Browse Source

Merge pull request #76 from kd7tck/develop

standalone raymath
Ray 9 years ago
parent
commit
c8e8c0a002
2 changed files with 986 additions and 1052 deletions
  1. 0 988
      src/raymath.c
  2. 986 64
      src/raymath.h

+ 0 - 988
src/raymath.c

@@ -1,988 +0,0 @@
-/**********************************************************************************************
-*
-*   raymath
-*
-*   Some useful functions to work with Vector3, Matrix and Quaternions
-*
-*   Copyright (c) 2015 Ramon Santamaria (@raysan5)
-*
-*   This software is provided "as-is", without any express or implied warranty. In no event
-*   will the authors be held liable for any damages arising from the use of this software.
-*
-*   Permission is granted to anyone to use this software for any purpose, including commercial
-*   applications, and to alter it and redistribute it freely, subject to the following restrictions:
-*
-*     1. The origin of this software must not be misrepresented; you must not claim that you
-*     wrote the original software. If you use this software in a product, an acknowledgment
-*     in the product documentation would be appreciated but is not required.
-*
-*     2. Altered source versions must be plainly marked as such, and must not be misrepresented
-*     as being the original software.
-*
-*     3. This notice may not be removed or altered from any source distribution.
-*
-**********************************************************************************************/
-
-#include "raymath.h"
-
-#include <stdio.h>      // Used only on PrintMatrix()
-#include <math.h>       // Standard math libary: sin(), cos(), tan()...
-#include <stdlib.h>     // Used for abs()
-
-//----------------------------------------------------------------------------------
-// Defines and Macros
-//----------------------------------------------------------------------------------
-//...
-
-//----------------------------------------------------------------------------------
-// Module specific Functions Declaration
-//----------------------------------------------------------------------------------
-// ...
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Vector3 math
-//----------------------------------------------------------------------------------
-
-// Converts Vector3 to float array
-float *VectorToFloat(Vector3 vec)
-{
-    static float buffer[3];
-
-    buffer[0] = vec.x;
-    buffer[1] = vec.y;
-    buffer[2] = vec.z;
-
-    return buffer;
-}
-
-// Add two vectors
-Vector3 VectorAdd(Vector3 v1, Vector3 v2)
-{
-    Vector3 result;
-
-    result.x = v1.x + v2.x;
-    result.y = v1.y + v2.y;
-    result.z = v1.z + v2.z;
-
-    return result;
-}
-
-// Substract two vectors
-Vector3 VectorSubtract(Vector3 v1, Vector3 v2)
-{
-    Vector3 result;
-
-    result.x = v1.x - v2.x;
-    result.y = v1.y - v2.y;
-    result.z = v1.z - v2.z;
-
-    return result;
-}
-
-// Calculate two vectors cross product
-Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2)
-{
-    Vector3 result;
-
-    result.x = v1.y*v2.z - v1.z*v2.y;
-    result.y = v1.z*v2.x - v1.x*v2.z;
-    result.z = v1.x*v2.y - v1.y*v2.x;
-
-    return result;
-}
-
-// Calculate one vector perpendicular vector
-Vector3 VectorPerpendicular(Vector3 v)
-{
-    Vector3 result;
-
-    float min = fabs(v.x);
-    Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f};
-
-    if (fabs(v.y) < min)
-    {
-        min = fabs(v.y);
-        cardinalAxis = (Vector3){0.0f, 1.0f, 0.0f};
-    }
-
-    if(fabs(v.z) < min)
-    {
-        cardinalAxis = (Vector3){0.0f, 0.0f, 1.0f};
-    }
-
-    result = VectorCrossProduct(v, cardinalAxis);
-
-    return result;
-}
-
-// Calculate two vectors dot product
-float VectorDotProduct(Vector3 v1, Vector3 v2)
-{
-    float result;
-
-    result = v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;
-
-    return result;
-}
-
-// Calculate vector lenght
-float VectorLength(const Vector3 v)
-{
-    float length;
-
-    length = sqrt(v.x*v.x + v.y*v.y + v.z*v.z);
-
-    return length;
-}
-
-// Scale provided vector
-void VectorScale(Vector3 *v, float scale)
-{
-    v->x *= scale;
-    v->y *= scale;
-    v->z *= scale;
-}
-
-// Negate provided vector (invert direction)
-void VectorNegate(Vector3 *v)
-{
-    v->x = -v->x;
-    v->y = -v->y;
-    v->z = -v->z;
-}
-
-// Normalize provided vector
-void VectorNormalize(Vector3 *v)
-{
-    float length, ilength;
-
-    length = VectorLength(*v);
-
-    if (length == 0) length = 1;
-
-    ilength = 1.0/length;
-
-    v->x *= ilength;
-    v->y *= ilength;
-    v->z *= ilength;
-}
-
-// Calculate distance between two points
-float VectorDistance(Vector3 v1, Vector3 v2)
-{
-    float result;
-
-    float dx = v2.x - v1.x;
-    float dy = v2.y - v1.y;
-    float dz = v2.z - v1.z;
-
-    result = sqrt(dx*dx + dy*dy + dz*dz);
-
-    return result;
-}
-
-// Calculate linear interpolation between two vectors
-Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount)
-{
-    Vector3 result;
-
-    result.x = v1.x + amount * (v2.x - v1.x);
-    result.y = v1.y + amount * (v2.y - v1.y);
-    result.z = v1.z + amount * (v2.z - v1.z);
-
-    return result;
-}
-
-// Calculate reflected vector to normal
-Vector3 VectorReflect(Vector3 vector, Vector3 normal)
-{
-    // I is the original vector
-    // N is the normal of the incident plane
-    // R = I - (2 * N * ( DotProduct[ I,N] ))
-
-    Vector3 result;
-
-    float dotProduct = VectorDotProduct(vector, normal);
-
-    result.x = vector.x - (2.0 * normal.x) * dotProduct;
-    result.y = vector.y - (2.0 * normal.y) * dotProduct;
-    result.z = vector.z - (2.0 * normal.z) * dotProduct;
-
-    return result;
-}
-
-// Transforms a Vector3 with a given Matrix
-void VectorTransform(Vector3 *v, Matrix mat)
-{
-    float x = v->x;
-    float y = v->y;
-    float z = v->z;
-
-    //MatrixTranspose(&mat);
-
-    v->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
-    v->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
-    v->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
-};
-
-// Return a Vector3 init to zero
-Vector3 VectorZero(void)
-{
-    Vector3 zero = { 0.0f, 0.0f, 0.0f };
-
-    return zero;
-}
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Matrix math
-//----------------------------------------------------------------------------------
-
-// Converts Matrix to float array
-// NOTE: Returned vector is a transposed version of the Matrix struct, 
-// it should be this way because, despite raymath use OpenGL column-major convention,
-// Matrix struct memory alignment and variables naming are not coherent
-float *MatrixToFloat(Matrix mat)
-{
-    static float buffer[16];
-
-    buffer[0] = mat.m0;
-    buffer[1] = mat.m4;
-    buffer[2] = mat.m8;
-    buffer[3] = mat.m12;
-    buffer[4] = mat.m1;
-    buffer[5] = mat.m5;
-    buffer[6] = mat.m9;
-    buffer[7] = mat.m13;
-    buffer[8] = mat.m2;
-    buffer[9] = mat.m6;
-    buffer[10] = mat.m10;
-    buffer[11] = mat.m14;
-    buffer[12] = mat.m3;
-    buffer[13] = mat.m7;
-    buffer[14] = mat.m11;
-    buffer[15] = mat.m15;
-
-    return buffer;
-}
-
-// Compute matrix determinant
-float MatrixDeterminant(Matrix mat)
-{
-    float result;
-
-    // Cache the matrix values (speed optimization)
-    float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
-    float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
-    float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
-    float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
-
-    result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 +
-             a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 +
-             a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 +
-             a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 +
-             a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 +
-             a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33;
-
-    return result;
-}
-
-// Returns the trace of the matrix (sum of the values along the diagonal)
-float MatrixTrace(Matrix mat)
-{
-    return (mat.m0 + mat.m5 + mat.m10 + mat.m15);
-}
-
-// Transposes provided matrix
-void MatrixTranspose(Matrix *mat)
-{
-    Matrix temp;
-
-    temp.m0 = mat->m0;
-    temp.m1 = mat->m4;
-    temp.m2 = mat->m8;
-    temp.m3 = mat->m12;
-    temp.m4 = mat->m1;
-    temp.m5 = mat->m5;
-    temp.m6 = mat->m9;
-    temp.m7 = mat->m13;
-    temp.m8 = mat->m2;
-    temp.m9 = mat->m6;
-    temp.m10 = mat->m10;
-    temp.m11 = mat->m14;
-    temp.m12 = mat->m3;
-    temp.m13 = mat->m7;
-    temp.m14 = mat->m11;
-    temp.m15 = mat->m15;
-
-    *mat = temp;
-}
-
-// Invert provided matrix
-void MatrixInvert(Matrix *mat)
-{
-    Matrix temp;
-
-    // Cache the matrix values (speed optimization)
-    float a00 = mat->m0, a01 = mat->m1, a02 = mat->m2, a03 = mat->m3;
-    float a10 = mat->m4, a11 = mat->m5, a12 = mat->m6, a13 = mat->m7;
-    float a20 = mat->m8, a21 = mat->m9, a22 = mat->m10, a23 = mat->m11;
-    float a30 = mat->m12, a31 = mat->m13, a32 = mat->m14, a33 = mat->m15;
-
-    float b00 = a00*a11 - a01*a10;
-    float b01 = a00*a12 - a02*a10;
-    float b02 = a00*a13 - a03*a10;
-    float b03 = a01*a12 - a02*a11;
-    float b04 = a01*a13 - a03*a11;
-    float b05 = a02*a13 - a03*a12;
-    float b06 = a20*a31 - a21*a30;
-    float b07 = a20*a32 - a22*a30;
-    float b08 = a20*a33 - a23*a30;
-    float b09 = a21*a32 - a22*a31;
-    float b10 = a21*a33 - a23*a31;
-    float b11 = a22*a33 - a23*a32;
-
-    // Calculate the invert determinant (inlined to avoid double-caching)
-    float invDet = 1/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
-
-    temp.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet;
-    temp.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet;
-    temp.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet;
-    temp.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet;
-    temp.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet;
-    temp.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet;
-    temp.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet;
-    temp.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet;
-    temp.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet;
-    temp.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet;
-    temp.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet;
-    temp.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet;
-    temp.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet;
-    temp.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet;
-    temp.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet;
-    temp.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet;
-
-    *mat = temp;
-}
-
-// Normalize provided matrix
-void MatrixNormalize(Matrix *mat)
-{
-    float det = MatrixDeterminant(*mat);
-
-    mat->m0 /= det;
-    mat->m1 /= det;
-    mat->m2 /= det;
-    mat->m3 /= det;
-    mat->m4 /= det;
-    mat->m5 /= det;
-    mat->m6 /= det;
-    mat->m7 /= det;
-    mat->m8 /= det;
-    mat->m9 /= det;
-    mat->m10 /= det;
-    mat->m11 /= det;
-    mat->m12 /= det;
-    mat->m13 /= det;
-    mat->m14 /= det;
-    mat->m15 /= det;
-}
-
-// Returns identity matrix
-Matrix MatrixIdentity(void)
-{
-    Matrix result = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
-
-    return result;
-}
-
-// Add two matrices
-Matrix MatrixAdd(Matrix left, Matrix right)
-{
-    Matrix result = MatrixIdentity();
-
-    result.m0 = left.m0 + right.m0;
-    result.m1 = left.m1 + right.m1;
-    result.m2 = left.m2 + right.m2;
-    result.m3 = left.m3 + right.m3;
-    result.m4 = left.m4 + right.m4;
-    result.m5 = left.m5 + right.m5;
-    result.m6 = left.m6 + right.m6;
-    result.m7 = left.m7 + right.m7;
-    result.m8 = left.m8 + right.m8;
-    result.m9 = left.m9 + right.m9;
-    result.m10 = left.m10 + right.m10;
-    result.m11 = left.m11 + right.m11;
-    result.m12 = left.m12 + right.m12;
-    result.m13 = left.m13 + right.m13;
-    result.m14 = left.m14 + right.m14;
-    result.m15 = left.m15 + right.m15;
-
-    return result;
-}
-
-// Substract two matrices (left - right)
-Matrix MatrixSubstract(Matrix left, Matrix right)
-{
-    Matrix result = MatrixIdentity();
-
-    result.m0 = left.m0 - right.m0;
-    result.m1 = left.m1 - right.m1;
-    result.m2 = left.m2 - right.m2;
-    result.m3 = left.m3 - right.m3;
-    result.m4 = left.m4 - right.m4;
-    result.m5 = left.m5 - right.m5;
-    result.m6 = left.m6 - right.m6;
-    result.m7 = left.m7 - right.m7;
-    result.m8 = left.m8 - right.m8;
-    result.m9 = left.m9 - right.m9;
-    result.m10 = left.m10 - right.m10;
-    result.m11 = left.m11 - right.m11;
-    result.m12 = left.m12 - right.m12;
-    result.m13 = left.m13 - right.m13;
-    result.m14 = left.m14 - right.m14;
-    result.m15 = left.m15 - right.m15;
-
-    return result;
-}
-
-// Returns translation matrix
-Matrix MatrixTranslate(float x, float y, float z)
-{
-    Matrix result = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, x, y, z, 1 };
-
-    return result;
-}
-
-// Create rotation matrix from axis and angle
-// NOTE: Angle should be provided in radians
-Matrix MatrixRotate(float angle, Vector3 axis)
-{
-    Matrix result;
-
-    Matrix mat = MatrixIdentity();
-
-    float x = axis.x, y = axis.y, z = axis.z;
-
-    float length = sqrt(x*x + y*y + z*z);
-
-    if ((length != 1) && (length != 0))
-    {
-        length = 1/length;
-        x *= length;
-        y *= length;
-        z *= length;
-    }
-
-    float s = sinf(angle);
-    float c = cosf(angle);
-    float t = 1.0f - c;
-
-    // Cache some matrix values (speed optimization)
-    float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
-    float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
-    float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
-
-    // Construct the elements of the rotation matrix
-    float b00 = x*x*t + c, b01 = y*x*t + z*s, b02 = z*x*t - y*s;
-    float b10 = x*y*t - z*s, b11 = y*y*t + c, b12 = z*y*t + x*s;
-    float b20 = x*z*t + y*s, b21 = y*z*t - x*s, b22 = z*z*t + c;
-
-    // Perform rotation-specific matrix multiplication
-    result.m0 = a00*b00 + a10*b01 + a20*b02;
-    result.m1 = a01*b00 + a11*b01 + a21*b02;
-    result.m2 = a02*b00 + a12*b01 + a22*b02;
-    result.m3 = a03*b00 + a13*b01 + a23*b02;
-    result.m4 = a00*b10 + a10*b11 + a20*b12;
-    result.m5 = a01*b10 + a11*b11 + a21*b12;
-    result.m6 = a02*b10 + a12*b11 + a22*b12;
-    result.m7 = a03*b10 + a13*b11 + a23*b12;
-    result.m8 = a00*b20 + a10*b21 + a20*b22;
-    result.m9 = a01*b20 + a11*b21 + a21*b22;
-    result.m10 = a02*b20 + a12*b21 + a22*b22;
-    result.m11 = a03*b20 + a13*b21 + a23*b22;
-    result.m12 = mat.m12;
-    result.m13 = mat.m13;
-    result.m14 = mat.m14;
-    result.m15 = mat.m15;
-
-    return result;
-}
-
-/*
-// Another implementation for MatrixRotate...
-Matrix MatrixRotate(float angle, float x, float y, float z)
-{
-    Matrix result = MatrixIdentity();
-
-    float c = cosf(angle);      // cosine
-    float s = sinf(angle);      // sine
-    float c1 = 1.0f - c;        // 1 - c
-
-    float m0 = result.m0, m4 = result.m4, m8 = result.m8, m12 = result.m12,
-          m1 = result.m1, m5 = result.m5, m9 = result.m9,  m13 = result.m13,
-          m2 = result.m2, m6 = result.m6, m10 = result.m10, m14 = result.m14;
-
-    // build rotation matrix
-    float r0 = x * x * c1 + c;
-    float r1 = x * y * c1 + z * s;
-    float r2 = x * z * c1 - y * s;
-    float r4 = x * y * c1 - z * s;
-    float r5 = y * y * c1 + c;
-    float r6 = y * z * c1 + x * s;
-    float r8 = x * z * c1 + y * s;
-    float r9 = y * z * c1 - x * s;
-    float r10= z * z * c1 + c;
-
-    // multiply rotation matrix
-    result.m0 = r0*m0 + r4*m1 + r8*m2;
-    result.m1 = r1*m0 + r5*m1 + r9*m2;
-    result.m2 = r2*m0 + r6*m1 + r10*m2;
-    result.m4 = r0*m4 + r4*m5 + r8*m6;
-    result.m5 = r1*m4 + r5*m5 + r9*m6;
-    result.m6 = r2*m4 + r6*m5 + r10*m6;
-    result.m8 = r0*m8 + r4*m9 + r8*m10;
-    result.m9 = r1*m8 + r5*m9 + r9*m10;
-    result.m10 = r2*m8 + r6*m9 + r10*m10;
-    result.m12 = r0*m12+ r4*m13 + r8*m14;
-    result.m13 = r1*m12+ r5*m13 + r9*m14;
-    result.m14 = r2*m12+ r6*m13 + r10*m14;
-
-    return result;
-}
-*/
-
-// Returns x-rotation matrix (angle in radians)
-Matrix MatrixRotateX(float angle)
-{
-    Matrix result = MatrixIdentity();
-
-    float cosres = (float)cos(angle);
-    float sinres = (float)sin(angle);
-
-    result.m5 = cosres;
-    result.m6 = -sinres;
-    result.m9 = sinres;
-    result.m10 = cosres;
-
-    return result;
-}
-
-// Returns y-rotation matrix (angle in radians)
-Matrix MatrixRotateY(float angle)
-{
-    Matrix result = MatrixIdentity();
-
-    float cosres = cosf(angle);
-    float sinres = sinf(angle);
-
-    result.m0 = cosres;
-    result.m2 = sinres;
-    result.m8 = -sinres;
-    result.m10 = cosres;
-
-    return result;
-}
-
-// Returns z-rotation matrix (angle in radians)
-Matrix MatrixRotateZ(float angle)
-{
-    Matrix result = MatrixIdentity();
-
-    float cosres = (float)cos(angle);
-    float sinres = (float)sin(angle);
-
-    result.m0 = cosres;
-    result.m1 = -sinres;
-    result.m4 = sinres;
-    result.m5 = cosres;
-
-    return result;
-}
-
-// Returns scaling matrix
-Matrix MatrixScale(float x, float y, float z)
-{
-    Matrix result = { x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 };
-
-    return result;
-}
-
-// Returns two matrix multiplication
-// NOTE: When multiplying matrices... the order matters!
-Matrix MatrixMultiply(Matrix left, Matrix right)
-{
-    Matrix result;
-
-    result.m0 = right.m0*left.m0 + right.m1*left.m4 + right.m2*left.m8 + right.m3*left.m12;
-    result.m1 = right.m0*left.m1 + right.m1*left.m5 + right.m2*left.m9 + right.m3*left.m13;
-    result.m2 = right.m0*left.m2 + right.m1*left.m6 + right.m2*left.m10 + right.m3*left.m14;
-    result.m3 = right.m0*left.m3 + right.m1*left.m7 + right.m2*left.m11 + right.m3*left.m15;
-    result.m4 = right.m4*left.m0 + right.m5*left.m4 + right.m6*left.m8 + right.m7*left.m12;
-    result.m5 = right.m4*left.m1 + right.m5*left.m5 + right.m6*left.m9 + right.m7*left.m13;
-    result.m6 = right.m4*left.m2 + right.m5*left.m6 + right.m6*left.m10 + right.m7*left.m14;
-    result.m7 = right.m4*left.m3 + right.m5*left.m7 + right.m6*left.m11 + right.m7*left.m15;
-    result.m8 = right.m8*left.m0 + right.m9*left.m4 + right.m10*left.m8 + right.m11*left.m12;
-    result.m9 = right.m8*left.m1 + right.m9*left.m5 + right.m10*left.m9 + right.m11*left.m13;
-    result.m10 = right.m8*left.m2 + right.m9*left.m6 + right.m10*left.m10 + right.m11*left.m14;
-    result.m11 = right.m8*left.m3 + right.m9*left.m7 + right.m10*left.m11 + right.m11*left.m15;
-    result.m12 = right.m12*left.m0 + right.m13*left.m4 + right.m14*left.m8 + right.m15*left.m12;
-    result.m13 = right.m12*left.m1 + right.m13*left.m5 + right.m14*left.m9 + right.m15*left.m13;
-    result.m14 = right.m12*left.m2 + right.m13*left.m6 + right.m14*left.m10 + right.m15*left.m14;
-    result.m15 = right.m12*left.m3 + right.m13*left.m7 + right.m14*left.m11 + right.m15*left.m15;
-
-    return result;
-}
-
-// Returns perspective projection matrix
-Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far)
-{
-    Matrix result;
-
-    float rl = (right - left);
-    float tb = (top - bottom);
-    float fn = (far - near);
-
-    result.m0 = (near*2.0f) / rl;
-    result.m1 = 0;
-    result.m2 = 0;
-    result.m3 = 0;
-
-    result.m4 = 0;
-    result.m5 = (near*2.0f) / tb;
-    result.m6 = 0;
-    result.m7 = 0;
-
-    result.m8 = (right + left) / rl;
-    result.m9 = (top + bottom) / tb;
-    result.m10 = -(far + near) / fn;
-    result.m11 = -1.0f;
-
-    result.m12 = 0;
-    result.m13 = 0;
-    result.m14 = -(far*near*2.0f) / fn;
-    result.m15 = 0;
-
-    return result;
-}
-
-// Returns perspective projection matrix
-Matrix MatrixPerspective(double fovy, double aspect, double near, double far)
-{
-    double top = near*tanf(fovy*PI / 360.0f);
-    double right = top*aspect;
-
-    return MatrixFrustum(-right, right, -top, top, near, far);
-}
-
-// Returns orthographic projection matrix
-Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far)
-{
-    Matrix result;
-
-    float rl = (right - left);
-    float tb = (top - bottom);
-    float fn = (far - near);
-
-    result.m0 = 2 / rl;
-    result.m1 = 0;
-    result.m2 = 0;
-    result.m3 = 0;
-    result.m4 = 0;
-    result.m5 = 2 / tb;
-    result.m6 = 0;
-    result.m7 = 0;
-    result.m8 = 0;
-    result.m9 = 0;
-    result.m10 = -2 / fn;
-    result.m11 = 0;
-    result.m12 = -(left + right) / rl;
-    result.m13 = -(top + bottom) / tb;
-    result.m14 = -(far + near) / fn;
-    result.m15 = 1;
-
-    return result;
-}
-
-// Returns camera look-at matrix (view matrix)
-Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
-{
-    Matrix result;
-
-    Vector3 z = VectorSubtract(eye, target);
-    VectorNormalize(&z);
-    Vector3 x = VectorCrossProduct(up, z);
-    VectorNormalize(&x);
-    Vector3 y = VectorCrossProduct(z, x);
-    VectorNormalize(&y);
-
-    result.m0 = x.x;
-    result.m1 = x.y;
-    result.m2 = x.z;
-    result.m3 = -((x.x * eye.x) + (x.y * eye.y) + (x.z * eye.z));
-    result.m4 = y.x;
-    result.m5 = y.y;
-    result.m6 = y.z;
-    result.m7 = -((y.x * eye.x) + (y.y * eye.y) + (y.z * eye.z));
-    result.m8 = z.x;
-    result.m9 = z.y;
-    result.m10 = z.z;
-    result.m11 = -((z.x * eye.x) + (z.y * eye.y) + (z.z * eye.z));
-    result.m12 = 0;
-    result.m13 = 0;
-    result.m14 = 0;
-    result.m15 = 1;
-
-    return result;
-}
-
-// Print matrix utility (for debug)
-void PrintMatrix(Matrix m)
-{
-    printf("----------------------\n");
-    printf("%2.2f %2.2f %2.2f %2.2f\n", m.m0, m.m4, m.m8, m.m12);
-    printf("%2.2f %2.2f %2.2f %2.2f\n", m.m1, m.m5, m.m9, m.m13);
-    printf("%2.2f %2.2f %2.2f %2.2f\n", m.m2, m.m6, m.m10, m.m14);
-    printf("%2.2f %2.2f %2.2f %2.2f\n", m.m3, m.m7, m.m11, m.m15);
-    printf("----------------------\n");
-}
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Quaternion math
-//----------------------------------------------------------------------------------
-
-// Computes the length of a quaternion
-float QuaternionLength(Quaternion quat)
-{
-    return sqrt(quat.x*quat.x + quat.y*quat.y + quat.z*quat.z + quat.w*quat.w);
-}
-
-// Normalize provided quaternion
-void QuaternionNormalize(Quaternion *q)
-{
-    float length, ilength;
-
-    length = QuaternionLength(*q);
-
-    if (length == 0) length = 1;
-
-    ilength = 1.0/length;
-
-    q->x *= ilength;
-    q->y *= ilength;
-    q->z *= ilength;
-    q->w *= ilength;
-}
-
-// Calculate two quaternion multiplication
-Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2)
-{
-    Quaternion result;
-
-    float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w;
-    float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w;
-
-    result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby;
-    result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz;
-    result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx;
-    result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz;
-
-    return result;
-}
-
-// Calculates spherical linear interpolation between two quaternions
-Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
-{
-    Quaternion result;
-
-    float cosHalfTheta =  q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w;
-
-    if (fabs(cosHalfTheta) >= 1.0f) result = q1;
-    else
-    {
-        float halfTheta = acos(cosHalfTheta);
-        float sinHalfTheta = sqrt(1.0f - cosHalfTheta*cosHalfTheta);
-
-        if (fabs(sinHalfTheta) < 0.001f)
-        {
-            result.x = (q1.x*0.5f + q2.x*0.5f);
-            result.y = (q1.y*0.5f + q2.y*0.5f);
-            result.z = (q1.z*0.5f + q2.z*0.5f);
-            result.w = (q1.w*0.5f + q2.w*0.5f);
-        }
-        else
-        {
-            float ratioA = sin((1 - amount)*halfTheta) / sinHalfTheta;
-            float ratioB = sin(amount*halfTheta) / sinHalfTheta;
-
-            result.x = (q1.x*ratioA + q2.x*ratioB);
-            result.y = (q1.y*ratioA + q2.y*ratioB);
-            result.z = (q1.z*ratioA + q2.z*ratioB);
-            result.w = (q1.w*ratioA + q2.w*ratioB);
-        }
-    }
-
-    return result;
-}
-
-// Returns a quaternion for a given rotation matrix
-Quaternion QuaternionFromMatrix(Matrix matrix)
-{
-    Quaternion result;
-
-    float trace = MatrixTrace(matrix);
-
-    if (trace > 0)
-    {
-        float s = (float)sqrt(trace + 1) * 2;
-        float invS = 1 / s;
-
-        result.w = s * 0.25;
-        result.x = (matrix.m6 - matrix.m9) * invS;
-        result.y = (matrix.m8 - matrix.m2) * invS;
-        result.z = (matrix.m1 - matrix.m4) * invS;
-    }
-    else
-    {
-        float m00 = matrix.m0, m11 = matrix.m5, m22 = matrix.m10;
-
-        if (m00 > m11 && m00 > m22)
-        {
-            float s = (float)sqrt(1 + m00 - m11 - m22) * 2;
-            float invS = 1 / s;
-
-            result.w = (matrix.m6 - matrix.m9) * invS;
-            result.x = s * 0.25;
-            result.y = (matrix.m4 + matrix.m1) * invS;
-            result.z = (matrix.m8 + matrix.m2) * invS;
-        }
-        else if (m11 > m22)
-        {
-            float s = (float)sqrt(1 + m11 - m00 - m22) * 2;
-            float invS = 1 / s;
-
-            result.w = (matrix.m8 - matrix.m2) * invS;
-            result.x = (matrix.m4 + matrix.m1) * invS;
-            result.y = s * 0.25;
-            result.z = (matrix.m9 + matrix.m6) * invS;
-        }
-        else
-        {
-            float s = (float)sqrt(1 + m22 - m00 - m11) * 2;
-            float invS = 1 / s;
-
-            result.w = (matrix.m1 - matrix.m4) * invS;
-            result.x = (matrix.m8 + matrix.m2) * invS;
-            result.y = (matrix.m9 + matrix.m6) * invS;
-            result.z = s * 0.25;
-        }
-    }
-
-    return result;
-}
-
-// Returns a matrix for a given quaternion
-Matrix QuaternionToMatrix(Quaternion q)
-{
-    Matrix result;
-
-    float x = q.x, y = q.y, z = q.z, w = q.w;
-
-    float x2 = x + x;
-    float y2 = y + y;
-    float z2 = z + z;
-
-    float xx = x*x2;
-    float xy = x*y2;
-    float xz = x*z2;
-
-    float yy = y*y2;
-    float yz = y*z2;
-    float zz = z*z2;
-
-    float wx = w*x2;
-    float wy = w*y2;
-    float wz = w*z2;
-
-    result.m0 = 1 - (yy + zz);
-    result.m1 = xy - wz;
-    result.m2 = xz + wy;
-    result.m3 = 0;
-    result.m4 = xy + wz;
-    result.m5 = 1 - (xx + zz);
-    result.m6 = yz - wx;
-    result.m7 = 0;
-    result.m8 = xz - wy;
-    result.m9 = yz + wx;
-    result.m10 = 1 - (xx + yy);
-    result.m11 = 0;
-    result.m12 = 0;
-    result.m13 = 0;
-    result.m14 = 0;
-    result.m15 = 1;
-    
-    return result;
-}
-
-// Returns rotation quaternion for an angle and axis
-// NOTE: angle must be provided in radians
-Quaternion QuaternionFromAxisAngle(float angle, Vector3 axis)
-{
-    Quaternion result = { 0, 0, 0, 1 };
-
-    if (VectorLength(axis) != 0.0)
-
-    angle *= 0.5;
-
-    VectorNormalize(&axis);
-
-    result.x = axis.x * (float)sin(angle);
-    result.y = axis.y * (float)sin(angle);
-    result.z = axis.z * (float)sin(angle);
-    result.w = (float)cos(angle);
-
-    QuaternionNormalize(&result);
-
-    return result;
-}
-
-// Returns the rotation angle and axis for a given quaternion
-void QuaternionToAxisAngle(Quaternion q, float *outAngle, Vector3 *outAxis)
-{
-    if (fabs(q.w) > 1.0f) QuaternionNormalize(&q);
-
-    Vector3 resAxis = { 0, 0, 0 };
-    float resAngle = 0;
-
-    resAngle = 2.0f * (float)acos(q.w);
-    float den = (float)sqrt(1.0 - q.w * q.w);
-
-    if (den > 0.0001f)
-    {
-        resAxis.x = q.x / den;
-        resAxis.y = q.y / den;
-        resAxis.z = q.z / den;
-    }
-    else
-    {
-        // This occurs when the angle is zero.
-        // Not a problem: just set an arbitrary normalized axis.
-        resAxis.x = 1.0;
-    }
-
-    *outAxis = resAxis;
-    *outAngle = resAngle;
-}
-
-// Transform a quaternion given a transformation matrix
-void QuaternionTransform(Quaternion *q, Matrix mat)
-{
-    float x = q->x;
-    float y = q->y;
-    float z = q->z;
-    float w = q->w;
-
-    q->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12*w;
-    q->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13*w;
-    q->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14*w;
-    q->w = mat.m3*x + mat.m7*y + mat.m11*z + mat.m15*w;
-}

+ 986 - 64
src/raymath.h

@@ -22,6 +22,29 @@
 *     3. This notice may not be removed or altered from any source distribution.
 *
 **********************************************************************************************/
+//============================================================================
+//   YOU MUST                                                                  
+//                                                                             
+//      #define RAYMATH_DEFINE                                                     
+//                                                                             
+//   Like:                                                               
+//                                                                             
+//      #define RAYMATH_DEFINE                                                     
+//      #include "raymath.h"
+//
+//   YOU CAN:
+//      #define RAYMATH_INLINE //inlines all code, so it runs faster. This requires lots of memory on system.
+//   AND
+//      #define RAYMATH_STANDALONE //not dependent on outside libs
+//      
+//   This needs to be done for every library/source file.
+//============================================================================
+
+#ifdef RAYMATH_INLINE
+    #define RMDEF static inline
+#else
+    #define RMDEF static
+#endif
 
 #ifndef RAYMATH_H
 #define RAYMATH_H
@@ -39,14 +62,25 @@
     #define PI 3.14159265358979323846
 #endif
 
-#define DEG2RAD (PI / 180.0f)
-#define RAD2DEG (180.0f / PI)
+#ifndef DEG2RAD
+    #define DEG2RAD (PI / 180.0f)
+#endif
+
+#ifndef RAD2DEG
+    #define RAD2DEG (180.0f / PI)
+#endif
 
 //----------------------------------------------------------------------------------
 // Types and Structures Definition
 //----------------------------------------------------------------------------------
 
 #ifdef RAYMATH_STANDALONE
+	// Vector2 type
+    typedef struct Vector2 {
+        float x;
+        float y;
+    } Vector2;
+
     // Vector3 type
     typedef struct Vector3 {
         float x;
@@ -71,70 +105,958 @@ typedef struct Quaternion {
     float w;
 } Quaternion;
 
+#ifdef RAYMATH_DEFINE
+#include <stdio.h>      // Used only on PrintMatrix()
+#include <math.h>       // Standard math libary: sin(), cos(), tan()...
+#include <stdlib.h>     // Used for abs()
 
-#ifdef __cplusplus
-extern "C" {            // Prevents name mangling of functions
-#endif
+//----------------------------------------------------------------------------------
+// Module Functions Definition - Vector3 math
+//----------------------------------------------------------------------------------
+
+// Converts Vector3 to float array
+RMDEF float *VectorToFloat(Vector3 vec)
+{
+    static float buffer[3];
 
-//------------------------------------------------------------------------------------
-// Functions Declaration to work with Vector3
-//------------------------------------------------------------------------------------
-float *VectorToFloat(Vector3 vec);                      // Converts Vector3 to float array
-Vector3 VectorAdd(Vector3 v1, Vector3 v2);              // Add two vectors
-Vector3 VectorSubtract(Vector3 v1, Vector3 v2);         // Substract two vectors
-Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2);     // Calculate two vectors cross product
-Vector3 VectorPerpendicular(Vector3 v);                 // Calculate one vector perpendicular vector
-float VectorDotProduct(Vector3 v1, Vector3 v2);         // Calculate two vectors dot product
-float VectorLength(const Vector3 v);                    // Calculate vector lenght
-void VectorScale(Vector3 *v, float scale);              // Scale provided vector
-void VectorNegate(Vector3 *v);                          // Negate provided vector (invert direction)
-void VectorNormalize(Vector3 *v);                       // Normalize provided vector
-float VectorDistance(Vector3 v1, Vector3 v2);           // Calculate distance between two points
-Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount); // Calculate linear interpolation between two vectors
-Vector3 VectorReflect(Vector3 vector, Vector3 normal);  // Calculate reflected vector to normal
-void VectorTransform(Vector3 *v, Matrix mat);           // Transforms a Vector3 by a given Matrix
-Vector3 VectorZero(void);                               // Return a Vector3 init to zero
-
-//------------------------------------------------------------------------------------
-// Functions Declaration to work with Matrix
-//------------------------------------------------------------------------------------
-float *MatrixToFloat(Matrix mat);                       // Converts Matrix to float array
-float MatrixDeterminant(Matrix mat);                    // Compute matrix determinant
-float MatrixTrace(Matrix mat);                          // Returns the trace of the matrix (sum of the values along the diagonal)
-void MatrixTranspose(Matrix *mat);                      // Transposes provided matrix
-void MatrixInvert(Matrix *mat);                         // Invert provided matrix
-void MatrixNormalize(Matrix *mat);                      // Normalize provided matrix
-Matrix MatrixIdentity(void);                            // Returns identity matrix
-Matrix MatrixAdd(Matrix left, Matrix right);            // Add two matrices
-Matrix MatrixSubstract(Matrix left, Matrix right);      // Substract two matrices (left - right)
-Matrix MatrixTranslate(float x, float y, float z);      // Returns translation matrix
-Matrix MatrixRotate(float angle, Vector3 axis);         // Returns rotation matrix for an angle around an specified axis (angle in radians)
-Matrix MatrixRotateX(float angle);                      // Returns x-rotation matrix (angle in radians)
-Matrix MatrixRotateY(float angle);                      // Returns y-rotation matrix (angle in radians)
-Matrix MatrixRotateZ(float angle);                      // Returns z-rotation matrix (angle in radians)
-Matrix MatrixScale(float x, float y, float z);          // Returns scaling matrix
-Matrix MatrixMultiply(Matrix left, Matrix right);       // Returns two matrix multiplication
-Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far);  // Returns perspective projection matrix
-Matrix MatrixPerspective(double fovy, double aspect, double near, double far);                        // Returns perspective projection matrix
-Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far);    // Returns orthographic projection matrix
-Matrix MatrixLookAt(Vector3 position, Vector3 target, Vector3 up);  // Returns camera look-at matrix (view matrix)
-void PrintMatrix(Matrix m);                             // Print matrix utility
-
-//------------------------------------------------------------------------------------
-// Functions Declaration to work with Quaternions
-//------------------------------------------------------------------------------------
-float QuaternionLength(Quaternion quat);                // Compute the length of a quaternion
-void QuaternionNormalize(Quaternion *q);                // Normalize provided quaternion
-Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2);    // Calculate two quaternion multiplication
-Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float slerp); // Calculates spherical linear interpolation between two quaternions
-Quaternion QuaternionFromMatrix(Matrix matrix);                 // Returns a quaternion for a given rotation matrix
-Matrix QuaternionToMatrix(Quaternion q);                        // Returns a matrix for a given quaternion
-Quaternion QuaternionFromAxisAngle(float angle, Vector3 axis);  // Returns rotation quaternion for an angle and axis
-void QuaternionToAxisAngle(Quaternion q, float *outAngle, Vector3 *outAxis); // Returns the rotation angle and axis for a given quaternion
-void QuaternionTransform(Quaternion *q, Matrix mat);            // Transform a quaternion given a transformation matrix
-
-#ifdef __cplusplus
+    buffer[0] = vec.x;
+    buffer[1] = vec.y;
+    buffer[2] = vec.z;
+
+    return buffer;
+}
+
+// Add two vectors
+RMDEF Vector3 VectorAdd(Vector3 v1, Vector3 v2)
+{
+    Vector3 result;
+
+    result.x = v1.x + v2.x;
+    result.y = v1.y + v2.y;
+    result.z = v1.z + v2.z;
+
+    return result;
+}
+
+// Substract two vectors
+RMDEF Vector3 VectorSubtract(Vector3 v1, Vector3 v2)
+{
+    Vector3 result;
+
+    result.x = v1.x - v2.x;
+    result.y = v1.y - v2.y;
+    result.z = v1.z - v2.z;
+
+    return result;
+}
+
+// Calculate two vectors cross product
+RMDEF Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2)
+{
+    Vector3 result;
+
+    result.x = v1.y*v2.z - v1.z*v2.y;
+    result.y = v1.z*v2.x - v1.x*v2.z;
+    result.z = v1.x*v2.y - v1.y*v2.x;
+
+    return result;
+}
+
+// Calculate one vector perpendicular vector
+RMDEF Vector3 VectorPerpendicular(Vector3 v)
+{
+    Vector3 result;
+
+    float min = fabs(v.x);
+    Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f};
+
+    if (fabs(v.y) < min)
+    {
+        min = fabs(v.y);
+        cardinalAxis = (Vector3){0.0f, 1.0f, 0.0f};
+    }
+
+    if(fabs(v.z) < min)
+    {
+        cardinalAxis = (Vector3){0.0f, 0.0f, 1.0f};
+    }
+
+    result = VectorCrossProduct(v, cardinalAxis);
+
+    return result;
+}
+
+// Calculate two vectors dot product
+RMDEF float VectorDotProduct(Vector3 v1, Vector3 v2)
+{
+    float result;
+
+    result = v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;
+
+    return result;
+}
+
+// Calculate vector lenght
+RMDEF float VectorLength(const Vector3 v)
+{
+    float length;
+
+    length = sqrt(v.x*v.x + v.y*v.y + v.z*v.z);
+
+    return length;
+}
+
+// Scale provided vector
+RMDEF void VectorScale(Vector3 *v, float scale)
+{
+    v->x *= scale;
+    v->y *= scale;
+    v->z *= scale;
+}
+
+// Negate provided vector (invert direction)
+RMDEF void VectorNegate(Vector3 *v)
+{
+    v->x = -v->x;
+    v->y = -v->y;
+    v->z = -v->z;
+}
+
+// Normalize provided vector
+RMDEF void VectorNormalize(Vector3 *v)
+{
+    float length, ilength;
+
+    length = VectorLength(*v);
+
+    if (length == 0) length = 1;
+
+    ilength = 1.0/length;
+
+    v->x *= ilength;
+    v->y *= ilength;
+    v->z *= ilength;
+}
+
+// Calculate distance between two points
+RMDEF float VectorDistance(Vector3 v1, Vector3 v2)
+{
+    float result;
+
+    float dx = v2.x - v1.x;
+    float dy = v2.y - v1.y;
+    float dz = v2.z - v1.z;
+
+    result = sqrt(dx*dx + dy*dy + dz*dz);
+
+    return result;
+}
+
+// Calculate linear interpolation between two vectors
+RMDEF Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount)
+{
+    Vector3 result;
+
+    result.x = v1.x + amount * (v2.x - v1.x);
+    result.y = v1.y + amount * (v2.y - v1.y);
+    result.z = v1.z + amount * (v2.z - v1.z);
+
+    return result;
+}
+
+// Calculate reflected vector to normal
+RMDEF Vector3 VectorReflect(Vector3 vector, Vector3 normal)
+{
+    // I is the original vector
+    // N is the normal of the incident plane
+    // R = I - (2 * N * ( DotProduct[ I,N] ))
+
+    Vector3 result;
+
+    float dotProduct = VectorDotProduct(vector, normal);
+
+    result.x = vector.x - (2.0 * normal.x) * dotProduct;
+    result.y = vector.y - (2.0 * normal.y) * dotProduct;
+    result.z = vector.z - (2.0 * normal.z) * dotProduct;
+
+    return result;
+}
+
+// Transforms a Vector3 with a given Matrix
+RMDEF void VectorTransform(Vector3 *v, Matrix mat)
+{
+    float x = v->x;
+    float y = v->y;
+    float z = v->z;
+
+    //MatrixTranspose(&mat);
+
+    v->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
+    v->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
+    v->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
+};
+
+// Return a Vector3 init to zero
+RMDEF Vector3 VectorZero(void)
+{
+    Vector3 zero = { 0.0f, 0.0f, 0.0f };
+
+    return zero;
+}
+
+//----------------------------------------------------------------------------------
+// Module Functions Definition - Matrix math
+//----------------------------------------------------------------------------------
+
+// Converts Matrix to float array
+// NOTE: Returned vector is a transposed version of the Matrix struct, 
+// it should be this way because, despite raymath use OpenGL column-major convention,
+// Matrix struct memory alignment and variables naming are not coherent
+RMDEF float *MatrixToFloat(Matrix mat)
+{
+    static float buffer[16];
+
+    buffer[0] = mat.m0;
+    buffer[1] = mat.m4;
+    buffer[2] = mat.m8;
+    buffer[3] = mat.m12;
+    buffer[4] = mat.m1;
+    buffer[5] = mat.m5;
+    buffer[6] = mat.m9;
+    buffer[7] = mat.m13;
+    buffer[8] = mat.m2;
+    buffer[9] = mat.m6;
+    buffer[10] = mat.m10;
+    buffer[11] = mat.m14;
+    buffer[12] = mat.m3;
+    buffer[13] = mat.m7;
+    buffer[14] = mat.m11;
+    buffer[15] = mat.m15;
+
+    return buffer;
+}
+
+// Compute matrix determinant
+RMDEF float MatrixDeterminant(Matrix mat)
+{
+    float result;
+
+    // Cache the matrix values (speed optimization)
+    float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
+    float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
+    float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
+    float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
+
+    result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 +
+             a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 +
+             a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 +
+             a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 +
+             a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 +
+             a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33;
+
+    return result;
+}
+
+// Returns the trace of the matrix (sum of the values along the diagonal)
+RMDEF float MatrixTrace(Matrix mat)
+{
+    return (mat.m0 + mat.m5 + mat.m10 + mat.m15);
+}
+
+// Transposes provided matrix
+RMDEF void MatrixTranspose(Matrix *mat)
+{
+    Matrix temp;
+
+    temp.m0 = mat->m0;
+    temp.m1 = mat->m4;
+    temp.m2 = mat->m8;
+    temp.m3 = mat->m12;
+    temp.m4 = mat->m1;
+    temp.m5 = mat->m5;
+    temp.m6 = mat->m9;
+    temp.m7 = mat->m13;
+    temp.m8 = mat->m2;
+    temp.m9 = mat->m6;
+    temp.m10 = mat->m10;
+    temp.m11 = mat->m14;
+    temp.m12 = mat->m3;
+    temp.m13 = mat->m7;
+    temp.m14 = mat->m11;
+    temp.m15 = mat->m15;
+
+    *mat = temp;
+}
+
+// Invert provided matrix
+RMDEF void MatrixInvert(Matrix *mat)
+{
+    Matrix temp;
+
+    // Cache the matrix values (speed optimization)
+    float a00 = mat->m0, a01 = mat->m1, a02 = mat->m2, a03 = mat->m3;
+    float a10 = mat->m4, a11 = mat->m5, a12 = mat->m6, a13 = mat->m7;
+    float a20 = mat->m8, a21 = mat->m9, a22 = mat->m10, a23 = mat->m11;
+    float a30 = mat->m12, a31 = mat->m13, a32 = mat->m14, a33 = mat->m15;
+
+    float b00 = a00*a11 - a01*a10;
+    float b01 = a00*a12 - a02*a10;
+    float b02 = a00*a13 - a03*a10;
+    float b03 = a01*a12 - a02*a11;
+    float b04 = a01*a13 - a03*a11;
+    float b05 = a02*a13 - a03*a12;
+    float b06 = a20*a31 - a21*a30;
+    float b07 = a20*a32 - a22*a30;
+    float b08 = a20*a33 - a23*a30;
+    float b09 = a21*a32 - a22*a31;
+    float b10 = a21*a33 - a23*a31;
+    float b11 = a22*a33 - a23*a32;
+
+    // Calculate the invert determinant (inlined to avoid double-caching)
+    float invDet = 1/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
+
+    temp.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet;
+    temp.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet;
+    temp.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet;
+    temp.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet;
+    temp.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet;
+    temp.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet;
+    temp.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet;
+    temp.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet;
+    temp.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet;
+    temp.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet;
+    temp.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet;
+    temp.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet;
+    temp.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet;
+    temp.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet;
+    temp.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet;
+    temp.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet;
+
+    *mat = temp;
+}
+
+// Normalize provided matrix
+RMDEF void MatrixNormalize(Matrix *mat)
+{
+    float det = MatrixDeterminant(*mat);
+
+    mat->m0 /= det;
+    mat->m1 /= det;
+    mat->m2 /= det;
+    mat->m3 /= det;
+    mat->m4 /= det;
+    mat->m5 /= det;
+    mat->m6 /= det;
+    mat->m7 /= det;
+    mat->m8 /= det;
+    mat->m9 /= det;
+    mat->m10 /= det;
+    mat->m11 /= det;
+    mat->m12 /= det;
+    mat->m13 /= det;
+    mat->m14 /= det;
+    mat->m15 /= det;
+}
+
+// Returns identity matrix
+RMDEF Matrix MatrixIdentity(void)
+{
+    Matrix result = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
+
+    return result;
+}
+
+// Add two matrices
+RMDEF Matrix MatrixAdd(Matrix left, Matrix right)
+{
+    Matrix result = MatrixIdentity();
+
+    result.m0 = left.m0 + right.m0;
+    result.m1 = left.m1 + right.m1;
+    result.m2 = left.m2 + right.m2;
+    result.m3 = left.m3 + right.m3;
+    result.m4 = left.m4 + right.m4;
+    result.m5 = left.m5 + right.m5;
+    result.m6 = left.m6 + right.m6;
+    result.m7 = left.m7 + right.m7;
+    result.m8 = left.m8 + right.m8;
+    result.m9 = left.m9 + right.m9;
+    result.m10 = left.m10 + right.m10;
+    result.m11 = left.m11 + right.m11;
+    result.m12 = left.m12 + right.m12;
+    result.m13 = left.m13 + right.m13;
+    result.m14 = left.m14 + right.m14;
+    result.m15 = left.m15 + right.m15;
+
+    return result;
+}
+
+// Substract two matrices (left - right)
+RMDEF Matrix MatrixSubstract(Matrix left, Matrix right)
+{
+    Matrix result = MatrixIdentity();
+
+    result.m0 = left.m0 - right.m0;
+    result.m1 = left.m1 - right.m1;
+    result.m2 = left.m2 - right.m2;
+    result.m3 = left.m3 - right.m3;
+    result.m4 = left.m4 - right.m4;
+    result.m5 = left.m5 - right.m5;
+    result.m6 = left.m6 - right.m6;
+    result.m7 = left.m7 - right.m7;
+    result.m8 = left.m8 - right.m8;
+    result.m9 = left.m9 - right.m9;
+    result.m10 = left.m10 - right.m10;
+    result.m11 = left.m11 - right.m11;
+    result.m12 = left.m12 - right.m12;
+    result.m13 = left.m13 - right.m13;
+    result.m14 = left.m14 - right.m14;
+    result.m15 = left.m15 - right.m15;
+
+    return result;
+}
+
+// Returns translation matrix
+RMDEF Matrix MatrixTranslate(float x, float y, float z)
+{
+    Matrix result = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, x, y, z, 1 };
+
+    return result;
+}
+
+// Create rotation matrix from axis and angle
+// NOTE: Angle should be provided in radians
+RMDEF Matrix MatrixRotate(float angle, Vector3 axis)
+{
+    Matrix result;
+
+    Matrix mat = MatrixIdentity();
+
+    float x = axis.x, y = axis.y, z = axis.z;
+
+    float length = sqrt(x*x + y*y + z*z);
+
+    if ((length != 1) && (length != 0))
+    {
+        length = 1/length;
+        x *= length;
+        y *= length;
+        z *= length;
+    }
+
+    float s = sinf(angle);
+    float c = cosf(angle);
+    float t = 1.0f - c;
+
+    // Cache some matrix values (speed optimization)
+    float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
+    float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
+    float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
+
+    // Construct the elements of the rotation matrix
+    float b00 = x*x*t + c, b01 = y*x*t + z*s, b02 = z*x*t - y*s;
+    float b10 = x*y*t - z*s, b11 = y*y*t + c, b12 = z*y*t + x*s;
+    float b20 = x*z*t + y*s, b21 = y*z*t - x*s, b22 = z*z*t + c;
+
+    // Perform rotation-specific matrix multiplication
+    result.m0 = a00*b00 + a10*b01 + a20*b02;
+    result.m1 = a01*b00 + a11*b01 + a21*b02;
+    result.m2 = a02*b00 + a12*b01 + a22*b02;
+    result.m3 = a03*b00 + a13*b01 + a23*b02;
+    result.m4 = a00*b10 + a10*b11 + a20*b12;
+    result.m5 = a01*b10 + a11*b11 + a21*b12;
+    result.m6 = a02*b10 + a12*b11 + a22*b12;
+    result.m7 = a03*b10 + a13*b11 + a23*b12;
+    result.m8 = a00*b20 + a10*b21 + a20*b22;
+    result.m9 = a01*b20 + a11*b21 + a21*b22;
+    result.m10 = a02*b20 + a12*b21 + a22*b22;
+    result.m11 = a03*b20 + a13*b21 + a23*b22;
+    result.m12 = mat.m12;
+    result.m13 = mat.m13;
+    result.m14 = mat.m14;
+    result.m15 = mat.m15;
+
+    return result;
+}
+
+/*
+// Another implementation for MatrixRotate...
+RMDEF Matrix MatrixRotate(float angle, float x, float y, float z)
+{
+    Matrix result = MatrixIdentity();
+
+    float c = cosf(angle);      // cosine
+    float s = sinf(angle);      // sine
+    float c1 = 1.0f - c;        // 1 - c
+
+    float m0 = result.m0, m4 = result.m4, m8 = result.m8, m12 = result.m12,
+          m1 = result.m1, m5 = result.m5, m9 = result.m9,  m13 = result.m13,
+          m2 = result.m2, m6 = result.m6, m10 = result.m10, m14 = result.m14;
+
+    // build rotation matrix
+    float r0 = x * x * c1 + c;
+    float r1 = x * y * c1 + z * s;
+    float r2 = x * z * c1 - y * s;
+    float r4 = x * y * c1 - z * s;
+    float r5 = y * y * c1 + c;
+    float r6 = y * z * c1 + x * s;
+    float r8 = x * z * c1 + y * s;
+    float r9 = y * z * c1 - x * s;
+    float r10= z * z * c1 + c;
+
+    // multiply rotation matrix
+    result.m0 = r0*m0 + r4*m1 + r8*m2;
+    result.m1 = r1*m0 + r5*m1 + r9*m2;
+    result.m2 = r2*m0 + r6*m1 + r10*m2;
+    result.m4 = r0*m4 + r4*m5 + r8*m6;
+    result.m5 = r1*m4 + r5*m5 + r9*m6;
+    result.m6 = r2*m4 + r6*m5 + r10*m6;
+    result.m8 = r0*m8 + r4*m9 + r8*m10;
+    result.m9 = r1*m8 + r5*m9 + r9*m10;
+    result.m10 = r2*m8 + r6*m9 + r10*m10;
+    result.m12 = r0*m12+ r4*m13 + r8*m14;
+    result.m13 = r1*m12+ r5*m13 + r9*m14;
+    result.m14 = r2*m12+ r6*m13 + r10*m14;
+
+    return result;
+}
+*/
+
+// Returns x-rotation matrix (angle in radians)
+RMDEF Matrix MatrixRotateX(float angle)
+{
+    Matrix result = MatrixIdentity();
+
+    float cosres = (float)cos(angle);
+    float sinres = (float)sin(angle);
+
+    result.m5 = cosres;
+    result.m6 = -sinres;
+    result.m9 = sinres;
+    result.m10 = cosres;
+
+    return result;
+}
+
+// Returns y-rotation matrix (angle in radians)
+RMDEF Matrix MatrixRotateY(float angle)
+{
+    Matrix result = MatrixIdentity();
+
+    float cosres = cosf(angle);
+    float sinres = sinf(angle);
+
+    result.m0 = cosres;
+    result.m2 = sinres;
+    result.m8 = -sinres;
+    result.m10 = cosres;
+
+    return result;
+}
+
+// Returns z-rotation matrix (angle in radians)
+RMDEF Matrix MatrixRotateZ(float angle)
+{
+    Matrix result = MatrixIdentity();
+
+    float cosres = (float)cos(angle);
+    float sinres = (float)sin(angle);
+
+    result.m0 = cosres;
+    result.m1 = -sinres;
+    result.m4 = sinres;
+    result.m5 = cosres;
+
+    return result;
+}
+
+// Returns scaling matrix
+RMDEF Matrix MatrixScale(float x, float y, float z)
+{
+    Matrix result = { x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 };
+
+    return result;
+}
+
+// Returns two matrix multiplication
+// NOTE: When multiplying matrices... the order matters!
+RMDEF Matrix MatrixMultiply(Matrix left, Matrix right)
+{
+    Matrix result;
+
+    result.m0 = right.m0*left.m0 + right.m1*left.m4 + right.m2*left.m8 + right.m3*left.m12;
+    result.m1 = right.m0*left.m1 + right.m1*left.m5 + right.m2*left.m9 + right.m3*left.m13;
+    result.m2 = right.m0*left.m2 + right.m1*left.m6 + right.m2*left.m10 + right.m3*left.m14;
+    result.m3 = right.m0*left.m3 + right.m1*left.m7 + right.m2*left.m11 + right.m3*left.m15;
+    result.m4 = right.m4*left.m0 + right.m5*left.m4 + right.m6*left.m8 + right.m7*left.m12;
+    result.m5 = right.m4*left.m1 + right.m5*left.m5 + right.m6*left.m9 + right.m7*left.m13;
+    result.m6 = right.m4*left.m2 + right.m5*left.m6 + right.m6*left.m10 + right.m7*left.m14;
+    result.m7 = right.m4*left.m3 + right.m5*left.m7 + right.m6*left.m11 + right.m7*left.m15;
+    result.m8 = right.m8*left.m0 + right.m9*left.m4 + right.m10*left.m8 + right.m11*left.m12;
+    result.m9 = right.m8*left.m1 + right.m9*left.m5 + right.m10*left.m9 + right.m11*left.m13;
+    result.m10 = right.m8*left.m2 + right.m9*left.m6 + right.m10*left.m10 + right.m11*left.m14;
+    result.m11 = right.m8*left.m3 + right.m9*left.m7 + right.m10*left.m11 + right.m11*left.m15;
+    result.m12 = right.m12*left.m0 + right.m13*left.m4 + right.m14*left.m8 + right.m15*left.m12;
+    result.m13 = right.m12*left.m1 + right.m13*left.m5 + right.m14*left.m9 + right.m15*left.m13;
+    result.m14 = right.m12*left.m2 + right.m13*left.m6 + right.m14*left.m10 + right.m15*left.m14;
+    result.m15 = right.m12*left.m3 + right.m13*left.m7 + right.m14*left.m11 + right.m15*left.m15;
+
+    return result;
+}
+
+// Returns perspective projection matrix
+RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far)
+{
+    Matrix result;
+
+    float rl = (right - left);
+    float tb = (top - bottom);
+    float fn = (far - near);
+
+    result.m0 = (near*2.0f) / rl;
+    result.m1 = 0;
+    result.m2 = 0;
+    result.m3 = 0;
+
+    result.m4 = 0;
+    result.m5 = (near*2.0f) / tb;
+    result.m6 = 0;
+    result.m7 = 0;
+
+    result.m8 = (right + left) / rl;
+    result.m9 = (top + bottom) / tb;
+    result.m10 = -(far + near) / fn;
+    result.m11 = -1.0f;
+
+    result.m12 = 0;
+    result.m13 = 0;
+    result.m14 = -(far*near*2.0f) / fn;
+    result.m15 = 0;
+
+    return result;
+}
+
+// Returns perspective projection matrix
+RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double far)
+{
+    double top = near*tanf(fovy*PI / 360.0f);
+    double right = top*aspect;
+
+    return MatrixFrustum(-right, right, -top, top, near, far);
+}
+
+// Returns orthographic projection matrix
+RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far)
+{
+    Matrix result;
+
+    float rl = (right - left);
+    float tb = (top - bottom);
+    float fn = (far - near);
+
+    result.m0 = 2 / rl;
+    result.m1 = 0;
+    result.m2 = 0;
+    result.m3 = 0;
+    result.m4 = 0;
+    result.m5 = 2 / tb;
+    result.m6 = 0;
+    result.m7 = 0;
+    result.m8 = 0;
+    result.m9 = 0;
+    result.m10 = -2 / fn;
+    result.m11 = 0;
+    result.m12 = -(left + right) / rl;
+    result.m13 = -(top + bottom) / tb;
+    result.m14 = -(far + near) / fn;
+    result.m15 = 1;
+
+    return result;
+}
+
+// Returns camera look-at matrix (view matrix)
+RMDEF Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
+{
+    Matrix result;
+
+    Vector3 z = VectorSubtract(eye, target);
+    VectorNormalize(&z);
+    Vector3 x = VectorCrossProduct(up, z);
+    VectorNormalize(&x);
+    Vector3 y = VectorCrossProduct(z, x);
+    VectorNormalize(&y);
+
+    result.m0 = x.x;
+    result.m1 = x.y;
+    result.m2 = x.z;
+    result.m3 = -((x.x * eye.x) + (x.y * eye.y) + (x.z * eye.z));
+    result.m4 = y.x;
+    result.m5 = y.y;
+    result.m6 = y.z;
+    result.m7 = -((y.x * eye.x) + (y.y * eye.y) + (y.z * eye.z));
+    result.m8 = z.x;
+    result.m9 = z.y;
+    result.m10 = z.z;
+    result.m11 = -((z.x * eye.x) + (z.y * eye.y) + (z.z * eye.z));
+    result.m12 = 0;
+    result.m13 = 0;
+    result.m14 = 0;
+    result.m15 = 1;
+
+    return result;
+}
+
+// Print matrix utility (for debug)
+RMDEF void PrintMatrix(Matrix m)
+{
+    printf("----------------------\n");
+    printf("%2.2f %2.2f %2.2f %2.2f\n", m.m0, m.m4, m.m8, m.m12);
+    printf("%2.2f %2.2f %2.2f %2.2f\n", m.m1, m.m5, m.m9, m.m13);
+    printf("%2.2f %2.2f %2.2f %2.2f\n", m.m2, m.m6, m.m10, m.m14);
+    printf("%2.2f %2.2f %2.2f %2.2f\n", m.m3, m.m7, m.m11, m.m15);
+    printf("----------------------\n");
+}
+
+//----------------------------------------------------------------------------------
+// Module Functions Definition - Quaternion math
+//----------------------------------------------------------------------------------
+
+// Computes the length of a quaternion
+RMDEF float QuaternionLength(Quaternion quat)
+{
+    return sqrt(quat.x*quat.x + quat.y*quat.y + quat.z*quat.z + quat.w*quat.w);
+}
+
+// Normalize provided quaternion
+RMDEF void QuaternionNormalize(Quaternion *q)
+{
+    float length, ilength;
+
+    length = QuaternionLength(*q);
+
+    if (length == 0) length = 1;
+
+    ilength = 1.0/length;
+
+    q->x *= ilength;
+    q->y *= ilength;
+    q->z *= ilength;
+    q->w *= ilength;
+}
+
+// Calculate two quaternion multiplication
+RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2)
+{
+    Quaternion result;
+
+    float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w;
+    float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w;
+
+    result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby;
+    result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz;
+    result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx;
+    result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz;
+
+    return result;
+}
+
+// Calculates spherical linear interpolation between two quaternions
+RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
+{
+    Quaternion result;
+
+    float cosHalfTheta =  q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w;
+
+    if (fabs(cosHalfTheta) >= 1.0f) result = q1;
+    else
+    {
+        float halfTheta = acos(cosHalfTheta);
+        float sinHalfTheta = sqrt(1.0f - cosHalfTheta*cosHalfTheta);
+
+        if (fabs(sinHalfTheta) < 0.001f)
+        {
+            result.x = (q1.x*0.5f + q2.x*0.5f);
+            result.y = (q1.y*0.5f + q2.y*0.5f);
+            result.z = (q1.z*0.5f + q2.z*0.5f);
+            result.w = (q1.w*0.5f + q2.w*0.5f);
+        }
+        else
+        {
+            float ratioA = sin((1 - amount)*halfTheta) / sinHalfTheta;
+            float ratioB = sin(amount*halfTheta) / sinHalfTheta;
+
+            result.x = (q1.x*ratioA + q2.x*ratioB);
+            result.y = (q1.y*ratioA + q2.y*ratioB);
+            result.z = (q1.z*ratioA + q2.z*ratioB);
+            result.w = (q1.w*ratioA + q2.w*ratioB);
+        }
+    }
+
+    return result;
+}
+
+// Returns a quaternion for a given rotation matrix
+RMDEF Quaternion QuaternionFromMatrix(Matrix matrix)
+{
+    Quaternion result;
+
+    float trace = MatrixTrace(matrix);
+
+    if (trace > 0)
+    {
+        float s = (float)sqrt(trace + 1) * 2;
+        float invS = 1 / s;
+
+        result.w = s * 0.25;
+        result.x = (matrix.m6 - matrix.m9) * invS;
+        result.y = (matrix.m8 - matrix.m2) * invS;
+        result.z = (matrix.m1 - matrix.m4) * invS;
+    }
+    else
+    {
+        float m00 = matrix.m0, m11 = matrix.m5, m22 = matrix.m10;
+
+        if (m00 > m11 && m00 > m22)
+        {
+            float s = (float)sqrt(1 + m00 - m11 - m22) * 2;
+            float invS = 1 / s;
+
+            result.w = (matrix.m6 - matrix.m9) * invS;
+            result.x = s * 0.25;
+            result.y = (matrix.m4 + matrix.m1) * invS;
+            result.z = (matrix.m8 + matrix.m2) * invS;
+        }
+        else if (m11 > m22)
+        {
+            float s = (float)sqrt(1 + m11 - m00 - m22) * 2;
+            float invS = 1 / s;
+
+            result.w = (matrix.m8 - matrix.m2) * invS;
+            result.x = (matrix.m4 + matrix.m1) * invS;
+            result.y = s * 0.25;
+            result.z = (matrix.m9 + matrix.m6) * invS;
+        }
+        else
+        {
+            float s = (float)sqrt(1 + m22 - m00 - m11) * 2;
+            float invS = 1 / s;
+
+            result.w = (matrix.m1 - matrix.m4) * invS;
+            result.x = (matrix.m8 + matrix.m2) * invS;
+            result.y = (matrix.m9 + matrix.m6) * invS;
+            result.z = s * 0.25;
+        }
+    }
+
+    return result;
+}
+
+// Returns a matrix for a given quaternion
+RMDEF Matrix QuaternionToMatrix(Quaternion q)
+{
+    Matrix result;
+
+    float x = q.x, y = q.y, z = q.z, w = q.w;
+
+    float x2 = x + x;
+    float y2 = y + y;
+    float z2 = z + z;
+
+    float xx = x*x2;
+    float xy = x*y2;
+    float xz = x*z2;
+
+    float yy = y*y2;
+    float yz = y*z2;
+    float zz = z*z2;
+
+    float wx = w*x2;
+    float wy = w*y2;
+    float wz = w*z2;
+
+    result.m0 = 1 - (yy + zz);
+    result.m1 = xy - wz;
+    result.m2 = xz + wy;
+    result.m3 = 0;
+    result.m4 = xy + wz;
+    result.m5 = 1 - (xx + zz);
+    result.m6 = yz - wx;
+    result.m7 = 0;
+    result.m8 = xz - wy;
+    result.m9 = yz + wx;
+    result.m10 = 1 - (xx + yy);
+    result.m11 = 0;
+    result.m12 = 0;
+    result.m13 = 0;
+    result.m14 = 0;
+    result.m15 = 1;
+    
+    return result;
+}
+
+// Returns rotation quaternion for an angle and axis
+// NOTE: angle must be provided in radians
+RMDEF Quaternion QuaternionFromAxisAngle(float angle, Vector3 axis)
+{
+    Quaternion result = { 0, 0, 0, 1 };
+
+    if (VectorLength(axis) != 0.0)
+
+    angle *= 0.5;
+
+    VectorNormalize(&axis);
+
+    result.x = axis.x * (float)sin(angle);
+    result.y = axis.y * (float)sin(angle);
+    result.z = axis.z * (float)sin(angle);
+    result.w = (float)cos(angle);
+
+    QuaternionNormalize(&result);
+
+    return result;
+}
+
+// Returns the rotation angle and axis for a given quaternion
+RMDEF void QuaternionToAxisAngle(Quaternion q, float *outAngle, Vector3 *outAxis)
+{
+    if (fabs(q.w) > 1.0f) QuaternionNormalize(&q);
+
+    Vector3 resAxis = { 0, 0, 0 };
+    float resAngle = 0;
+
+    resAngle = 2.0f * (float)acos(q.w);
+    float den = (float)sqrt(1.0 - q.w * q.w);
+
+    if (den > 0.0001f)
+    {
+        resAxis.x = q.x / den;
+        resAxis.y = q.y / den;
+        resAxis.z = q.z / den;
+    }
+    else
+    {
+        // This occurs when the angle is zero.
+        // Not a problem: just set an arbitrary normalized axis.
+        resAxis.x = 1.0;
+    }
+
+    *outAxis = resAxis;
+    *outAngle = resAngle;
+}
+
+// Transform a quaternion given a transformation matrix
+RMDEF void QuaternionTransform(Quaternion *q, Matrix mat)
+{
+    float x = q->x;
+    float y = q->y;
+    float z = q->z;
+    float w = q->w;
+
+    q->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12*w;
+    q->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13*w;
+    q->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14*w;
+    q->w = mat.m3*x + mat.m7*y + mat.m11*z + mat.m15*w;
 }
-#endif
 
+#endif // RAYMATH_DEFINE
 #endif // RAYMATH_H