigin setting.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-///         ovr_GetLastErrorInfo to get more information. Return values include but aren't limited to:
-///     - ovrSuccess: Completed successfully.
-///     - ovrError_InvalidHeadsetOrientation: The headset was facing an invalid direction when
-///       attempting recentering, such as facing vertically.
-///
-/// \see ovrTrackingOrigin, ovr_GetTrackerPose
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_RecenterTrackingOrigin(ovrSession session);
-
-
-/// Clears the ShouldRecenter status bit in ovrSessionStatus.
-///
-/// Clears the ShouldRecenter status bit in ovrSessionStatus, allowing further recenter
-/// requests to be detected. Since this is automatically done by ovr_RecenterTrackingOrigin,
-/// this is only needs to be called when application is doing its own re-centering.
-OVR_PUBLIC_FUNCTION(void) ovr_ClearShouldRecenterFlag(ovrSession session);
-
-
-/// Returns tracking state reading based on the specified absolute system time.
-///
-/// Pass an absTime value of 0.0 to request the most recent sensor reading. In this case
-/// both PredictedPose and SamplePose will have the same value.
-///
-/// This may also be used for more refined timing of front buffer rendering logic, and so on.
-/// This may be called by multiple threads.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] absTime Specifies the absolute future time to predict the return
-///            ovrTrackingState value. Use 0 to request the most recent tracking state.
-/// \param[in] latencyMarker Specifies that this call is the point in time where
-///            the "App-to-Mid-Photon" latency timer starts from. If a given ovrLayer
-///            provides "SensorSampleTime", that will override the value stored here.
-/// \return Returns the ovrTrackingState that is predicted for the given absTime.
-///
-/// \see ovrTrackingState, ovr_GetEyePoses, ovr_GetTimeInSeconds
-///
-OVR_PUBLIC_FUNCTION(ovrTrackingState) ovr_GetTrackingState(ovrSession session, double absTime, ovrBool latencyMarker);
-
-
-
-/// Returns the ovrTrackerPose for the given sensor.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] trackerPoseIndex Index of the sensor being requested.
-///
-/// \return Returns the requested ovrTrackerPose. An empty ovrTrackerPose will be returned if trackerPoseIndex is out of range.
-///
-/// \see ovr_GetTrackerCount
-///
-OVR_PUBLIC_FUNCTION(ovrTrackerPose) ovr_GetTrackerPose(ovrSession session, unsigned int trackerPoseIndex);
-
-
-
-/// Returns the most recent input state for controllers, without positional tracking info.
-///
-/// \param[out] inputState Input state that will be filled in.
-/// \param[in] ovrControllerType Specifies which controller the input will be returned for.
-/// \return Returns ovrSuccess if the new state was successfully obtained.
-///
-/// \see ovrControllerType
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetInputState(ovrSession session, ovrControllerType controllerType, ovrInputState* inputState);
-
-
-/// Returns controller types connected to the system OR'ed together.
-///
-/// \return A bitmask of ovrControllerTypes connected to the system.
-///
-/// \see ovrControllerType
-///
-OVR_PUBLIC_FUNCTION(unsigned int) ovr_GetConnectedControllerTypes(ovrSession session);
-
-/// Gets information about Haptics engine for the specified Touch controller.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] controllerType The controller to retrieve the information from.
-///
-/// \return Returns an ovrTouchHapticsDesc.
-///
-OVR_PUBLIC_FUNCTION(ovrTouchHapticsDesc) ovr_GetTouchHapticsDesc(ovrSession session, ovrControllerType controllerType);
-
-/// Sets constant vibration (with specified frequency and amplitude) to a controller.
-/// Note: ovr_SetControllerVibration cannot be used interchangeably with ovr_SubmitControllerVibration.
-///
-/// This method should be called periodically, vibration lasts for a maximum of 2.5 seconds.
-/// It's recommended to call this method once a second, calls will be rejected if called too frequently (over 30hz).
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] controllerType The controller to set the vibration to.
-/// \param[in] frequency Vibration frequency. Supported values are: 0.0 (disabled), 0.5 and 1.0. Non valid values will be clamped.
-/// \param[in] amplitude Vibration amplitude in the [0.0, 1.0] range.
-/// \return Returns ovrSuccess upon success.
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_SetControllerVibration(ovrSession session, ovrControllerType controllerType, float frequency, float amplitude);
-
-/// Submits a Haptics buffer (used for vibration) to Touch (only) controllers.
-/// Note: ovr_SubmitControllerVibration cannot be used interchangeably with ovr_SetControllerVibration.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] controllerType Controller where the Haptics buffer will be played.
-/// \param[in] buffer Haptics buffer containing amplitude samples to be played.
-/// \return Returns ovrSuccess upon success.
-/// \see ovrHapticsBuffer
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_SubmitControllerVibration(ovrSession session, ovrControllerType controllerType, const ovrHapticsBuffer* buffer);
-
-/// Gets the Haptics engine playback state of a specific Touch controller.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] controllerType Controller where the Haptics buffer wil be played.
-/// \param[in] outState State of the haptics engine.
-/// \return Returns ovrSuccess upon success.
-/// \see ovrHapticsPlaybackState
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetControllerVibrationState(ovrSession session, ovrControllerType controllerType, ovrHapticsPlaybackState* outState);
-
-
-#endif // !defined(OVR_EXPORTING_CAPI)
-
-//-------------------------------------------------------------------------------------
-// @name Layers
-//
-///@{
-
-
-///  Specifies the maximum number of layers supported by ovr_SubmitFrame.
-///
-///  /see ovr_SubmitFrame
-///
-enum {
-    ovrMaxLayerCount = 16
-};
-
-/// Describes layer types that can be passed to ovr_SubmitFrame.
-/// Each layer type has an associated struct, such as ovrLayerEyeFov.
-///
-/// \see ovrLayerHeader
-///
-typedef enum ovrLayerType_
-{
-    ovrLayerType_Disabled    = 0,         ///< Layer is disabled.
-    ovrLayerType_EyeFov      = 1,         ///< Described by ovrLayerEyeFov.
-    ovrLayerType_Quad        = 3,         ///< Described by ovrLayerQuad. Previously called ovrLayerType_QuadInWorld.
-    /// enum 4 used to be ovrLayerType_QuadHeadLocked. Instead, use ovrLayerType_Quad with ovrLayerFlag_HeadLocked.
-    ovrLayerType_EyeMatrix   = 5,         ///< Described by ovrLayerEyeMatrix.
-    ovrLayerType_EnumSize    = 0x7fffffff ///< Force type int32_t.
-} ovrLayerType;
-
-
-/// Identifies flags used by ovrLayerHeader and which are passed to ovr_SubmitFrame.
-///
-/// \see ovrLayerHeader
-///
-typedef enum ovrLayerFlags_
-{
-    /// ovrLayerFlag_HighQuality enables 4x anisotropic sampling during the composition of the layer.
-    /// The benefits are mostly visible at the periphery for high-frequency & high-contrast visuals.
-    /// For best results consider combining this flag with an ovrTextureSwapChain that has mipmaps and
-    /// instead of using arbitrary sized textures, prefer texture sizes that are powers-of-two.
-    /// Actual rendered viewport and doesn't necessarily have to fill the whole texture.
-    ovrLayerFlag_HighQuality               = 0x01,
-
-    /// ovrLayerFlag_TextureOriginAtBottomLeft: the opposite is TopLeft.
-    /// Generally this is false for D3D, true for OpenGL.
-    ovrLayerFlag_TextureOriginAtBottomLeft = 0x02,
-
-    /// Mark this surface as "headlocked", which means it is specified
-    /// relative to the HMD and moves with it, rather than being specified
-    /// relative to sensor/torso space and remaining still while the head moves.
-    /// What used to be ovrLayerType_QuadHeadLocked is now ovrLayerType_Quad plus this flag.
-    /// However the flag can be applied to any layer type to achieve a similar effect.
-    ovrLayerFlag_HeadLocked                = 0x04
-
-} ovrLayerFlags;
-
-
-/// Defines properties shared by all ovrLayer structs, such as ovrLayerEyeFov.
-///
-/// ovrLayerHeader is used as a base member in these larger structs.
-/// This struct cannot be used by itself except for the case that Type is ovrLayerType_Disabled.
-///
-/// \see ovrLayerType, ovrLayerFlags
-///
-typedef struct OVR_ALIGNAS(OVR_PTR_SIZE) ovrLayerHeader_
-{
-    ovrLayerType    Type;   ///< Described by ovrLayerType.
-    unsigned        Flags;  ///< Described by ovrLayerFlags.
-} ovrLayerHeader;
-
-
-/// Describes a layer that specifies a monoscopic or stereoscopic view.
-/// This is the kind of layer that's typically used as layer 0 to ovr_SubmitFrame,
-/// as it is the kind of layer used to render a 3D stereoscopic view.
-///
-/// Three options exist with respect to mono/stereo texture usage:
-///    - ColorTexture[0] and ColorTexture[1] contain the left and right stereo renderings, respectively.
-///      Viewport[0] and Viewport[1] refer to ColorTexture[0] and ColorTexture[1], respectively.
-///    - ColorTexture[0] contains both the left and right renderings, ColorTexture[1] is NULL,
-///      and Viewport[0] and Viewport[1] refer to sub-rects with ColorTexture[0].
-///    - ColorTexture[0] contains a single monoscopic rendering, and Viewport[0] and
-///      Viewport[1] both refer to that rendering.
-///
-/// \see ovrTextureSwapChain, ovr_SubmitFrame
-///
-typedef struct OVR_ALIGNAS(OVR_PTR_SIZE) ovrLayerEyeFov_
-{
-    /// Header.Type must be ovrLayerType_EyeFov.
-    ovrLayerHeader      Header;
-
-    /// ovrTextureSwapChains for the left and right eye respectively.
-    /// The second one of which can be NULL for cases described above.
-    ovrTextureSwapChain  ColorTexture[ovrEye_Count];
-
-    /// Specifies the ColorTexture sub-rect UV coordinates.
-    /// Both Viewport[0] and Viewport[1] must be valid.
-    ovrRecti            Viewport[ovrEye_Count];
-
-    /// The viewport field of view.
-    ovrFovPort          Fov[ovrEye_Count];
-
-    /// Specifies the position and orientation of each eye view, with the position specified in meters.
-    /// RenderPose will typically be the value returned from ovr_CalcEyePoses,
-    /// but can be different in special cases if a different head pose is used for rendering.
-    ovrPosef            RenderPose[ovrEye_Count];
-
-    /// Specifies the timestamp when the source ovrPosef (used in calculating RenderPose)
-    /// was sampled from the SDK. Typically retrieved by calling ovr_GetTimeInSeconds
-    /// around the instant the application calls ovr_GetTrackingState
-    /// The main purpose for this is to accurately track app tracking latency.
-    double              SensorSampleTime;
-
-} ovrLayerEyeFov;
-
-
-
-
-/// Describes a layer that specifies a monoscopic or stereoscopic view.
-/// This uses a direct 3x4 matrix to map from view space to the UV coordinates.
-/// It is essentially the same thing as ovrLayerEyeFov but using a much
-/// lower level. This is mainly to provide compatibility with specific apps.
-/// Unless the application really requires this flexibility, it is usually better
-/// to use ovrLayerEyeFov.
-///
-/// Three options exist with respect to mono/stereo texture usage:
-///    - ColorTexture[0] and ColorTexture[1] contain the left and right stereo renderings, respectively.
-///      Viewport[0] and Viewport[1] refer to ColorTexture[0] and ColorTexture[1], respectively.
-///    - ColorTexture[0] contains both the left and right renderings, ColorTexture[1] is NULL,
-///      and Viewport[0] and Viewport[1] refer to sub-rects with ColorTexture[0].
-///    - ColorTexture[0] contains a single monoscopic rendering, and Viewport[0] and
-///      Viewport[1] both refer to that rendering.
-///
-/// \see ovrTextureSwapChain, ovr_SubmitFrame
-///
-typedef struct OVR_ALIGNAS(OVR_PTR_SIZE) ovrLayerEyeMatrix_
-{
-    /// Header.Type must be ovrLayerType_EyeMatrix.
-    ovrLayerHeader      Header;
-
-    /// ovrTextureSwapChains for the left and right eye respectively.
-    /// The second one of which can be NULL for cases described above.
-    ovrTextureSwapChain  ColorTexture[ovrEye_Count];
-
-    /// Specifies the ColorTexture sub-rect UV coordinates.
-    /// Both Viewport[0] and Viewport[1] must be valid.
-    ovrRecti            Viewport[ovrEye_Count];
-
-    /// Specifies the position and orientation of each eye view, with the position specified in meters.
-    /// RenderPose will typically be the value returned from ovr_CalcEyePoses,
-    /// but can be different in special cases if a different head pose is used for rendering.
-    ovrPosef            RenderPose[ovrEye_Count];
-
-    /// Specifies the mapping from a view-space vector
-    /// to a UV coordinate on the textures given above.
-    /// P = (x,y,z,1)*Matrix
-    /// TexU  = P.x/P.z
-    /// TexV  = P.y/P.z
-    ovrMatrix4f         Matrix[ovrEye_Count];
-
-    /// Specifies the timestamp when the source ovrPosef (used in calculating RenderPose)
-    /// was sampled from the SDK. Typically retrieved by calling ovr_GetTimeInSeconds
-    /// around the instant the application calls ovr_GetTrackingState
-    /// The main purpose for this is to accurately track app tracking latency.
-    double              SensorSampleTime;
-
-} ovrLayerEyeMatrix;
-
-
-
-
-
-/// Describes a layer of Quad type, which is a single quad in world or viewer space.
-/// It is used for ovrLayerType_Quad. This type of layer represents a single
-/// object placed in the world and not a stereo view of the world itself.
-///
-/// A typical use of ovrLayerType_Quad is to draw a television screen in a room
-/// that for some reason is more convenient to draw as a layer than as part of the main
-/// view in layer 0. For example, it could implement a 3D popup GUI that is drawn at a
-/// higher resolution than layer 0 to improve fidelity of the GUI.
-///
-/// Quad layers are visible from both sides; they are not back-face culled.
-///
-/// \see ovrTextureSwapChain, ovr_SubmitFrame
-///
-typedef struct OVR_ALIGNAS(OVR_PTR_SIZE) ovrLayerQuad_
-{
-    /// Header.Type must be ovrLayerType_Quad.
-    ovrLayerHeader      Header;
-
-    /// Contains a single image, never with any stereo view.
-    ovrTextureSwapChain  ColorTexture;
-
-    /// Specifies the ColorTexture sub-rect UV coordinates.
-    ovrRecti            Viewport;
-
-    /// Specifies the orientation and position of the center point of a Quad layer type.
-    /// The supplied direction is the vector perpendicular to the quad.
-    /// The position is in real-world meters (not the application's virtual world,
-    /// the physical world the user is in) and is relative to the "zero" position
-    /// set by ovr_RecenterTrackingOrigin unless the ovrLayerFlag_HeadLocked flag is used.
-    ovrPosef            QuadPoseCenter;
-
-    /// Width and height (respectively) of the quad in meters.
-    ovrVector2f         QuadSize;
-
-} ovrLayerQuad;
-
-
-
-
-/// Union that combines ovrLayer types in a way that allows them
-/// to be used in a polymorphic way.
-typedef union ovrLayer_Union_
-{
-    ovrLayerHeader      Header;
-    ovrLayerEyeFov      EyeFov;
-    ovrLayerQuad        Quad;
-} ovrLayer_Union;
-
-
-//@}
-
-#if !defined(OVR_EXPORTING_CAPI)
-
-/// @name SDK Distortion Rendering
-///
-/// All of rendering functions including the configure and frame functions
-/// are not thread safe. It is OK to use ConfigureRendering on one thread and handle
-/// frames on another thread, but explicit synchronization must be done since
-/// functions that depend on configured state are not reentrant.
-///
-/// These functions support rendering of distortion by the SDK.
-///
-//@{
-
-/// TextureSwapChain creation is rendering API-specific.
-/// ovr_CreateTextureSwapChainDX and ovr_CreateTextureSwapChainGL can be found in the
-/// rendering API-specific headers, such as OVR_CAPI_D3D.h and OVR_CAPI_GL.h
-
-/// Gets the number of buffers in an ovrTextureSwapChain.
-///
-/// \param[in]  session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in]  chain Specifies the ovrTextureSwapChain for which the length should be retrieved.
-/// \param[out] out_Length Returns the number of buffers in the specified chain.
-///
-/// \return Returns an ovrResult for which OVR_SUCCESS(result) is false upon error.
-///
-/// \see ovr_CreateTextureSwapChainDX, ovr_CreateTextureSwapChainGL
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetTextureSwapChainLength(ovrSession session, ovrTextureSwapChain chain, int* out_Length);
-
-/// Gets the current index in an ovrTextureSwapChain.
-///
-/// \param[in]  session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in]  chain Specifies the ovrTextureSwapChain for which the index should be retrieved.
-/// \param[out] out_Index Returns the current (free) index in specified chain.
-///
-/// \return Returns an ovrResult for which OVR_SUCCESS(result) is false upon error.
-///
-/// \see ovr_CreateTextureSwapChainDX, ovr_CreateTextureSwapChainGL
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetTextureSwapChainCurrentIndex(ovrSession session, ovrTextureSwapChain chain, int* out_Index);
-
-/// Gets the description of the buffers in an ovrTextureSwapChain
-///
-/// \param[in]  session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in]  chain Specifies the ovrTextureSwapChain for which the description should be retrieved.
-/// \param[out] out_Desc Returns the description of the specified chain.
-///
-/// \return Returns an ovrResult for which OVR_SUCCESS(result) is false upon error.
-///
-/// \see ovr_CreateTextureSwapChainDX, ovr_CreateTextureSwapChainGL
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetTextureSwapChainDesc(ovrSession session, ovrTextureSwapChain chain, ovrTextureSwapChainDesc* out_Desc);
-
-/// Commits any pending changes to an ovrTextureSwapChain, and advances its current index
-///
-/// \param[in]  session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in]  chain Specifies the ovrTextureSwapChain to commit.
-///
-/// \note When Commit is called, the texture at the current index is considered ready for use by the
-/// runtime, and further writes to it should be avoided. The swap chain's current index is advanced,
-/// providing there's room in the chain. The next time the SDK dereferences this texture swap chain,
-/// it will synchronize with the app's graphics context and pick up the submitted index, opening up
-/// room in the swap chain for further commits.
-///
-/// \return Returns an ovrResult for which OVR_SUCCESS(result) is false upon error.
-///         Failures include but aren't limited to:
-///     - ovrError_TextureSwapChainFull: ovr_CommitTextureSwapChain was called too many times on a texture swapchain without calling submit to use the chain.
-///
-/// \see ovr_CreateTextureSwapChainDX, ovr_CreateTextureSwapChainGL
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_CommitTextureSwapChain(ovrSession session, ovrTextureSwapChain chain);
-
-/// Destroys an ovrTextureSwapChain and frees all the resources associated with it.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] chain Specifies the ovrTextureSwapChain to destroy. If it is NULL then this function has no effect.
-///
-/// \see ovr_CreateTextureSwapChainDX, ovr_CreateTextureSwapChainGL
-///
-OVR_PUBLIC_FUNCTION(void) ovr_DestroyTextureSwapChain(ovrSession session, ovrTextureSwapChain chain);
-
-
-/// MirrorTexture creation is rendering API-specific.
-/// ovr_CreateMirrorTextureDX and ovr_CreateMirrorTextureGL can be found in the
-/// rendering API-specific headers, such as OVR_CAPI_D3D.h and OVR_CAPI_GL.h
-
-/// Destroys a mirror texture previously created by one of the mirror texture creation functions.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] mirrorTexture Specifies the ovrTexture to destroy. If it is NULL then this function has no effect.
-///
-/// \see ovr_CreateMirrorTextureDX, ovr_CreateMirrorTextureGL
-///
-OVR_PUBLIC_FUNCTION(void) ovr_DestroyMirrorTexture(ovrSession session, ovrMirrorTexture mirrorTexture);
-
-
-/// Calculates the recommended viewport size for rendering a given eye within the HMD
-/// with a given FOV cone.
-///
-/// Higher FOV will generally require larger textures to maintain quality.
-/// Apps packing multiple eye views together on the same texture should ensure there are
-/// at least 8 pixels of padding between them to prevent texture filtering and chromatic
-/// aberration causing images to leak between the two eye views.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] eye Specifies which eye (left or right) to calculate for.
-/// \param[in] fov Specifies the ovrFovPort to use.
-/// \param[in] pixelsPerDisplayPixel Specifies the ratio of the number of render target pixels
-///            to display pixels at the center of distortion. 1.0 is the default value. Lower
-///            values can improve performance, higher values give improved quality.
-///
-/// <b>Example code</b>
-///     \code{.cpp}
-///         ovrHmdDesc hmdDesc = ovr_GetHmdDesc(session);
-///         ovrSizei eyeSizeLeft  = ovr_GetFovTextureSize(session, ovrEye_Left,  hmdDesc.DefaultEyeFov[ovrEye_Left],  1.0f);
-///         ovrSizei eyeSizeRight = ovr_GetFovTextureSize(session, ovrEye_Right, hmdDesc.DefaultEyeFov[ovrEye_Right], 1.0f);
-///     \endcode
-///
-/// \return Returns the texture width and height size.
-///
-OVR_PUBLIC_FUNCTION(ovrSizei) ovr_GetFovTextureSize(ovrSession session, ovrEyeType eye, ovrFovPort fov,
-                                                       float pixelsPerDisplayPixel);
-
-/// Computes the distortion viewport, view adjust, and other rendering parameters for
-/// the specified eye.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] eyeType Specifies which eye (left or right) for which to perform calculations.
-/// \param[in] fov Specifies the ovrFovPort to use.
-///
-/// \return Returns the computed ovrEyeRenderDesc for the given eyeType and field of view.
-///
-/// \see ovrEyeRenderDesc
-///
-OVR_PUBLIC_FUNCTION(ovrEyeRenderDesc) ovr_GetRenderDesc(ovrSession session,
-                                                           ovrEyeType eyeType, ovrFovPort fov);
-
-/// Submits layers for distortion and display.
-///
-/// ovr_SubmitFrame triggers distortion and processing which might happen asynchronously.
-/// The function will return when there is room in the submission queue and surfaces
-/// are available. Distortion might or might not have completed.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-///
-/// \param[in] frameIndex Specifies the targeted application frame index, or 0 to refer to one frame
-///        after the last time ovr_SubmitFrame was called.
-///
-/// \param[in] viewScaleDesc Provides additional information needed only if layerPtrList contains
-///        an ovrLayerType_Quad. If NULL, a default version is used based on the current configuration and a 1.0 world scale.
-///
-/// \param[in] layerPtrList Specifies a list of ovrLayer pointers, which can include NULL entries to
-///        indicate that any previously shown layer at that index is to not be displayed.
-///        Each layer header must be a part of a layer structure such as ovrLayerEyeFov or ovrLayerQuad,
-///        with Header.Type identifying its type. A NULL layerPtrList entry in the array indicates the
-//         absence of the given layer.
-///
-/// \param[in] layerCount Indicates the number of valid elements in layerPtrList. The maximum
-///        supported layerCount is not currently specified, but may be specified in a future version.
-///
-/// - Layers are drawn in the order they are specified in the array, regardless of the layer type.
-///
-/// - Layers are not remembered between successive calls to ovr_SubmitFrame. A layer must be
-///   specified in every call to ovr_SubmitFrame or it won't be displayed.
-///
-/// - If a layerPtrList entry that was specified in a previous call to ovr_SubmitFrame is
-///   passed as NULL or is of type ovrLayerType_Disabled, that layer is no longer displayed.
-///
-/// - A layerPtrList entry can be of any layer type and multiple entries of the same layer type
-///   are allowed. No layerPtrList entry may be duplicated (i.e. the same pointer as an earlier entry).
-///
-/// <b>Example code</b>
-///     \code{.cpp}
-///         ovrLayerEyeFov  layer0;
-///         ovrLayerQuad    layer1;
-///           ...
-///         ovrLayerHeader* layers[2] = { &layer0.Header, &layer1.Header };
-///         ovrResult result = ovr_SubmitFrame(session, frameIndex, nullptr, layers, 2);
-///     \endcode
-///
-/// \return Returns an ovrResult for which OVR_SUCCESS(result) is false upon error and true
-///         upon success. Return values include but aren't limited to:
-///     - ovrSuccess: rendering completed successfully.
-///     - ovrSuccess_NotVisible: rendering completed successfully but was not displayed on the HMD,
-///       usually because another application currently has ownership of the HMD. Applications receiving
-///       this result should stop rendering new content, but continue to call ovr_SubmitFrame periodically
-///       until it returns a value other than ovrSuccess_NotVisible.
-///     - ovrError_DisplayLost: The session has become invalid (such as due to a device removal)
-///       and the shared resources need to be released (ovr_DestroyTextureSwapChain), the session needs to
-///       destroyed (ovr_Destroy) and recreated (ovr_Create), and new resources need to be created
-///       (ovr_CreateTextureSwapChainXXX). The application's existing private graphics resources do not
-///       need to be recreated unless the new ovr_Create call returns a different GraphicsLuid.
-///     - ovrError_TextureSwapChainInvalid: The ovrTextureSwapChain is in an incomplete or inconsistent state.
-///       Ensure ovr_CommitTextureSwapChain was called at least once first.
-///
-/// \see ovr_GetPredictedDisplayTime, ovrViewScaleDesc, ovrLayerHeader
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_SubmitFrame(ovrSession session, long long frameIndex,
-                                                  const ovrViewScaleDesc* viewScaleDesc,
-                                                  ovrLayerHeader const * const * layerPtrList, unsigned int layerCount);
-///@}
-
-#endif // !defined(OVR_EXPORTING_CAPI)
-
-//-------------------------------------------------------------------------------------
-/// @name Frame Timing
-///
-//@{
-
-
-#if !defined(OVR_EXPORTING_CAPI)
-
-/// Gets the time of the specified frame midpoint.
-///
-/// Predicts the time at which the given frame will be displayed. The predicted time
-/// is the middle of the time period during which the corresponding eye images will
-/// be displayed.
-///
-/// The application should increment frameIndex for each successively targeted frame,
-/// and pass that index to any relevant OVR functions that need to apply to the frame
-/// identified by that index.
-///
-/// This function is thread-safe and allows for multiple application threads to target
-/// their processing to the same displayed frame.
-///
-/// In the even that prediction fails due to various reasons (e.g. the display being off
-/// or app has yet to present any frames), the return value will be current CPU time.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] frameIndex Identifies the frame the caller wishes to target.
-///            A value of zero returns the next frame index.
-/// \return Returns the absolute frame midpoint time for the given frameIndex.
-/// \see ovr_GetTimeInSeconds
-///
-OVR_PUBLIC_FUNCTION(double) ovr_GetPredictedDisplayTime(ovrSession session, long long frameIndex);
-
-
-/// Returns global, absolute high-resolution time in seconds.
-///
-/// The time frame of reference for this function is not specified and should not be
-/// depended upon.
-///
-/// \return Returns seconds as a floating point value.
-/// \see ovrPoseStatef, ovrFrameTiming
-///
-OVR_PUBLIC_FUNCTION(double) ovr_GetTimeInSeconds();
-
-#endif // !defined(OVR_EXPORTING_CAPI)
-
-/// Performance HUD enables the HMD user to see information critical to
-/// the real-time operation of the VR application such as latency timing,
-/// and CPU & GPU performance metrics
-///
-///     App can toggle performance HUD modes as such:
-///     \code{.cpp}
-///         ovrPerfHudMode PerfHudMode = ovrPerfHud_LatencyTiming;
-///         ovr_SetInt(session, OVR_PERF_HUD_MODE, (int)PerfHudMode);
-///     \endcode
-///
-typedef enum ovrPerfHudMode_
-{
-    ovrPerfHud_Off                = 0,  ///< Turns off the performance HUD
-    ovrPerfHud_PerfSummary        = 1,  ///< Shows performance summary and headroom
-    ovrPerfHud_LatencyTiming      = 2,  ///< Shows latency related timing info
-    ovrPerfHud_AppRenderTiming    = 3,  ///< Shows render timing info for application
-    ovrPerfHud_CompRenderTiming   = 4,  ///< Shows render timing info for OVR compositor
-    ovrPerfHud_VersionInfo        = 5,  ///< Shows SDK & HMD version Info
-    ovrPerfHud_Count              = 6,  ///< \internal Count of enumerated elements.
-    ovrPerfHud_EnumSize = 0x7fffffff    ///< \internal Force type int32_t.
-} ovrPerfHudMode;
-
-/// Layer HUD enables the HMD user to see information about a layer
-///
-///     App can toggle layer HUD modes as such:
-///     \code{.cpp}
-///         ovrLayerHudMode LayerHudMode = ovrLayerHud_Info;
-///         ovr_SetInt(session, OVR_LAYER_HUD_MODE, (int)LayerHudMode);
-///     \endcode
-///
-typedef enum ovrLayerHudMode_
-{
-    ovrLayerHud_Off = 0, ///< Turns off the layer HUD
-    ovrLayerHud_Info = 1, ///< Shows info about a specific layer
-    ovrLayerHud_EnumSize = 0x7fffffff
-} ovrLayerHudMode;
-
-///@}
-
-/// Debug HUD is provided to help developers gauge and debug the fidelity of their app's
-/// stereo rendering characteristics. Using the provided quad and crosshair guides,
-/// the developer can verify various aspects such as VR tracking units (e.g. meters),
-/// stereo camera-parallax properties (e.g. making sure objects at infinity are rendered
-/// with the proper separation), measuring VR geometry sizes and distances and more.
-///
-///     App can toggle the debug HUD modes as such:
-///     \code{.cpp}
-///         ovrDebugHudStereoMode DebugHudMode = ovrDebugHudStereo_QuadWithCrosshair;
-///         ovr_SetInt(session, OVR_DEBUG_HUD_STEREO_MODE, (int)DebugHudMode);
-///     \endcode
-///
-/// The app can modify the visual properties of the stereo guide (i.e. quad, crosshair)
-/// using the ovr_SetFloatArray function. For a list of tweakable properties,
-/// see the OVR_DEBUG_HUD_STEREO_GUIDE_* keys in the OVR_CAPI_Keys.h header file.
-typedef enum ovrDebugHudStereoMode_
-{
-    ovrDebugHudStereo_Off                 = 0,  ///< Turns off the Stereo Debug HUD
-    ovrDebugHudStereo_Quad                = 1,  ///< Renders Quad in world for Stereo Debugging
-    ovrDebugHudStereo_QuadWithCrosshair   = 2,  ///< Renders Quad+crosshair in world for Stereo Debugging
-    ovrDebugHudStereo_CrosshairAtInfinity = 3,  ///< Renders screen-space crosshair at infinity for Stereo Debugging
-    ovrDebugHudStereo_Count,                    ///< \internal Count of enumerated elements
-
-    ovrDebugHudStereo_EnumSize = 0x7fffffff     ///< \internal Force type int32_t
-} ovrDebugHudStereoMode;
-
-
-#if !defined(OVR_EXPORTING_CAPI)
-
-// -----------------------------------------------------------------------------------
-/// @name Property Access
-///
-/// These functions read and write OVR properties. Supported properties
-/// are defined in OVR_CAPI_Keys.h
-///
-//@{
-
-/// Reads a boolean property.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid for only the call.
-/// \param[in] defaultVal specifes the value to return if the property couldn't be read.
-/// \return Returns the property interpreted as a boolean value. Returns defaultVal if
-///         the property doesn't exist.
-OVR_PUBLIC_FUNCTION(ovrBool) ovr_GetBool(ovrSession session, const char* propertyName, ovrBool defaultVal);
-
-/// Writes or creates a boolean property.
-/// If the property wasn't previously a boolean property, it is changed to a boolean property.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid only for the call.
-/// \param[in] value The value to write.
-/// \return Returns true if successful, otherwise false. A false result should only occur if the property
-///         name is empty or if the property is read-only.
-OVR_PUBLIC_FUNCTION(ovrBool) ovr_SetBool(ovrSession session, const char* propertyName, ovrBool value);
-
-
-/// Reads an integer property.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid only for the call.
-/// \param[in] defaultVal Specifes the value to return if the property couldn't be read.
-/// \return Returns the property interpreted as an integer value. Returns defaultVal if
-///         the property doesn't exist.
-OVR_PUBLIC_FUNCTION(int) ovr_GetInt(ovrSession session, const char* propertyName, int defaultVal);
-
-/// Writes or creates an integer property.
-///
-/// If the property wasn't previously a boolean property, it is changed to an integer property.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid only for the call.
-/// \param[in] value The value to write.
-/// \return Returns true if successful, otherwise false. A false result should only occur if the property
-///         name is empty or if the property is read-only.
-OVR_PUBLIC_FUNCTION(ovrBool) ovr_SetInt(ovrSession session, const char* propertyName, int value);
-
-
-/// Reads a float property.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid only for the call.
-/// \param[in] defaultVal specifes the value to return if the property couldn't be read.
-/// \return Returns the property interpreted as an float value. Returns defaultVal if
-///         the property doesn't exist.
-OVR_PUBLIC_FUNCTION(float) ovr_GetFloat(ovrSession session, const char* propertyName, float defaultVal);
-
-/// Writes or creates a float property.
-/// If the property wasn't previously a float property, it's changed to a float property.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid only for the call.
-/// \param[in] value The value to write.
-/// \return Returns true if successful, otherwise false. A false result should only occur if the property
-///         name is empty or if the property is read-only.
-OVR_PUBLIC_FUNCTION(ovrBool) ovr_SetFloat(ovrSession session, const char* propertyName, float value);
-
-
-/// Reads a float array property.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid only for the call.
-/// \param[in] values An array of float to write to.
-/// \param[in] valuesCapacity Specifies the maximum number of elements to write to the values array.
-/// \return Returns the number of elements read, or 0 if property doesn't exist or is empty.
-OVR_PUBLIC_FUNCTION(unsigned int) ovr_GetFloatArray(ovrSession session, const char* propertyName,
-                                                       float values[], unsigned int valuesCapacity);
-
-/// Writes or creates a float array property.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid only for the call.
-/// \param[in] values An array of float to write from.
-/// \param[in] valuesSize Specifies the number of elements to write.
-/// \return Returns true if successful, otherwise false. A false result should only occur if the property
-///         name is empty or if the property is read-only.
-OVR_PUBLIC_FUNCTION(ovrBool) ovr_SetFloatArray(ovrSession session, const char* propertyName,
-                                                  const float values[], unsigned int valuesSize);
-
-
-/// Reads a string property.
-/// Strings are UTF8-encoded and null-terminated.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid only for the call.
-/// \param[in] defaultVal Specifes the value to return if the property couldn't be read.
-/// \return Returns the string property if it exists. Otherwise returns defaultVal, which can be specified as NULL.
-///         The return memory is guaranteed to be valid until next call to ovr_GetString or
-///         until the session is destroyed, whichever occurs first.
-OVR_PUBLIC_FUNCTION(const char*) ovr_GetString(ovrSession session, const char* propertyName,
-                                                  const char* defaultVal);
-
-/// Writes or creates a string property.
-/// Strings are UTF8-encoded and null-terminated.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid only for the call.
-/// \param[in] value The string property, which only needs to be valid for the duration of the call.
-/// \return Returns true if successful, otherwise false. A false result should only occur if the property
-///         name is empty or if the property is read-only.
-OVR_PUBLIC_FUNCTION(ovrBool) ovr_SetString(ovrSession session, const char* propertyName,
-                                              const char* value);
-
-///@}
-
-#endif // !defined(OVR_EXPORTING_CAPI)
-
-#ifdef __cplusplus
-} // extern "C"
-#endif
-
-
-#if defined(_MSC_VER)
-    #pragma warning(pop)
-#endif
-
-/// @cond DoxygenIgnore
-//-----------------------------------------------------------------------------
-// ***** Compiler packing validation
-//
-// These checks ensure that the compiler settings being used will be compatible
-// with with pre-built dynamic library provided with the runtime.
-
-OVR_STATIC_ASSERT(sizeof(ovrBool) == 1,         "ovrBool size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrVector2i) == 4 * 2, "ovrVector2i size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrSizei) == 4 * 2,    "ovrSizei size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrRecti) == sizeof(ovrVector2i) + sizeof(ovrSizei), "ovrRecti size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrQuatf) == 4 * 4,    "ovrQuatf size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrVector2f) == 4 * 2, "ovrVector2f size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrVector3f) == 4 * 3, "ovrVector3f size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrMatrix4f) == 4 * 16, "ovrMatrix4f size mismatch");
-
-OVR_STATIC_ASSERT(sizeof(ovrPosef) == (7 * 4),       "ovrPosef size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrPoseStatef) == (22 * 4), "ovrPoseStatef size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrFovPort) == (4 * 4),     "ovrFovPort size mismatch");
-
-OVR_STATIC_ASSERT(sizeof(ovrHmdCaps) == 4,      "ovrHmdCaps size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrTrackingCaps) == 4, "ovrTrackingCaps size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrEyeType) == 4,      "ovrEyeType size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrHmdType) == 4,      "ovrHmdType size mismatch");
-
-OVR_STATIC_ASSERT(sizeof(ovrTrackerDesc) == 4 + 4 + 4 + 4, "ovrTrackerDesc size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrTrackerPose) == 4 + 4 + sizeof(ovrPosef) + sizeof(ovrPosef), "ovrTrackerPose size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrTrackingState) == sizeof(ovrPoseStatef) + 4 + 4 + (sizeof(ovrPoseStatef) * 2) + (sizeof(unsigned int) * 2) + sizeof(ovrPosef) + 4, "ovrTrackingState size mismatch");
-
-
-//OVR_STATIC_ASSERT(sizeof(ovrTextureHeader) == sizeof(ovrRenderAPIType) + sizeof(ovrSizei),
-//                      "ovrTextureHeader size mismatch");
-//OVR_STATIC_ASSERT(sizeof(ovrTexture) == sizeof(ovrTextureHeader) OVR_ON64(+4) + sizeof(uintptr_t) * 8,
-//                      "ovrTexture size mismatch");
-//
-OVR_STATIC_ASSERT(sizeof(ovrStatusBits) == 4, "ovrStatusBits size mismatch");
-
-OVR_STATIC_ASSERT(sizeof(ovrSessionStatus) == 6, "ovrSessionStatus size mismatch");
-
-OVR_STATIC_ASSERT(sizeof(ovrEyeRenderDesc) == sizeof(ovrEyeType) + sizeof(ovrFovPort) + sizeof(ovrRecti) +
-                                                  sizeof(ovrVector2f) + sizeof(ovrVector3f),
-                      "ovrEyeRenderDesc size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrTimewarpProjectionDesc) == 4 * 3, "ovrTimewarpProjectionDesc size mismatch");
-
-OVR_STATIC_ASSERT(sizeof(ovrInitFlags) == 4, "ovrInitFlags size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrLogLevel) == 4, "ovrLogLevel size mismatch");
-
-OVR_STATIC_ASSERT(sizeof(ovrInitParams) == 4 + 4 + sizeof(ovrLogCallback) + sizeof(uintptr_t) + 4 + 4,
-                      "ovrInitParams size mismatch");
-
-OVR_STATIC_ASSERT(sizeof(ovrHmdDesc) ==
-    + sizeof(ovrHmdType)                // Type
-    OVR_ON64(+ 4)                       // pad0
-    + 64                                // ProductName
-    + 64                                // Manufacturer
-    + 2                                 // VendorId
-    + 2                                 // ProductId
-    + 24                                // SerialNumber
-    + 2                                 // FirmwareMajor
-    + 2                                 // FirmwareMinor
-    + 4 * 4                             // AvailableHmdCaps - DefaultTrackingCaps
-    + sizeof(ovrFovPort) * 2            // DefaultEyeFov
-    + sizeof(ovrFovPort) * 2            // MaxEyeFov
-    + sizeof(ovrSizei)                  // Resolution
-    + 4                                 // DisplayRefreshRate
-    OVR_ON64(+ 4)                       // pad1
-    , "ovrHmdDesc size mismatch");
-
-
-// -----------------------------------------------------------------------------------
-// ***** Backward compatibility #includes
-//
-// This is at the bottom of this file because the following is dependent on the
-// declarations above.
-
-#if !defined(OVR_CAPI_NO_UTILS)
-    #include "Extras/OVR_CAPI_Util.h"
-#endif
-
-/// @endcond
-
-#endif // OVR_CAPI_h

+ 0 - 84
src/external/OculusSDK/LibOVR/Include/OVR_CAPI_Audio.h

@@ -1,84 +0,0 @@
-/********************************************************************************//**
-\file      OVR_CAPI_Audio.h
-\brief     CAPI audio functions.
-\copyright Copyright 2015 Oculus VR, LLC. All Rights reserved.
-************************************************************************************/
-
-
-#ifndef OVR_CAPI_Audio_h
-#define OVR_CAPI_Audio_h
-
-#ifdef _WIN32
-// Prevents <Windows.h> from defining min() and max() macro symbols.
-#ifndef NOMINMAX
-#define NOMINMAX
-#endif
-#include <windows.h>
-#include "OVR_CAPI.h"
-#define OVR_AUDIO_MAX_DEVICE_STR_SIZE 128
-
-#if !defined(OVR_EXPORTING_CAPI)
-
-/// Gets the ID of the preferred VR audio output device.
-///
-/// \param[out] deviceOutId The ID of the user's preferred VR audio device to use, which will be valid upon a successful return value, else it will be WAVE_MAPPER.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-///         ovr_GetLastErrorInfo to get more information.
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetAudioDeviceOutWaveId(UINT* deviceOutId);
-
-/// Gets the ID of the preferred VR audio input device.
-///
-/// \param[out] deviceInId The ID of the user's preferred VR audio device to use, which will be valid upon a successful return value, else it will be WAVE_MAPPER.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-///         ovr_GetLastErrorInfo to get more information.
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetAudioDeviceInWaveId(UINT* deviceInId);
-
-
-/// Gets the GUID of the preferred VR audio device as a string.
-///
-/// \param[out] deviceOutStrBuffer A buffer where the GUID string for the device will copied to.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-///         ovr_GetLastErrorInfo to get more information.
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetAudioDeviceOutGuidStr(WCHAR deviceOutStrBuffer[OVR_AUDIO_MAX_DEVICE_STR_SIZE]);
-
-
-/// Gets the GUID of the preferred VR audio device.
-///
-/// \param[out] deviceOutGuid The GUID of the user's preferred VR audio device to use, which will be valid upon a successful return value, else it will be NULL.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-///         ovr_GetLastErrorInfo to get more information.
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetAudioDeviceOutGuid(GUID* deviceOutGuid);
-
-
-/// Gets the GUID of the preferred VR microphone device as a string.
-///
-/// \param[out] deviceInStrBuffer A buffer where the GUID string for the device will copied to.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-///         ovr_GetLastErrorInfo to get more information.
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetAudioDeviceInGuidStr(WCHAR deviceInStrBuffer[OVR_AUDIO_MAX_DEVICE_STR_SIZE]);
-
-
-/// Gets the GUID of the preferred VR microphone device.
-///
-/// \param[out] deviceInGuid The GUID of the user's preferred VR audio device to use, which will be valid upon a successful return value, else it will be NULL.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-///         ovr_GetLastErrorInfo to get more information.
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetAudioDeviceInGuid(GUID* deviceInGuid);
-
-#endif // !defined(OVR_EXPORTING_CAPI)
-
-#endif //OVR_OS_MS
-
-#endif    // OVR_CAPI_Audio_h

+ 0 - 158
src/external/OculusSDK/LibOVR/Include/OVR_CAPI_D3D.h

@@ -1,158 +0,0 @@
-/********************************************************************************//**
-\file      OVR_CAPI_D3D.h
-\brief     D3D specific structures used by the CAPI interface.
-\copyright Copyright 2014-2016 Oculus VR, LLC All Rights reserved.
-************************************************************************************/
-
-#ifndef OVR_CAPI_D3D_h
-#define OVR_CAPI_D3D_h
-
-#include "OVR_CAPI.h"
-#include "OVR_Version.h"
-
-
-#if defined (_WIN32)
-#include <Unknwn.h>
-
-#if !defined(OVR_EXPORTING_CAPI)
-
-//-----------------------------------------------------------------------------------
-// ***** Direct3D Specific
-
-/// Create Texture Swap Chain suitable for use with Direct3D 11 and 12.
-///
-/// \param[in]  session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in]  d3dPtr Specifies the application's D3D11Device to create resources with or the D3D12CommandQueue
-///             which must be the same one the application renders to the eye textures with.
-/// \param[in]  desc Specifies requested texture properties. See notes for more info about texture format.
-/// \param[in]  bindFlags Specifies what ovrTextureBindFlags the application requires for this texture chain.
-/// \param[out] out_TextureSwapChain Returns the created ovrTextureSwapChain, which will be valid upon a successful return value, else it will be NULL.
-///             This texture chain must be eventually destroyed via ovr_DestroyTextureSwapChain before destroying the session with ovr_Destroy.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use 
-///         ovr_GetLastErrorInfo to get more information.
-///
-/// \note The texture format provided in \a desc should be thought of as the format the distortion-compositor will use for the
-/// ShaderResourceView when reading the contents of the texture. To that end, it is highly recommended that the application
-/// requests texture swapchain formats that are in sRGB-space (e.g. OVR_FORMAT_R8G8B8A8_UNORM_SRGB) as the compositor
-/// does sRGB-correct rendering. As such, the compositor relies on the GPU's hardware sampler to do the sRGB-to-linear
-/// conversion. If the application still prefers to render to a linear format (e.g. OVR_FORMAT_R8G8B8A8_UNORM) while handling the
-/// linear-to-gamma conversion via HLSL code, then the application must still request the corresponding sRGB format and also use
-/// the \a ovrTextureMisc_DX_Typeless flag in the ovrTextureSwapChainDesc's Flag field. This will allow the application to create
-/// a RenderTargetView that is the desired linear format while the compositor continues to treat it as sRGB. Failure to do so
-/// will cause the compositor to apply unexpected gamma conversions leading to gamma-curve artifacts. The \a ovrTextureMisc_DX_Typeless
-/// flag for depth buffer formats (e.g. OVR_FORMAT_D32_FLOAT) is ignored as they are always converted to be typeless.
-///
-/// \see ovr_GetTextureSwapChainLength
-/// \see ovr_GetTextureSwapChainCurrentIndex
-/// \see ovr_GetTextureSwapChainDesc
-/// \see ovr_GetTextureSwapChainBufferDX
-/// \see ovr_DestroyTextureSwapChain
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_CreateTextureSwapChainDX(ovrSession session,
-                                                            IUnknown* d3dPtr,
-                                                            const ovrTextureSwapChainDesc* desc,
-                                                            ovrTextureSwapChain* out_TextureSwapChain);
-
-
-/// Get a specific buffer within the chain as any compatible COM interface (similar to QueryInterface)
-///
-/// \param[in]  session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in]  chain Specifies an ovrTextureSwapChain previously returned by ovr_CreateTextureSwapChainDX
-/// \param[in]  index Specifies the index within the chain to retrieve. Must be between 0 and length (see ovr_GetTextureSwapChainLength),
-///             or may pass -1 to get the buffer at the CurrentIndex location. (Saving a call to GetTextureSwapChainCurrentIndex)
-/// \param[in]  iid Specifies the interface ID of the interface pointer to query the buffer for.
-/// \param[out] out_Buffer Returns the COM interface pointer retrieved.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use 
-///         ovr_GetLastErrorInfo to get more information.
-///
-/// <b>Example code</b>
-///     \code{.cpp}
-///         ovr_GetTextureSwapChainBufferDX(session, chain, 0, IID_ID3D11Texture2D, &d3d11Texture);
-///         ovr_GetTextureSwapChainBufferDX(session, chain, 1, IID_PPV_ARGS(&dxgiResource));
-///     \endcode
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetTextureSwapChainBufferDX(ovrSession session,
-                                                               ovrTextureSwapChain chain,
-                                                               int index,
-                                                               IID iid,
-                                                               void** out_Buffer);
-
-
-/// Create Mirror Texture which is auto-refreshed to mirror Rift contents produced by this application.
-///
-/// A second call to ovr_CreateMirrorTextureDX for a given ovrSession before destroying the first one
-/// is not supported and will result in an error return.
-///
-/// \param[in]  session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in]  d3dPtr Specifies the application's D3D11Device to create resources with or the D3D12CommandQueue
-///             which must be the same one the application renders to the textures with.
-/// \param[in]  desc Specifies requested texture properties. See notes for more info about texture format.
-/// \param[out] out_MirrorTexture Returns the created ovrMirrorTexture, which will be valid upon a successful return value, else it will be NULL.
-///             This texture must be eventually destroyed via ovr_DestroyMirrorTexture before destroying the session with ovr_Destroy.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use 
-///         ovr_GetLastErrorInfo to get more information.
-///
-/// \note The texture format provided in \a desc should be thought of as the format the compositor will use for the RenderTargetView when
-/// writing into mirror texture. To that end, it is highly recommended that the application requests a mirror texture format that is
-/// in sRGB-space (e.g. OVR_FORMAT_R8G8B8A8_UNORM_SRGB) as the compositor does sRGB-correct rendering. If however the application wants
-/// to still read the mirror texture as a linear format (e.g. OVR_FORMAT_R8G8B8A8_UNORM) and handle the sRGB-to-linear conversion in
-/// HLSL code, then it is recommended the application still requests an sRGB format and also use the \a ovrTextureMisc_DX_Typeless flag in the
-/// ovrMirrorTextureDesc's Flags field. This will allow the application to bind a ShaderResourceView that is a linear format while the
-/// compositor continues to treat is as sRGB. Failure to do so will cause the compositor to apply unexpected gamma conversions leading to 
-/// gamma-curve artifacts.
-///
-///
-/// <b>Example code</b>
-///     \code{.cpp}
-///         ovrMirrorTexture     mirrorTexture = nullptr;
-///         ovrMirrorTextureDesc mirrorDesc = {};
-///         mirrorDesc.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB;
-///         mirrorDesc.Width  = mirrorWindowWidth;
-///         mirrorDesc.Height = mirrorWindowHeight;
-///         ovrResult result = ovr_CreateMirrorTextureDX(session, d3d11Device, &mirrorDesc, &mirrorTexture);
-///         [...]
-///         // Destroy the texture when done with it.
-///         ovr_DestroyMirrorTexture(session, mirrorTexture);
-///         mirrorTexture = nullptr;
-///     \endcode
-///
-/// \see ovr_GetMirrorTextureBufferDX
-/// \see ovr_DestroyMirrorTexture
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_CreateMirrorTextureDX(ovrSession session,
-                                                         IUnknown* d3dPtr,
-                                                         const ovrMirrorTextureDesc* desc,
-                                                         ovrMirrorTexture* out_MirrorTexture);
-
-/// Get a the underlying buffer as any compatible COM interface (similar to QueryInterface) 
-///
-/// \param[in]  session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in]  mirrorTexture Specifies an ovrMirrorTexture previously returned by ovr_CreateMirrorTextureDX
-/// \param[in]  iid Specifies the interface ID of the interface pointer to query the buffer for.
-/// \param[out] out_Buffer Returns the COM interface pointer retrieved.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use 
-///         ovr_GetLastErrorInfo to get more information.
-///
-/// <b>Example code</b>
-///     \code{.cpp}
-///         ID3D11Texture2D* d3d11Texture = nullptr;
-///         ovr_GetMirrorTextureBufferDX(session, mirrorTexture, IID_PPV_ARGS(&d3d11Texture));
-///         d3d11DeviceContext->CopyResource(d3d11TextureBackBuffer, d3d11Texture);
-///         d3d11Texture->Release();
-///         dxgiSwapChain->Present(0, 0);
-///     \endcode
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetMirrorTextureBufferDX(ovrSession session,
-                                                            ovrMirrorTexture mirrorTexture,
-                                                            IID iid,
-                                                            void** out_Buffer);
-
-#endif // !defined(OVR_EXPORTING_CAPI)
-
-#endif // _WIN32
-
-#endif    // OVR_CAPI_D3D_h

+ 0 - 102
src/external/OculusSDK/LibOVR/Include/OVR_CAPI_GL.h

@@ -1,102 +0,0 @@
-/********************************************************************************//**
-\file      OVR_CAPI_GL.h
-\brief     OpenGL-specific structures used by the CAPI interface.
-\copyright Copyright 2015 Oculus VR, LLC. All Rights reserved.
-************************************************************************************/
-
-#ifndef OVR_CAPI_GL_h
-#define OVR_CAPI_GL_h
-
-#include "OVR_CAPI.h"
-
-#if !defined(OVR_EXPORTING_CAPI)
-
-/// Creates a TextureSwapChain suitable for use with OpenGL.
-///
-/// \param[in]  session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in]  desc Specifies the requested texture properties. See notes for more info about texture format.
-/// \param[out] out_TextureSwapChain Returns the created ovrTextureSwapChain, which will be valid upon
-///             a successful return value, else it will be NULL. This texture swap chain must be eventually
-///             destroyed via ovr_DestroyTextureSwapChain before destroying the session with ovr_Destroy.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use 
-///         ovr_GetLastErrorInfo to get more information.
-///
-/// \note The \a format provided should be thought of as the format the distortion compositor will use when reading
-/// the contents of the texture. To that end, it is highly recommended that the application requests texture swap chain
-/// formats that are in sRGB-space (e.g. OVR_FORMAT_R8G8B8A8_UNORM_SRGB) as the distortion compositor does sRGB-correct
-/// rendering. Furthermore, the app should then make sure "glEnable(GL_FRAMEBUFFER_SRGB);" is called before rendering
-/// into these textures. Even though it is not recommended, if the application would like to treat the texture as a linear
-/// format and do linear-to-gamma conversion in GLSL, then the application can avoid calling "glEnable(GL_FRAMEBUFFER_SRGB);",
-/// but should still pass in an sRGB variant for the \a format. Failure to do so will cause the distortion compositor
-/// to apply incorrect gamma conversions leading to gamma-curve artifacts.
-///
-/// \see ovr_GetTextureSwapChainLength
-/// \see ovr_GetTextureSwapChainCurrentIndex
-/// \see ovr_GetTextureSwapChainDesc
-/// \see ovr_GetTextureSwapChainBufferGL
-/// \see ovr_DestroyTextureSwapChain
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_CreateTextureSwapChainGL(ovrSession session,
-                                                            const ovrTextureSwapChainDesc* desc,
-                                                            ovrTextureSwapChain* out_TextureSwapChain);
-
-/// Get a specific buffer within the chain as a GL texture name
-///
-/// \param[in]  session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in]  chain Specifies an ovrTextureSwapChain previously returned by ovr_CreateTextureSwapChainGL
-/// \param[in]  index Specifies the index within the chain to retrieve. Must be between 0 and length (see ovr_GetTextureSwapChainLength)
-///             or may pass -1 to get the buffer at the CurrentIndex location. (Saving a call to GetTextureSwapChainCurrentIndex)
-/// \param[out] out_TexId Returns the GL texture object name associated with the specific index requested
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use 
-///         ovr_GetLastErrorInfo to get more information.
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetTextureSwapChainBufferGL(ovrSession session,
-                                                               ovrTextureSwapChain chain,
-                                                               int index,
-                                                               unsigned int* out_TexId);
-
-
-/// Creates a Mirror Texture which is auto-refreshed to mirror Rift contents produced by this application.
-///
-/// A second call to ovr_CreateMirrorTextureGL for a given ovrSession before destroying the first one
-/// is not supported and will result in an error return.
-///
-/// \param[in]  session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in]  desc Specifies the requested mirror texture description.
-/// \param[out] out_MirrorTexture Specifies the created ovrMirrorTexture, which will be valid upon a successful return value, else it will be NULL.
-///             This texture must be eventually destroyed via ovr_DestroyMirrorTexture before destroying the session with ovr_Destroy.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use 
-///         ovr_GetLastErrorInfo to get more information.
-///
-/// \note The \a format provided should be thought of as the format the distortion compositor will use when writing into the mirror
-/// texture. It is highly recommended that mirror textures are requested as sRGB formats because the distortion compositor
-/// does sRGB-correct rendering. If the application requests a non-sRGB format (e.g. R8G8B8A8_UNORM) as the mirror texture,
-/// then the application might have to apply a manual linear-to-gamma conversion when reading from the mirror texture.
-/// Failure to do so can result in incorrect gamma conversions leading to gamma-curve artifacts and color banding.
-///
-/// \see ovr_GetMirrorTextureBufferGL
-/// \see ovr_DestroyMirrorTexture
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_CreateMirrorTextureGL(ovrSession session,
-                                                         const ovrMirrorTextureDesc* desc,
-                                                         ovrMirrorTexture* out_MirrorTexture);
-
-/// Get a the underlying buffer as a GL texture name
-///
-/// \param[in]  session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in]  mirrorTexture Specifies an ovrMirrorTexture previously returned by ovr_CreateMirrorTextureGL
-/// \param[out] out_TexId Specifies the GL texture object name associated with the mirror texture
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use 
-///         ovr_GetLastErrorInfo to get more information.
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetMirrorTextureBufferGL(ovrSession session,
-                                                            ovrMirrorTexture mirrorTexture,
-                                                            unsigned int* out_TexId);
-
-#endif // !defined(OVR_EXPORTING_CAPI)
-
-#endif    // OVR_CAPI_GL_h

+ 0 - 53
src/external/OculusSDK/LibOVR/Include/OVR_CAPI_Keys.h

@@ -1,53 +0,0 @@
-/********************************************************************************//**
-\file      OVR_CAPI.h
-\brief     Keys for CAPI proprty function calls
-\copyright Copyright 2015 Oculus VR, LLC All Rights reserved.
-************************************************************************************/
-
-#ifndef OVR_CAPI_Keys_h
-#define OVR_CAPI_Keys_h
-
-#include "OVR_Version.h"
-
-
-
-#define OVR_KEY_USER                        "User"                // string
-
-#define OVR_KEY_NAME                        "Name"                // string
-
-#define OVR_KEY_GENDER                      "Gender"              // string "Male", "Female", or "Unknown"
-#define OVR_DEFAULT_GENDER                  "Unknown"
-
-#define OVR_KEY_PLAYER_HEIGHT               "PlayerHeight"        // float meters
-#define OVR_DEFAULT_PLAYER_HEIGHT           1.778f
-
-#define OVR_KEY_EYE_HEIGHT                  "EyeHeight"           // float meters
-#define OVR_DEFAULT_EYE_HEIGHT              1.675f
-
-#define OVR_KEY_NECK_TO_EYE_DISTANCE        "NeckEyeDistance"     // float[2] meters
-#define OVR_DEFAULT_NECK_TO_EYE_HORIZONTAL  0.0805f
-#define OVR_DEFAULT_NECK_TO_EYE_VERTICAL    0.075f
-
-
-#define OVR_KEY_EYE_TO_NOSE_DISTANCE        "EyeToNoseDist"       // float[2] meters
-
-
-
-
-
-#define OVR_PERF_HUD_MODE                       "PerfHudMode"                       // int, allowed values are defined in enum ovrPerfHudMode
-
-#define OVR_LAYER_HUD_MODE                      "LayerHudMode"                      // int, allowed values are defined in enum ovrLayerHudMode
-#define OVR_LAYER_HUD_CURRENT_LAYER             "LayerHudCurrentLayer"              // int, The layer to show 
-#define OVR_LAYER_HUD_SHOW_ALL_LAYERS           "LayerHudShowAll"                   // bool, Hide other layers when the hud is enabled
-
-#define OVR_DEBUG_HUD_STEREO_MODE               "DebugHudStereoMode"                // int, allowed values are defined in enum ovrDebugHudStereoMode
-#define OVR_DEBUG_HUD_STEREO_GUIDE_INFO_ENABLE  "DebugHudStereoGuideInfoEnable"     // bool
-#define OVR_DEBUG_HUD_STEREO_GUIDE_SIZE         "DebugHudStereoGuideSize2f"         // float[2]
-#define OVR_DEBUG_HUD_STEREO_GUIDE_POSITION     "DebugHudStereoGuidePosition3f"     // float[3]
-#define OVR_DEBUG_HUD_STEREO_GUIDE_YAWPITCHROLL "DebugHudStereoGuideYawPitchRoll3f" // float[3]
-#define OVR_DEBUG_HUD_STEREO_GUIDE_COLOR        "DebugHudStereoGuideColor4f"        // float[4]
-
-
-
-#endif // OVR_CAPI_Keys_h

+ 0 - 156
src/external/OculusSDK/LibOVR/Include/OVR_ErrorCode.h

@@ -1,156 +0,0 @@
-/********************************************************************************//**
-\file  OVR_ErrorCode.h
-\brief     This header provides LibOVR error code declarations.
-\copyright Copyright 2015-2016 Oculus VR, LLC All Rights reserved.
-*************************************************************************************/
-
-#ifndef OVR_ErrorCode_h
-#define OVR_ErrorCode_h
-
-
-#include "OVR_Version.h"
-#include <stdint.h>
-
-
-
-
-#ifndef OVR_RESULT_DEFINED
-#define OVR_RESULT_DEFINED ///< Allows ovrResult to be independently defined.
-/// API call results are represented at the highest level by a single ovrResult.
-typedef int32_t ovrResult;
-#endif
-
-
-/// \brief Indicates if an ovrResult indicates success.
-///
-/// Some functions return additional successful values other than ovrSucces and
-/// require usage of this macro to indicate successs.
-///
-#if !defined(OVR_SUCCESS)
-    #define OVR_SUCCESS(result) (result >= 0)
-#endif
-
-
-/// \brief Indicates if an ovrResult indicates an unqualified success.
-///
-/// This is useful for indicating that the code intentionally wants to
-/// check for result == ovrSuccess as opposed to OVR_SUCCESS(), which
-/// checks for result >= ovrSuccess.
-///
-#if !defined(OVR_UNQUALIFIED_SUCCESS)
-    #define OVR_UNQUALIFIED_SUCCESS(result) (result == ovrSuccess)
-#endif
-
-
-/// \brief Indicates if an ovrResult indicates failure.
-///
-#if !defined(OVR_FAILURE)
-    #define OVR_FAILURE(result) (!OVR_SUCCESS(result))
-#endif
-
-
-// Success is a value greater or equal to 0, while all error types are negative values.
-#ifndef OVR_SUCCESS_DEFINED
-#define OVR_SUCCESS_DEFINED ///< Allows ovrResult to be independently defined.
-typedef enum ovrSuccessType_
-{
-    /// This is a general success result. Use OVR_SUCCESS to test for success.
-    ovrSuccess = 0,
-} ovrSuccessType;
-#endif
-
-// Public success types
-// Success is a value greater or equal to 0, while all error types are negative values.
-typedef enum ovrSuccessTypes_
-{
-    /// Returned from a call to SubmitFrame. The call succeeded, but what the app
-    /// rendered will not be visible on the HMD. Ideally the app should continue
-    /// calling SubmitFrame, but not do any rendering. When the result becomes
-    /// ovrSuccess, rendering should continue as usual.
-    ovrSuccess_NotVisible                 = 1000,
-
-} ovrSuccessTypes;
-
-// Public error types
-typedef enum ovrErrorType_
-{
-    /* General errors */
-    ovrError_MemoryAllocationFailure    = -1000,   ///< Failure to allocate memory.
-    ovrError_InvalidSession             = -1002,   ///< Invalid ovrSession parameter provided.
-    ovrError_Timeout                    = -1003,   ///< The operation timed out.
-    ovrError_NotInitialized             = -1004,   ///< The system or component has not been initialized.
-    ovrError_InvalidParameter           = -1005,   ///< Invalid parameter provided. See error info or log for details.
-    ovrError_ServiceError               = -1006,   ///< Generic service error. See error info or log for details.
-    ovrError_NoHmd                      = -1007,   ///< The given HMD doesn't exist.
-    ovrError_Unsupported                = -1009,   ///< Function call is not supported on this hardware/software
-    ovrError_DeviceUnavailable          = -1010,   ///< Specified device type isn't available.
-    ovrError_InvalidHeadsetOrientation  = -1011,   ///< The headset was in an invalid orientation for the requested operation (e.g. vertically oriented during ovr_RecenterPose).
-    ovrError_ClientSkippedDestroy       = -1012,   ///< The client failed to call ovr_Destroy on an active session before calling ovr_Shutdown. Or the client crashed.
-    ovrError_ClientSkippedShutdown      = -1013,   ///< The client failed to call ovr_Shutdown or the client crashed.
-    ovrError_ServiceDeadlockDetected    = -1014,   ///< The service watchdog discovered a deadlock.
-    ovrError_InvalidOperation           = -1015,   ///< Function call is invalid for object's current state
-
-    /* Audio error range, reserved for Audio errors. */
-    ovrError_AudioDeviceNotFound        = -2001,   ///< Failure to find the specified audio device.
-    ovrError_AudioComError              = -2002,   ///< Generic COM error.
-
-    /* Initialization errors. */
-    ovrError_Initialize                 = -3000,   ///< Generic initialization error.
-    ovrError_LibLoad                    = -3001,   ///< Couldn't load LibOVRRT.
-    ovrError_LibVersion                 = -3002,   ///< LibOVRRT version incompatibility.
-    ovrError_ServiceConnection          = -3003,   ///< Couldn't connect to the OVR Service.
-    ovrError_ServiceVersion             = -3004,   ///< OVR Service version incompatibility.
-    ovrError_IncompatibleOS             = -3005,   ///< The operating system version is incompatible.
-    ovrError_DisplayInit                = -3006,   ///< Unable to initialize the HMD display.
-    ovrError_ServerStart                = -3007,   ///< Unable to start the server. Is it already running?
-    ovrError_Reinitialization           = -3008,   ///< Attempting to re-initialize with a different version.
-    ovrError_MismatchedAdapters         = -3009,   ///< Chosen rendering adapters between client and service do not match
-    ovrError_LeakingResources           = -3010,   ///< Calling application has leaked resources
-    ovrError_ClientVersion              = -3011,   ///< Client version too old to connect to service
-    ovrError_OutOfDateOS                = -3012,   ///< The operating system is out of date.
-    ovrError_OutOfDateGfxDriver         = -3013,   ///< The graphics driver is out of date.
-    ovrError_IncompatibleGPU            = -3014,   ///< The graphics hardware is not supported
-    ovrError_NoValidVRDisplaySystem     = -3015,   ///< No valid VR display system found.
-    ovrError_Obsolete                   = -3016,   ///< Feature or API is obsolete and no longer supported.
-    ovrError_DisabledOrDefaultAdapter   = -3017,   ///< No supported VR display system found, but disabled or driverless adapter found.
-    ovrError_HybridGraphicsNotSupported = -3018,   ///< The system is using hybrid graphics (Optimus, etc...), which is not support.
-    ovrError_DisplayManagerInit         = -3019,   ///< Initialization of the DisplayManager failed.
-    ovrError_TrackerDriverInit          = -3020,   ///< Failed to get the interface for an attached tracker
-    ovrError_LibSignCheck               = -3021,   ///< LibOVRRT signature check failure.
-    ovrError_LibPath                    = -3022,   ///< LibOVRRT path failure.
-    ovrError_LibSymbols                 = -3023,   ///< LibOVRRT symbol resolution failure.
-
-    /* Rendering errors */
-    ovrError_DisplayLost                = -6000,   ///< In the event of a system-wide graphics reset or cable unplug this is returned to the app.
-    ovrError_TextureSwapChainFull       = -6001,   ///< ovr_CommitTextureSwapChain was called too many times on a texture swapchain without calling submit to use the chain.
-    ovrError_TextureSwapChainInvalid    = -6002,   ///< The ovrTextureSwapChain is in an incomplete or inconsistent state. Ensure ovr_CommitTextureSwapChain was called at least once first.
-    ovrError_GraphicsDeviceReset        = -6003,   ///< Graphics device has been reset (TDR, etc...)
-    ovrError_DisplayRemoved             = -6004,   ///< HMD removed from the display adapter
-    ovrError_ContentProtectionNotAvailable = -6005,///<Content protection is not available for the display
-    ovrError_ApplicationInvisible       = -6006,   ///< Application declared itself as an invisible type and is not allowed to submit frames.
-    ovrError_Disallowed                 = -6007,   ///< The given request is disallowed under the current conditions.
-    ovrError_DisplayPluggedIncorrectly  = -6008,   ///< Display portion of HMD is plugged into an incompatible port (ex: IGP)
-
-    /* Fatal errors */
-    ovrError_RuntimeException           = -7000,   ///< A runtime exception occurred. The application is required to shutdown LibOVR and re-initialize it before this error state will be cleared.
-
-    /* Calibration errors */
-    ovrError_NoCalibration              = -9000,   ///< Result of a missing calibration block
-    ovrError_OldVersion                 = -9001,   ///< Result of an old calibration block
-    ovrError_MisformattedBlock          = -9002,   ///< Result of a bad calibration block due to lengths
-
-
-} ovrErrorType;
-
-
-
-/// Provides information about the last error.
-/// \see ovr_GetLastErrorInfo
-typedef struct ovrErrorInfo_
-{
-    ovrResult Result;               ///< The result from the last API call that generated an error ovrResult.
-    char      ErrorString[512];     ///< A UTF8-encoded null-terminated English string describing the problem. The format of this string is subject to change in future versions.
-} ovrErrorInfo;
-
-
-#endif /* OVR_ErrorCode_h */

+ 0 - 60
src/external/OculusSDK/LibOVR/Include/OVR_Version.h

@@ -1,60 +0,0 @@
-/********************************************************************************//**
-\file      OVR_Version.h
-\brief     This header provides LibOVR version identification.
-\copyright Copyright 2014-2016 Oculus VR, LLC All Rights reserved.
-*************************************************************************************/
-
-#ifndef OVR_Version_h
-#define OVR_Version_h
-
-
-
-/// Conventional string-ification macro.
-#if !defined(OVR_STRINGIZE)
-    #define OVR_STRINGIZEIMPL(x) #x
-    #define OVR_STRINGIZE(x)     OVR_STRINGIZEIMPL(x)
-#endif
-
-
-// Master version numbers
-#define OVR_PRODUCT_VERSION 1  // Product version doesn't participate in semantic versioning.
-#define OVR_MAJOR_VERSION   1  // If you change these values then you need to also make sure to change LibOVR/Projects/Windows/LibOVR.props in parallel.
-#define OVR_MINOR_VERSION   7  // 
-#define OVR_PATCH_VERSION   0
-#define OVR_BUILD_NUMBER    0
-
-// This is the ((product * 100) + major) version of the service that the DLL is compatible with.
-// When we backport changes to old versions of the DLL we update the old DLLs
-// to move this version number up to the latest version.
-// The DLL is responsible for checking that the service is the version it supports
-// and returning an appropriate error message if it has not been made compatible.
-#define OVR_DLL_COMPATIBLE_VERSION 101
-
-#define OVR_FEATURE_VERSION 0
-
-
-/// "Major.Minor.Patch"
-#if !defined(OVR_VERSION_STRING)
-    #define OVR_VERSION_STRING  OVR_STRINGIZE(OVR_MAJOR_VERSION.OVR_MINOR_VERSION.OVR_PATCH_VERSION)
-#endif
-
-
-/// "Major.Minor.Patch.Build"
-#if !defined(OVR_DETAILED_VERSION_STRING)
-    #define OVR_DETAILED_VERSION_STRING OVR_STRINGIZE(OVR_MAJOR_VERSION.OVR_MINOR_VERSION.OVR_PATCH_VERSION.OVR_BUILD_NUMBER)
-#endif
-
-
-/// \brief file description for version info
-/// This appears in the user-visible file properties. It is intended to convey publicly
-/// available additional information such as feature builds.
-#if !defined(OVR_FILE_DESCRIPTION_STRING)
-    #if defined(_DEBUG)
-        #define OVR_FILE_DESCRIPTION_STRING "dev build debug"
-    #else
-        #define OVR_FILE_DESCRIPTION_STRING "dev build"
-    #endif
-#endif
-
-
-#endif // OVR_Version_h

BIN
src/external/OculusSDK/LibOVR/LibOVRRT32_1.dll