|
@@ -970,13 +970,36 @@ RMDEF Matrix MatrixRotateXYZ(Vector3 ang)
|
|
|
}
|
|
|
|
|
|
// Returns zyx-rotation matrix (angles in radians)
|
|
|
-// TODO: This solution is suboptimal, it should be possible to create this matrix in one go
|
|
|
-// instead of using a 3 matrix multiplication
|
|
|
RMDEF Matrix MatrixRotateZYX(Vector3 ang)
|
|
|
{
|
|
|
- Matrix result = MatrixRotateZ(ang.z);
|
|
|
- result = MatrixMultiply(result, MatrixRotateY(ang.y));
|
|
|
- result = MatrixMultiply(result, MatrixRotateX(ang.x));
|
|
|
+ Matrix result = { 0 };
|
|
|
+
|
|
|
+ float cz = cosf(ang.z);
|
|
|
+ float sz = sinf(ang.z);
|
|
|
+ float cy = cosf(ang.y);
|
|
|
+ float sy = sinf(ang.y);
|
|
|
+ float cx = cosf(ang.x);
|
|
|
+ float sx = sinf(ang.x);
|
|
|
+
|
|
|
+ result.m0 = cz*cy;
|
|
|
+ result.m1 = cz*sy*sx - cx*sz;
|
|
|
+ result.m2 = sz*sx + cz*cx*sy;
|
|
|
+ result.m3 = 0;
|
|
|
+
|
|
|
+ result.m4 = cy*sz;
|
|
|
+ result.m5 = cz*cx + sz*sy*sx;
|
|
|
+ result.m6 = cx*sz*sy - cz*sx;
|
|
|
+ result.m7 = 0;
|
|
|
+
|
|
|
+ result.m8 = -sy;
|
|
|
+ result.m9 = cy*sx;
|
|
|
+ result.m10 = cy*cx;
|
|
|
+ result.m11 = 0;
|
|
|
+
|
|
|
+ result.m12 = 0;
|
|
|
+ result.m13 = 0;
|
|
|
+ result.m14 = 0;
|
|
|
+ result.m15 = 1;
|
|
|
|
|
|
return result;
|
|
|
}
|