Explorar o código

Merge pull request #103 from victorfisac/develop

physac module redesign (2/3)
Ray %!s(int64=9) %!d(string=hai) anos
pai
achega
d0e26247f4
Modificáronse 5 ficheiros con 582 adicións e 188 borrados
  1. 41 49
      examples/physics_basic_rigidbody.c
  2. 160 0
      examples/physics_forces.c
  3. 365 129
      src/physac.c
  4. 8 5
      src/physac.h
  5. 8 5
      src/raylib.h

+ 41 - 49
examples/physics_basic_rigidbody.c

@@ -12,7 +12,7 @@
 #include "raylib.h"
 
 #define MOVE_VELOCITY    5
-#define JUMP_VELOCITY    35
+#define JUMP_VELOCITY    30
 
 int main()
 {
@@ -22,42 +22,34 @@ int main()
     int screenHeight = 450;
 
     InitWindow(screenWidth, screenHeight, "raylib [physac] example - basic rigidbody");
-    InitPhysics();      // Initialize physics module
+    InitPhysics((Vector2){ 0.0f, -9.81f/2 });      // Initialize physics module
     
     SetTargetFPS(60);
     
     // Debug variables
     bool isDebug = false;
     
-    // Player physic object
-    PhysicObject *player = CreatePhysicObject((Vector2){ screenWidth*0.25f, screenHeight/2 }, 0.0f, (Vector2){ 50, 50 });
-    player->rigidbody.enabled = true;       // Enable physic object rigidbody behaviour
-    player->rigidbody.applyGravity = true;
-    player->rigidbody.friction = 0.3f;
-    player->collider.enabled = true;        // Enable physic object collisions detection
+    // Create rectangle physic object
+    PhysicObject *rectangle = CreatePhysicObject((Vector2){ screenWidth*0.25f, screenHeight/2 }, 0.0f, (Vector2){ 75, 50 });
+    rectangle->rigidbody.enabled = true;       // Enable physic object rigidbody behaviour
+    rectangle->rigidbody.applyGravity = true;
+    rectangle->rigidbody.friction = 0.1f;
+    rectangle->rigidbody.bounciness = 6.0f;
     
-    // Player physic object
-    PhysicObject *player2 = CreatePhysicObject((Vector2){ screenWidth*0.75f, screenHeight/2 }, 0.0f, (Vector2){ 50, 50 });
-    player2->rigidbody.enabled = true;
-    player2->rigidbody.applyGravity = true;
-    player2->rigidbody.friction = 0.1f;
-    player2->collider.enabled = true;
+    // Create square physic object
+    PhysicObject *square = CreatePhysicObject((Vector2){ screenWidth*0.75f, screenHeight/2 }, 0.0f, (Vector2){ 50, 50 });
+    square->rigidbody.enabled = true;      // Enable physic object rigidbody behaviour
+    square->rigidbody.applyGravity = true;
+    square->rigidbody.friction = 0.1f;
     
-    // Floor physic object
+    // Create walls physic objects
     PhysicObject *floor = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight*0.95f }, 0.0f, (Vector2){ screenWidth*0.9f, 100 });
-    floor->collider.enabled = true;         // Enable just physic object collisions detection
-    
-    // Left wall physic object
     PhysicObject *leftWall = CreatePhysicObject((Vector2){ 0.0f, screenHeight/2 }, 0.0f, (Vector2){ screenWidth*0.1f, screenHeight });
-    leftWall->collider.enabled = true;
-    
-    // Right wall physic object
     PhysicObject *rightWall = CreatePhysicObject((Vector2){ screenWidth, screenHeight/2 }, 0.0f, (Vector2){ screenWidth*0.1f, screenHeight });
-    rightWall->collider.enabled = true;
+    PhysicObject *roof = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight*0.05f }, 0.0f, (Vector2){ screenWidth*0.9f, 100 });
     
-    // Platform physic objectdd
+    // Create pplatform physic object
     PhysicObject *platform = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight*0.7f }, 0.0f, (Vector2){ screenWidth*0.25f, 20 });
-    platform->collider.enabled = true;
     
     //--------------------------------------------------------------------------------------
 
@@ -68,20 +60,18 @@ int main()
         //----------------------------------------------------------------------------------
         UpdatePhysics();    // Update all created physic objects
         
-        // Check debug switch input
-        if (IsKeyPressed('P')) isDebug = !isDebug;
-        
-        // Check player movement inputs
-        if (IsKeyDown('W') && player->rigidbody.isGrounded) player->rigidbody.velocity.y = JUMP_VELOCITY;
-        
-        if (IsKeyDown('A')) player->rigidbody.velocity.x = -MOVE_VELOCITY;
-        else if (IsKeyDown('D')) player->rigidbody.velocity.x = MOVE_VELOCITY;
+        // Check rectangle movement inputs
+        if (IsKeyDown('W') && rectangle->rigidbody.isGrounded) rectangle->rigidbody.velocity.y = JUMP_VELOCITY;
+        if (IsKeyDown('A')) rectangle->rigidbody.velocity.x = -MOVE_VELOCITY;
+        else if (IsKeyDown('D')) rectangle->rigidbody.velocity.x = MOVE_VELOCITY;
         
         // Check player 2 movement inputs
-        if (IsKeyDown(KEY_UP) && player2->rigidbody.isGrounded) player2->rigidbody.velocity.y = JUMP_VELOCITY;
+        if (IsKeyDown(KEY_UP) && square->rigidbody.isGrounded) square->rigidbody.velocity.y = JUMP_VELOCITY;
+        if (IsKeyDown(KEY_LEFT)) square->rigidbody.velocity.x = -MOVE_VELOCITY;
+        else if (IsKeyDown(KEY_RIGHT)) square->rigidbody.velocity.x = MOVE_VELOCITY;
         
-        if (IsKeyDown(KEY_LEFT)) player2->rigidbody.velocity.x = -MOVE_VELOCITY;
-        else if (IsKeyDown(KEY_RIGHT)) player2->rigidbody.velocity.x = MOVE_VELOCITY;
+        // Check debug switch input
+        if (IsKeyPressed('P')) isDebug = !isDebug;
         //----------------------------------------------------------------------------------
 
         // Draw
@@ -89,29 +79,31 @@ int main()
         BeginDrawing();
 
             ClearBackground(RAYWHITE);
+
+            // Convert transform values to rectangle data type variable
+            DrawRectangleRec(TransformToRectangle(floor->transform), DARKGRAY);
+            DrawRectangleRec(TransformToRectangle(leftWall->transform), DARKGRAY);
+            DrawRectangleRec(TransformToRectangle(rightWall->transform), DARKGRAY);
+            DrawRectangleRec(TransformToRectangle(roof->transform), DARKGRAY);
+            
+            DrawRectangleRec(TransformToRectangle(platform->transform), DARKGRAY);
+            
+            DrawRectangleRec(TransformToRectangle(rectangle->transform), RED);
+            DrawRectangleRec(TransformToRectangle(square->transform), BLUE);
             
             if (isDebug)
             {
                 DrawRectangleLines(floor->collider.bounds.x, floor->collider.bounds.y, floor->collider.bounds.width, floor->collider.bounds.height, GREEN);
                 DrawRectangleLines(leftWall->collider.bounds.x, leftWall->collider.bounds.y, leftWall->collider.bounds.width, leftWall->collider.bounds.height, GREEN);
                 DrawRectangleLines(rightWall->collider.bounds.x, rightWall->collider.bounds.y, rightWall->collider.bounds.width, rightWall->collider.bounds.height, GREEN);
+                DrawRectangleLines(roof->collider.bounds.x, roof->collider.bounds.y, roof->collider.bounds.width, roof->collider.bounds.height, GREEN);
                 DrawRectangleLines(platform->collider.bounds.x, platform->collider.bounds.y, platform->collider.bounds.width, platform->collider.bounds.height, GREEN);
-                DrawRectangleLines(player->collider.bounds.x, player->collider.bounds.y, player->collider.bounds.width, player->collider.bounds.height, GREEN);
-                DrawRectangleLines(player2->collider.bounds.x, player2->collider.bounds.y, player2->collider.bounds.width, player2->collider.bounds.height, GREEN);
-            }
-            else
-            {
-                // Convert transform values to rectangle data type variable
-                DrawRectangleRec(TransformToRectangle(floor->transform), DARKGRAY);
-                DrawRectangleRec(TransformToRectangle(leftWall->transform), DARKGRAY);
-                DrawRectangleRec(TransformToRectangle(rightWall->transform), DARKGRAY);
-                DrawRectangleRec(TransformToRectangle(platform->transform), DARKGRAY);
-                DrawRectangleRec(TransformToRectangle(player->transform), RED);
-                DrawRectangleRec(TransformToRectangle(player2->transform), BLUE);
+                DrawRectangleLines(rectangle->collider.bounds.x, rectangle->collider.bounds.y, rectangle->collider.bounds.width, rectangle->collider.bounds.height, GREEN);
+                DrawRectangleLines(square->collider.bounds.x, square->collider.bounds.y, square->collider.bounds.width, square->collider.bounds.height, GREEN);
             }
             
-            // Draw all physic object information in specific screen position and font size
-            // DrawPhysicObjectInfo(player, (Vector2){ 10.0f, 10.0f }, 10);    
+            // Draw help message
+            DrawText("Use WASD to move rectangle and ARROWS to move square", screenWidth/2 - MeasureText("Use WASD to move rectangle and ARROWS to move square", 20)/2, screenHeight*0.075f, 20, LIGHTGRAY);
 
         EndDrawing();
         //----------------------------------------------------------------------------------

+ 160 - 0
examples/physics_forces.c

@@ -0,0 +1,160 @@
+/*******************************************************************************************
+*
+*   raylib [physac] example - Forces
+*
+*   This example has been created using raylib 1.5 (www.raylib.com)
+*   raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details)
+*
+*   Copyright (c) 2016 Victor Fisac and Ramon Santamaria (@raysan5)
+*
+********************************************************************************************/
+
+#include "raylib.h"
+#include "math.h"
+
+#define FORCE_AMOUNT    5.0f
+#define FORCE_RADIUS    150
+#define LINE_LENGTH     100
+
+int main()
+{
+    // Initialization
+    //--------------------------------------------------------------------------------------
+    int screenWidth = 800;
+    int screenHeight = 450;
+
+    InitWindow(screenWidth, screenHeight, "raylib [physac] example - forces");
+    InitPhysics((Vector2){ 0.0f, -9.81f/2 });      // Initialize physics module
+    
+    SetTargetFPS(60);
+    
+    // Global variables
+    Vector2 mousePosition;
+    bool isDebug = false;
+    
+    // Create rectangle physic objects
+    PhysicObject *rectangles[3];
+    for (int i = 0; i < 3; i++)
+    {
+        rectangles[i] = CreatePhysicObject((Vector2){ screenWidth/4*(i+1), (((i % 2) == 0) ? (screenHeight/3) : (screenHeight/1.5f)) }, 0.0f, (Vector2){ 50, 50 });
+        rectangles[i]->rigidbody.enabled = true;       // Enable physic object rigidbody behaviour
+        rectangles[i]->rigidbody.friction = 0.1f;
+    }
+    
+    // Create circles physic objects
+    PhysicObject *circles[3];
+    for (int i = 0; i < 3; i++)
+    {
+        circles[i] = CreatePhysicObject((Vector2){ screenWidth/4*(i+1), (((i % 2) == 0) ? (screenHeight/1.5f) : (screenHeight/4)) }, 0.0f, (Vector2){ 0, 0 });
+        circles[i]->rigidbody.enabled = true;       // Enable physic object rigidbody behaviour
+        circles[i]->rigidbody.friction = 0.1f;
+        circles[i]->collider.type = COLLIDER_CIRCLE;
+        circles[i]->collider.radius = 25;
+    }
+    
+    // Create walls physic objects
+    PhysicObject *leftWall = CreatePhysicObject((Vector2){ -25, screenHeight/2 }, 0.0f, (Vector2){ 50, screenHeight });
+    PhysicObject *rightWall = CreatePhysicObject((Vector2){ screenWidth + 25, screenHeight/2 }, 0.0f, (Vector2){ 50, screenHeight });
+    PhysicObject *topWall = CreatePhysicObject((Vector2){ screenWidth/2, -25 }, 0.0f, (Vector2){ screenWidth, 50 });
+    PhysicObject *bottomWall = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight + 25 }, 0.0f, (Vector2){ screenWidth, 50 });
+    
+    //--------------------------------------------------------------------------------------
+
+    // Main game loop
+    while (!WindowShouldClose())    // Detect window close button or ESC key
+    {
+        // Update
+        //----------------------------------------------------------------------------------
+        UpdatePhysics();    // Update all created physic objects
+        
+        // Update mouse position value
+        mousePosition = GetMousePosition();
+        
+        // Check force input
+        if (IsMouseButtonPressed(MOUSE_LEFT_BUTTON)) ApplyForceAtPosition(mousePosition, FORCE_AMOUNT, FORCE_RADIUS);
+        
+        // Check reset input
+        if (IsKeyPressed('R'))
+        {
+            // Reset rectangle physic objects positions
+            for (int i = 0; i < 3; i++)
+            {
+                rectangles[i]->transform.position = (Vector2){ screenWidth/4*(i+1) - rectangles[i]->transform.scale.x/2, (((i % 2) == 0) ? (screenHeight/3) : (screenHeight/1.5f)) - rectangles[i]->transform.scale.y/2 };
+                rectangles[i]->rigidbody.velocity =(Vector2){ 0.0f, 0.0f };
+            }
+            
+            // Reset circles physic objects positions
+            for (int i = 0; i < 3; i++)
+            {
+                circles[i]->transform.position = (Vector2){ screenWidth/4*(i+1), (((i % 2) == 0) ? (screenHeight/1.5f) : (screenHeight/4)) };
+                circles[i]->rigidbody.velocity =(Vector2){ 0.0f, 0.0f };
+            }
+        }
+        
+        // Check debug switch input
+        if (IsKeyPressed('P')) isDebug = !isDebug;
+        //----------------------------------------------------------------------------------
+
+        // Draw
+        //----------------------------------------------------------------------------------
+        BeginDrawing();
+
+            ClearBackground(RAYWHITE);
+
+            // Draw rectangles
+            for (int i = 0; i < 3; i++)
+            {
+                // Convert transform values to rectangle data type variable
+                DrawRectangleRec(TransformToRectangle(rectangles[i]->transform), RED);
+                if (isDebug) DrawRectangleLines(rectangles[i]->collider.bounds.x, rectangles[i]->collider.bounds.y, rectangles[i]->collider.bounds.width, rectangles[i]->collider.bounds.height, GREEN);
+
+                // Draw force radius
+                DrawCircleLines(mousePosition.x, mousePosition.y, FORCE_RADIUS, BLACK);
+                
+                // Draw direction line
+                if (CheckCollisionPointCircle((Vector2){ rectangles[i]->transform.position.x + rectangles[i]->transform.scale.x/2, rectangles[i]->transform.position.y + rectangles[i]->transform.scale.y/2 }, mousePosition, FORCE_RADIUS))
+                {
+                    Vector2 direction = { rectangles[i]->transform.position.x + rectangles[i]->transform.scale.x/2 - mousePosition.x, rectangles[i]->transform.position.y + rectangles[i]->transform.scale.y/2 - mousePosition.y };
+                    float angle = atan2l(direction.y, direction.x);
+                    
+                    DrawLineV((Vector2){ rectangles[i]->transform.position.x + rectangles[i]->transform.scale.x/2, rectangles[i]->transform.position.y + rectangles[i]->transform.scale.y/2 },
+                    (Vector2){ rectangles[i]->transform.position.x + rectangles[i]->transform.scale.x/2 + (cos(angle)*LINE_LENGTH), rectangles[i]->transform.position.y + rectangles[i]->transform.scale.y/2 + (sin(angle)*LINE_LENGTH) }, BLACK);
+                }
+            }
+            
+            // Draw circles
+            for (int i = 0; i < 3; i++)
+            {
+                DrawCircleV(circles[i]->transform.position, circles[i]->collider.radius, BLUE);
+                if (isDebug) DrawCircleLines(circles[i]->transform.position.x, circles[i]->transform.position.y, circles[i]->collider.radius, GREEN);
+
+                // Draw force radius
+                DrawCircleLines(mousePosition.x, mousePosition.y, FORCE_RADIUS, BLACK);
+                
+                // Draw direction line
+                if (CheckCollisionPointCircle((Vector2){ circles[i]->transform.position.x, circles[i]->transform.position.y }, mousePosition, FORCE_RADIUS))
+                {
+                    Vector2 direction = { circles[i]->transform.position.x - mousePosition.x, circles[i]->transform.position.y - mousePosition.y };
+                    float angle = atan2l(direction.y, direction.x);
+                    
+                    DrawLineV((Vector2){ circles[i]->transform.position.x, circles[i]->transform.position.y },
+                    (Vector2){ circles[i]->transform.position.x + (cos(angle)*LINE_LENGTH), circles[i]->transform.position.y + (sin(angle)*LINE_LENGTH) }, BLACK);
+                }
+            }
+            
+            // Draw help messages
+            DrawText("Use LEFT MOUSE BUTTON to apply a force", screenWidth/2 - MeasureText("Use LEFT MOUSE BUTTON to apply a force", 20)/2, screenHeight*0.075f, 20, LIGHTGRAY);
+            DrawText("Use R to reset objects position", screenWidth/2 - MeasureText("Use R to reset objects position", 20)/2, screenHeight*0.875f, 20, GRAY);    
+
+        EndDrawing();
+        //----------------------------------------------------------------------------------
+    }
+
+    // De-Initialization
+    //--------------------------------------------------------------------------------------
+    ClosePhysics();       // Unitialize physics module
+    CloseWindow();        // Close window and OpenGL context
+    //--------------------------------------------------------------------------------------
+
+    return 0;
+}

+ 365 - 129
src/physac.c

@@ -36,10 +36,9 @@
 // Defines and Macros
 //----------------------------------------------------------------------------------
 #define MAX_PHYSIC_OBJECTS      256
-#define PHYSICS_GRAVITY         -9.81f/2
 #define PHYSICS_STEPS           450
-#define PHYSICS_ACCURACY        0.0001f     // Velocity subtract operations round filter (friction)
-#define PHYSICS_ERRORPERCENT    0.001f        // Collision resolve position fix
+#define PHYSICS_ACCURACY        0.0001f         // Velocity subtract operations round filter (friction)
+#define PHYSICS_ERRORPERCENT    0.001f          // Collision resolve position fix
 
 //----------------------------------------------------------------------------------
 // Types and Structures Definition
@@ -52,53 +51,70 @@
 //----------------------------------------------------------------------------------
 static PhysicObject *physicObjects[MAX_PHYSIC_OBJECTS];             // Physic objects pool
 static int physicObjectsCount;                                      // Counts current enabled physic objects
+static Vector2 gravityForce;                                        // Gravity force
 
 //----------------------------------------------------------------------------------
 // Module specific Functions Declaration
 //----------------------------------------------------------------------------------
 static float Vector2DotProduct(Vector2 v1, Vector2 v2);             // Returns the dot product of two Vector2
+static float Vector2Length(Vector2 v);                              // Returns the length of a Vector2
 
 //----------------------------------------------------------------------------------
 // Module Functions Definition
 //----------------------------------------------------------------------------------
 
 // Initializes pointers array (just pointers, fixed size)
-void InitPhysics()
+void InitPhysics(Vector2 gravity)
 {
     // Initialize physics variables
     physicObjectsCount = 0;
+    gravityForce = gravity;
 }
 
 // Update physic objects, calculating physic behaviours and collisions detection
 void UpdatePhysics()
 {
     // Reset all physic objects is grounded state
-    for(int i = 0; i < physicObjectsCount; i++)
+    for (int i = 0; i < physicObjectsCount; i++)
     {
-        if(physicObjects[i]->rigidbody.enabled) physicObjects[i]->rigidbody.isGrounded = false;
+        if (physicObjects[i]->rigidbody.enabled) physicObjects[i]->rigidbody.isGrounded = false;
     }
     
-    for(int steps = 0; steps < PHYSICS_STEPS; steps++)
+    for (int steps = 0; steps < PHYSICS_STEPS; steps++)
     {
-        for(int i = 0; i < physicObjectsCount; i++)
+        for (int i = 0; i < physicObjectsCount; i++)
         {
-            if(physicObjects[i]->enabled)
+            if (physicObjects[i]->enabled)
             {
                 // Update physic behaviour
-                if(physicObjects[i]->rigidbody.enabled)
+                if (physicObjects[i]->rigidbody.enabled)
                 {
                     // Apply friction to acceleration in X axis
                     if (physicObjects[i]->rigidbody.acceleration.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
                     else if (physicObjects[i]->rigidbody.acceleration.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
                     else physicObjects[i]->rigidbody.acceleration.x = 0.0f;
                     
+                    // Apply friction to acceleration in Y axis
+                    if (physicObjects[i]->rigidbody.acceleration.y > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.y -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
+                    else if (physicObjects[i]->rigidbody.acceleration.y < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.y += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
+                    else physicObjects[i]->rigidbody.acceleration.y = 0.0f;
+                    
                     // Apply friction to velocity in X axis
                     if (physicObjects[i]->rigidbody.velocity.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
                     else if (physicObjects[i]->rigidbody.velocity.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
                     else physicObjects[i]->rigidbody.velocity.x = 0.0f;
                     
+                    // Apply friction to velocity in Y axis
+                    if (physicObjects[i]->rigidbody.velocity.y > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.y -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
+                    else if (physicObjects[i]->rigidbody.velocity.y < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.y += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
+                    else physicObjects[i]->rigidbody.velocity.y = 0.0f;
+                    
                     // Apply gravity to velocity
-                    if (physicObjects[i]->rigidbody.applyGravity) physicObjects[i]->rigidbody.velocity.y += PHYSICS_GRAVITY/PHYSICS_STEPS;
+                    if (physicObjects[i]->rigidbody.applyGravity)
+                    {
+                        physicObjects[i]->rigidbody.velocity.x += gravityForce.x/PHYSICS_STEPS;
+                        physicObjects[i]->rigidbody.velocity.y += gravityForce.y/PHYSICS_STEPS;
+                    }
                     
                     // Apply acceleration to velocity
                     physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.acceleration.x/PHYSICS_STEPS;
@@ -120,142 +136,314 @@ void UpdatePhysics()
                     {
                         if (physicObjects[k]->collider.enabled && i != k)
                         {
-                            // Check if colliders are overlapped
-                            if (CheckCollisionRecs(physicObjects[i]->collider.bounds, physicObjects[k]->collider.bounds))
+                            // Resolve physic collision
+                            // NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
+                            // and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
+                            
+                            // 1. Calculate collision normal
+                            // -------------------------------------------------------------------------------------------------------------------------------------
+                            
+                            // Define collision contact normal, direction and penetration depth
+                            Vector2 contactNormal = { 0.0f, 0.0f };
+                            Vector2 direction = { 0.0f, 0.0f };
+                            float penetrationDepth = 0.0f;
+                            
+                            switch(physicObjects[i]->collider.type)
                             {
-                                // Resolve physic collision
-                                // NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
-                                // and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
-                                
-                                // 1. Calculate collision normal
-                                // -------------------------------------------------------------------------------------------------------------------------------------
-                                
-                                // Define collision ontact normal
-                                Vector2 contactNormal = { 0.0f, 0.0f };
+                                case COLLIDER_RECTANGLE:
+                                {
+                                    switch(physicObjects[k]->collider.type)
+                                    {
+                                        case COLLIDER_RECTANGLE:
+                                        {
+                                            // Check if colliders are overlapped
+                                            if (CheckCollisionRecs(physicObjects[i]->collider.bounds, physicObjects[k]->collider.bounds))
+                                            {
+                                                // Calculate direction vector from i to k
+                                                direction.x = (physicObjects[k]->transform.position.x + physicObjects[k]->transform.scale.x/2) - (physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2);
+                                                direction.y = (physicObjects[k]->transform.position.y + physicObjects[k]->transform.scale.y/2) - (physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2);
+                                                
+                                                // Define overlapping and penetration attributes
+                                                Vector2 overlap;
+
+                                                // Calculate overlap on X axis
+                                                overlap.x = (physicObjects[i]->transform.scale.x + physicObjects[k]->transform.scale.x)/2 - abs(direction.x);
+                                                
+                                                // SAT test on X axis
+                                                if (overlap.x > 0.0f)
+                                                {
+                                                    // Calculate overlap on Y axis
+                                                    overlap.y = (physicObjects[i]->transform.scale.y + physicObjects[k]->transform.scale.y)/2 - abs(direction.y);
+                                                    
+                                                    // SAT test on Y axis
+                                                    if (overlap.y > 0.0f)
+                                                    {
+                                                        // Find out which axis is axis of least penetration
+                                                        if (overlap.y > overlap.x)
+                                                        {
+                                                            // Point towards k knowing that direction points from i to k
+                                                            if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
+                                                            else contactNormal = (Vector2){ 1.0f, 0.0f };
+                                                            
+                                                            // Update penetration depth for position correction
+                                                            penetrationDepth = overlap.x;
+                                                        }
+                                                        else
+                                                        {
+                                                            // Point towards k knowing that direction points from i to k
+                                                            if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
+                                                            else contactNormal = (Vector2){ 0.0f, -1.0f };
+                                                            
+                                                            // Update penetration depth for position correction
+                                                            penetrationDepth = overlap.y;
+                                                        }
+                                                    }
+                                                }
+                                            }
+                                        } break;
+                                        case COLLIDER_CIRCLE:
+                                        {
+                                            if (CheckCollisionCircleRec(physicObjects[k]->transform.position, physicObjects[k]->collider.radius, physicObjects[i]->collider.bounds))
+                                            {
+                                                // Calculate direction vector between circles
+                                                direction.x = physicObjects[k]->transform.position.x - physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2;
+                                                direction.y = physicObjects[k]->transform.position.y - physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2;
+                                                
+                                                // Calculate closest point on rectangle to circle
+                                                Vector2 closestPoint = { 0.0f, 0.0f };
+                                                if (direction.x > 0.0f) closestPoint.x = physicObjects[i]->collider.bounds.x + physicObjects[i]->collider.bounds.width;
+                                                else closestPoint.x = physicObjects[i]->collider.bounds.x;
+                                                
+                                                if (direction.y > 0.0f) closestPoint.y = physicObjects[i]->collider.bounds.y + physicObjects[i]->collider.bounds.height;
+                                                else closestPoint.y = physicObjects[i]->collider.bounds.y;
+                                                
+                                                // Check if the closest point is inside the circle
+                                                if (CheckCollisionPointCircle(closestPoint, physicObjects[k]->transform.position, physicObjects[k]->collider.radius))
+                                                {
+                                                    // Recalculate direction based on closest point position
+                                                    direction.x = physicObjects[k]->transform.position.x - closestPoint.x;
+                                                    direction.y = physicObjects[k]->transform.position.y - closestPoint.y;
+                                                    float distance = Vector2Length(direction);
+                                                    
+                                                    // Calculate final contact normal
+                                                    contactNormal.x = direction.x/distance;
+                                                    contactNormal.y = -direction.y/distance;
+                                                    
+                                                    // Calculate penetration depth
+                                                    penetrationDepth = physicObjects[k]->collider.radius - distance;
+                                                }
+                                                else
+                                                {
+                                                    if (abs(direction.y) < abs(direction.x))
+                                                    {
+                                                        // Calculate final contact normal
+                                                        if (direction.y > 0.0f)
+                                                        {
+                                                            contactNormal = (Vector2){ 0.0f, -1.0f };
+                                                            penetrationDepth = fabs(physicObjects[i]->collider.bounds.y - physicObjects[k]->transform.position.y - physicObjects[k]->collider.radius);
+                                                        }
+                                                        else 
+                                                        {
+                                                            contactNormal = (Vector2){ 0.0f, 1.0f };
+                                                            penetrationDepth = fabs(physicObjects[i]->collider.bounds.y - physicObjects[k]->transform.position.y + physicObjects[k]->collider.radius);
+                                                        }
+                                                    }
+                                                    else
+                                                    {
+                                                        // Calculate final contact normal
+                                                        if (direction.x > 0.0f)
+                                                        {
+                                                            contactNormal = (Vector2){ 1.0f, 0.0f };
+                                                            penetrationDepth = fabs(physicObjects[k]->transform.position.x + physicObjects[k]->collider.radius - physicObjects[i]->collider.bounds.x);
+                                                        }
+                                                        else 
+                                                        {
+                                                            contactNormal = (Vector2){ -1.0f, 0.0f };
+                                                            penetrationDepth = fabs(physicObjects[i]->collider.bounds.x + physicObjects[i]->collider.bounds.width - physicObjects[k]->transform.position.x - physicObjects[k]->collider.radius);
+                                                        }
+                                                    }
+                                                }
+                                            }
+                                        } break;
+                                    }
+                                } break;
+                                case COLLIDER_CIRCLE:
+                                {
+                                    switch(physicObjects[k]->collider.type)
+                                    {
+                                        case COLLIDER_RECTANGLE:
+                                        {
+                                            if (CheckCollisionCircleRec(physicObjects[i]->transform.position, physicObjects[i]->collider.radius, physicObjects[k]->collider.bounds))
+                                            {
+                                                // Calculate direction vector between circles
+                                                direction.x = physicObjects[k]->transform.position.x + physicObjects[i]->transform.scale.x/2 - physicObjects[i]->transform.position.x;
+                                                direction.y = physicObjects[k]->transform.position.y + physicObjects[i]->transform.scale.y/2 - physicObjects[i]->transform.position.y;
+                                                
+                                                // Calculate closest point on rectangle to circle
+                                                Vector2 closestPoint = { 0.0f, 0.0f };
+                                                if (direction.x > 0.0f) closestPoint.x = physicObjects[k]->collider.bounds.x + physicObjects[k]->collider.bounds.width;
+                                                else closestPoint.x = physicObjects[k]->collider.bounds.x;
+                                                
+                                                if (direction.y > 0.0f) closestPoint.y = physicObjects[k]->collider.bounds.y + physicObjects[k]->collider.bounds.height;
+                                                else closestPoint.y = physicObjects[k]->collider.bounds.y;
+                                                
+                                                // Check if the closest point is inside the circle
+                                                if (CheckCollisionPointCircle(closestPoint, physicObjects[i]->transform.position, physicObjects[i]->collider.radius))
+                                                {
+                                                    // Recalculate direction based on closest point position
+                                                    direction.x = physicObjects[i]->transform.position.x - closestPoint.x;
+                                                    direction.y = physicObjects[i]->transform.position.y - closestPoint.y;
+                                                    float distance = Vector2Length(direction);
+                                                    
+                                                    // Calculate final contact normal
+                                                    contactNormal.x = direction.x/distance;
+                                                    contactNormal.y = -direction.y/distance;
+                                                    
+                                                    // Calculate penetration depth
+                                                    penetrationDepth = physicObjects[k]->collider.radius - distance;
+                                                }
+                                                else
+                                                {
+                                                    if (abs(direction.y) < abs(direction.x))
+                                                    {
+                                                        // Calculate final contact normal
+                                                        if (direction.y > 0.0f)
+                                                        {
+                                                            contactNormal = (Vector2){ 0.0f, -1.0f };
+                                                            penetrationDepth = fabs(physicObjects[k]->collider.bounds.y - physicObjects[i]->transform.position.y - physicObjects[i]->collider.radius);
+                                                        }
+                                                        else 
+                                                        {
+                                                            contactNormal = (Vector2){ 0.0f, 1.0f };
+                                                            penetrationDepth = fabs(physicObjects[k]->collider.bounds.y - physicObjects[i]->transform.position.y + physicObjects[i]->collider.radius);
+                                                        }
+                                                    }
+                                                    else
+                                                    {
+                                                        // Calculate final contact normal and penetration depth
+                                                        if (direction.x > 0.0f)
+                                                        {
+                                                            contactNormal = (Vector2){ 1.0f, 0.0f };
+                                                            penetrationDepth = fabs(physicObjects[i]->transform.position.x + physicObjects[i]->collider.radius - physicObjects[k]->collider.bounds.x);
+                                                        }
+                                                        else 
+                                                        {
+                                                            contactNormal = (Vector2){ -1.0f, 0.0f };
+                                                            penetrationDepth = fabs(physicObjects[k]->collider.bounds.x + physicObjects[k]->collider.bounds.width - physicObjects[i]->transform.position.x - physicObjects[i]->collider.radius);
+                                                        }
+                                                    }
+                                                }
+                                            }
+                                        } break;
+                                        case COLLIDER_CIRCLE:
+                                        {
+                                            // Check if colliders are overlapped
+                                            if (CheckCollisionCircles(physicObjects[i]->transform.position, physicObjects[i]->collider.radius, physicObjects[k]->transform.position, physicObjects[k]->collider.radius))
+                                            {
+                                                // Calculate direction vector between circles
+                                                direction.x = physicObjects[k]->transform.position.x - physicObjects[i]->transform.position.x;
+                                                direction.y = physicObjects[k]->transform.position.y - physicObjects[i]->transform.position.y;
+                                                
+                                                // Calculate distance between circles
+                                                float distance = Vector2Length(direction);
+                                                
+                                                // Check if circles are not completely overlapped
+                                                if (distance != 0.0f)
+                                                {                                                    
+                                                    // Calculate contact normal direction (Y axis needs to be flipped)
+                                                    contactNormal.x = direction.x/distance;
+                                                    contactNormal.y = -direction.y/distance;
+                                                }
+                                                else contactNormal = (Vector2){ 1.0f, 0.0f };   // Choose random (but consistent) values
+                                            }
+                                        } break;
+                                        default: break;
+                                    }
+                                } break;
+                                default: break;
+                            }
+                            
+                            // Update rigidbody grounded state
+                            if (physicObjects[i]->rigidbody.enabled)
+                            {
+                                if (contactNormal.y < 0.0f) physicObjects[i]->rigidbody.isGrounded = true;
+                            }
+                            
+                            // 2. Calculate collision impulse
+                            // -------------------------------------------------------------------------------------------------------------------------------------
+                            
+                            // Calculate relative velocity
+                            Vector2 relVelocity = { 0.0f, 0.0f };
+                            relVelocity.x = physicObjects[k]->rigidbody.velocity.x - physicObjects[i]->rigidbody.velocity.x;
+                            relVelocity.y = physicObjects[k]->rigidbody.velocity.y - physicObjects[i]->rigidbody.velocity.y;
+
+                            // Calculate relative velocity in terms of the normal direction
+                            float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
+                        
+                            // Dot not resolve if velocities are separating
+                            if (velAlongNormal <= 0.0f)
+                            {
+                                // Calculate minimum bounciness value from both objects
+                                float e = fminf(physicObjects[i]->rigidbody.bounciness, physicObjects[k]->rigidbody.bounciness);
                                 
-                                // Calculate direction vector from i to k
-                                Vector2 direction;
-                                direction.x = (physicObjects[k]->transform.position.x + physicObjects[k]->transform.scale.x/2) - (physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2);
-                                direction.y = (physicObjects[k]->transform.position.y + physicObjects[k]->transform.scale.y/2) - (physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2);
+                                // Calculate impulse scalar value
+                                float j = -(1.0f + e)*velAlongNormal;
+                                j /= 1.0f/physicObjects[i]->rigidbody.mass + 1.0f/physicObjects[k]->rigidbody.mass;
                                 
-                                // Define overlapping and penetration attributes
-                                Vector2 overlap;
-                                float penetrationDepth = 0.0f;
+                                // Calculate final impulse vector
+                                Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
                                 
-                                // Calculate overlap on X axis
-                                overlap.x = (physicObjects[i]->transform.scale.x + physicObjects[k]->transform.scale.x)/2 - abs(direction.x);
+                                // Calculate collision mass ration
+                                float massSum = physicObjects[i]->rigidbody.mass + physicObjects[k]->rigidbody.mass;
+                                float ratio = 0.0f;
                                 
-                                // SAT test on X axis
-                                if (overlap.x > 0.0f)
+                                // Apply impulse to current rigidbodies velocities if they are enabled
+                                if (physicObjects[i]->rigidbody.enabled) 
                                 {
-                                    // Calculate overlap on Y axis
-                                    overlap.y = (physicObjects[i]->transform.scale.y + physicObjects[k]->transform.scale.y)/2 - abs(direction.y);
+                                    // Calculate inverted mass ration
+                                    ratio = physicObjects[i]->rigidbody.mass/massSum;
                                     
-                                    // SAT test on Y axis
-                                    if (overlap.y > 0.0f)
-                                    {
-                                        // Find out which axis is axis of least penetration
-                                        if (overlap.y > overlap.x)
-                                        {
-                                            // Point towards k knowing that direction points from i to k
-                                            if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
-                                            else contactNormal = (Vector2){ 1.0f, 0.0f };
-                                            
-                                            // Update penetration depth for position correction
-                                            penetrationDepth = overlap.x;
-                                        }
-                                        else
-                                        {
-                                            // Point towards k knowing that direction points from i to k
-                                            if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
-                                            else contactNormal = (Vector2){ 0.0f, -1.0f };
-                                            
-                                            // Update penetration depth for position correction
-                                            penetrationDepth = overlap.y;
-                                        }
-                                    }
+                                    // Apply impulse direction to velocity
+                                    physicObjects[i]->rigidbody.velocity.x -= impulse.x*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
+                                    physicObjects[i]->rigidbody.velocity.y -= impulse.y*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
                                 }
                                 
-                                // Update rigidbody grounded state
-                                if (physicObjects[i]->rigidbody.enabled)
+                                if (physicObjects[k]->rigidbody.enabled) 
                                 {
-                                    if (contactNormal.y < 0.0f) physicObjects[i]->rigidbody.isGrounded = true;
+                                    // Calculate inverted mass ration
+                                    ratio = physicObjects[k]->rigidbody.mass/massSum;
+                                    
+                                    // Apply impulse direction to velocity
+                                    physicObjects[k]->rigidbody.velocity.x += impulse.x*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
+                                    physicObjects[k]->rigidbody.velocity.y += impulse.y*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
                                 }
                                 
-                                // 2. Calculate collision impulse
-                                // -------------------------------------------------------------------------------------------------------------------------------------
+                                // 3. Correct colliders overlaping (transform position)
+                                // ---------------------------------------------------------------------------------------------------------------------------------
                                 
-                                // Calculate relative velocity
-                                Vector2 relVelocity = { physicObjects[k]->rigidbody.velocity.x - physicObjects[i]->rigidbody.velocity.x, physicObjects[k]->rigidbody.velocity.y - physicObjects[i]->rigidbody.velocity.y };
-
-                                // Calculate relative velocity in terms of the normal direction
-                                float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
-                            
-                                // Dot not resolve if velocities are separating
-                                if (velAlongNormal <= 0.0f)
-                                {
-                                    // Calculate minimum bounciness value from both objects
-                                    float e = fminf(physicObjects[i]->rigidbody.bounciness, physicObjects[k]->rigidbody.bounciness);
-                                    
-                                    // Calculate impulse scalar value
-                                    float j = -(1.0f + e) * velAlongNormal;
-                                    j /= 1.0f/physicObjects[i]->rigidbody.mass + 1.0f/physicObjects[k]->rigidbody.mass;
-                                    
-                                    // Calculate final impulse vector
-                                    Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
-                                    
-                                    // Calculate collision mass ration
-                                    float massSum = physicObjects[i]->rigidbody.mass + physicObjects[k]->rigidbody.mass;
-                                    float ratio = 0.0f;
+                                // Calculate transform position penetration correction
+                                Vector2 posCorrection;
+                                posCorrection.x = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
+                                posCorrection.y = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
+                                
+                                // Fix transform positions
+                                if (physicObjects[i]->rigidbody.enabled)
+                                {                                        
+                                    // Fix physic objects transform position
+                                    physicObjects[i]->transform.position.x -= 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.x;
+                                    physicObjects[i]->transform.position.y += 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.y;
                                     
-                                    // Apply impulse to current rigidbodies velocities if they are enabled
-                                    if (physicObjects[i]->rigidbody.enabled) 
-                                    {
-                                        // Calculate inverted mass ration
-                                        ratio = physicObjects[i]->rigidbody.mass/massSum;
-                                        
-                                        // Apply impulse direction to velocity
-                                        physicObjects[i]->rigidbody.velocity.x -= impulse.x*ratio;
-                                        physicObjects[i]->rigidbody.velocity.y -= impulse.y*ratio;
-                                    }
+                                    // Update collider bounds
+                                    physicObjects[i]->collider.bounds = TransformToRectangle(physicObjects[i]->transform);
                                     
-                                    if (physicObjects[k]->rigidbody.enabled) 
+                                    if (physicObjects[k]->rigidbody.enabled)
                                     {
-                                        // Calculate inverted mass ration
-                                        ratio = physicObjects[k]->rigidbody.mass/massSum;
-                                        
-                                        // Apply impulse direction to velocity
-                                        physicObjects[k]->rigidbody.velocity.x += impulse.x*ratio;
-                                        physicObjects[k]->rigidbody.velocity.y += impulse.y*ratio;
-                                    }
-                                    
-                                    // 3. Correct colliders overlaping (transform position)
-                                    // ---------------------------------------------------------------------------------------------------------------------------------
-                                    
-                                    // Calculate transform position penetration correction
-                                    Vector2 posCorrection;
-                                    posCorrection.x = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
-                                    posCorrection.y = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
-                                    
-                                    // Fix transform positions
-                                    if (physicObjects[i]->rigidbody.enabled)
-                                    {                                        
                                         // Fix physic objects transform position
-                                        physicObjects[i]->transform.position.x -= 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.x;
-                                        physicObjects[i]->transform.position.y += 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.y;
+                                        physicObjects[k]->transform.position.x += 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.x;
+                                        physicObjects[k]->transform.position.y -= 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.y;
                                         
                                         // Update collider bounds
-                                        physicObjects[i]->collider.bounds = TransformToRectangle(physicObjects[i]->transform);
-                                        
-                                        if (physicObjects[k]->rigidbody.enabled)
-                                        {
-                                            // Fix physic objects transform position
-                                            physicObjects[k]->transform.position.x += 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.x;
-                                            physicObjects[k]->transform.position.y -= 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.y;
-                                            
-                                            // Update collider bounds
-                                            physicObjects[k]->collider.bounds = TransformToRectangle(physicObjects[k]->transform);
-                                        }
+                                        physicObjects[k]->collider.bounds = TransformToRectangle(physicObjects[k]->transform);
                                     }
                                 }
                             }
@@ -298,7 +486,7 @@ PhysicObject *CreatePhysicObject(Vector2 position, float rotation, Vector2 scale
     obj->rigidbody.friction = 0.0f;
     obj->rigidbody.bounciness = 0.0f;
     
-    obj->collider.enabled = false;
+    obj->collider.enabled = true;
     obj->collider.type = COLLIDER_RECTANGLE;
     obj->collider.bounds = TransformToRectangle(obj->transform);
     obj->collider.radius = 0.0f;
@@ -334,6 +522,45 @@ void DestroyPhysicObject(PhysicObject *pObj)
     physicObjectsCount--;
 }
 
+// Apply directional force to a physic object
+void ApplyForce(PhysicObject *pObj, Vector2 force)
+{
+    if (pObj->rigidbody.enabled)
+    {
+        pObj->rigidbody.velocity.x += force.x/pObj->rigidbody.mass;
+        pObj->rigidbody.velocity.y += force.y/pObj->rigidbody.mass;
+    }
+}
+
+// Apply radial force to all physic objects in range
+void ApplyForceAtPosition(Vector2 position, float force, float radius)
+{
+    for(int i = 0; i < physicObjectsCount; i++)
+    {
+        // Calculate direction and distance between force and physic object pposition
+        Vector2 distance = (Vector2){ physicObjects[i]->transform.position.x - position.x, physicObjects[i]->transform.position.y - position.y };
+
+        if(physicObjects[i]->collider.type == COLLIDER_RECTANGLE)
+        {
+            distance.x += physicObjects[i]->transform.scale.x/2;
+            distance.y += physicObjects[i]->transform.scale.y/2;
+        }
+        
+        float distanceLength = Vector2Length(distance);
+        
+        // Check if physic object is in force range
+        if(distanceLength <= radius)
+        {
+            // Normalize force direction
+            distance.x /= distanceLength;
+            distance.y /= -distanceLength;
+            
+            // Apply force to the physic object
+            ApplyForce(physicObjects[i], (Vector2){ distance.x*force, distance.y*force });
+        }
+    }
+}
+
 // Convert Transform data type to Rectangle (position and scale)
 Rectangle TransformToRectangle(Transform transform)
 {
@@ -369,3 +596,12 @@ static float Vector2DotProduct(Vector2 v1, Vector2 v2)
 
     return result;
 }
+
+static float Vector2Length(Vector2 v)
+{
+    float result;
+    
+    result = sqrt(v.x*v.x + v.y*v.y);
+    
+    return result;
+}

+ 8 - 5
src/physac.h

@@ -40,7 +40,7 @@ typedef struct Vector2 {
     float y;
 } Vector2;
 
-typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE, COLLIDER_CAPSULE } ColliderType;
+typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE } ColliderType;
 
 typedef struct Transform {
     Vector2 position;
@@ -56,14 +56,14 @@ typedef struct Rigidbody {
     bool applyGravity;
     bool isGrounded;
     float friction;         // Normalized value
-    float bounciness;       // Normalized value
+    float bounciness;
 } Rigidbody;
 
 typedef struct Collider {
     bool enabled;
     ColliderType type;
-    Rectangle bounds;       // Used for COLLIDER_RECTANGLE and COLLIDER_CAPSULE
-    int radius;             // Used for COLLIDER_CIRCLE and COLLIDER_CAPSULE
+    Rectangle bounds;       // Used for COLLIDER_RECTANGLE
+    int radius;             // Used for COLLIDER_CIRCLE
 } Collider;
 
 typedef struct PhysicObject {
@@ -81,13 +81,16 @@ extern "C" {            // Prevents name mangling of functions
 //----------------------------------------------------------------------------------
 // Module Functions Declaration
 //----------------------------------------------------------------------------------
-void InitPhysics();                                                                     // Initializes pointers array (just pointers, fixed size)
+void InitPhysics(Vector2 gravity);                                                      // Initializes pointers array (just pointers, fixed size)
 void UpdatePhysics();                                                                   // Update physic objects, calculating physic behaviours and collisions detection
 void ClosePhysics();                                                                    // Unitialize all physic objects and empty the objects pool
 
 PhysicObject *CreatePhysicObject(Vector2 position, float rotation, Vector2 scale);      // Create a new physic object dinamically, initialize it and add to pool
 void DestroyPhysicObject(PhysicObject *pObj);                                           // Destroy a specific physic object and take it out of the list
 
+void ApplyForce(PhysicObject *pObj, Vector2 force);                                     // Apply directional force to a physic object
+void ApplyForceAtPosition(Vector2 position, float force, float radius);                 // Apply radial force to all physic objects in range
+
 Rectangle TransformToRectangle(Transform transform);                                    // Convert Transform data type to Rectangle (position and scale)
 void DrawPhysicObjectInfo(PhysicObject *pObj, Vector2 position, int fontSize);          // Draw physic object information at screen position
 

+ 8 - 5
src/raylib.h

@@ -466,7 +466,7 @@ typedef struct {
 // Camera system modes
 typedef enum { CAMERA_CUSTOM = 0, CAMERA_FREE, CAMERA_ORBITAL, CAMERA_FIRST_PERSON, CAMERA_THIRD_PERSON } CameraMode;
 
-typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE, COLLIDER_CAPSULE } ColliderType;
+typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE } ColliderType;
 
 typedef struct Transform {
     Vector2 position;
@@ -482,14 +482,14 @@ typedef struct Rigidbody {
     bool applyGravity;
     bool isGrounded;
     float friction;         // Normalized value
-    float bounciness;       // Normalized value
+    float bounciness;
 } Rigidbody;
 
 typedef struct Collider {
     bool enabled;
     ColliderType type;
-    Rectangle bounds;       // Used for COLLIDER_RECTANGLE and COLLIDER_CAPSULE
-    int radius;             // Used for COLLIDER_CIRCLE and COLLIDER_CAPSULE
+    Rectangle bounds;       // Used for COLLIDER_RECTANGLE
+    int radius;             // Used for COLLIDER_CIRCLE
 } Collider;
 
 typedef struct PhysicObject {
@@ -810,13 +810,16 @@ void SetBlendMode(int mode);                                        // Set blend
 //----------------------------------------------------------------------------------
 // Physics System Functions (Module: physac)
 //----------------------------------------------------------------------------------
-void InitPhysics();                                                                     // Initializes pointers array (just pointers, fixed size)
+void InitPhysics(Vector2 gravity);                                                      // Initializes pointers array (just pointers, fixed size)
 void UpdatePhysics();                                                                   // Update physic objects, calculating physic behaviours and collisions detection
 void ClosePhysics();                                                                    // Unitialize all physic objects and empty the objects pool
 
 PhysicObject *CreatePhysicObject(Vector2 position, float rotation, Vector2 scale);      // Create a new physic object dinamically, initialize it and add to pool
 void DestroyPhysicObject(PhysicObject *pObj);                                           // Destroy a specific physic object and take it out of the list
 
+void ApplyForce(PhysicObject *pObj, Vector2 force);                                     // Apply directional force to a physic object
+void ApplyForceAtPosition(Vector2 position, float force, float radius);                 // Apply radial force to all physic objects in range
+
 Rectangle TransformToRectangle(Transform transform);                                    // Convert Transform data type to Rectangle (position and scale)
 void DrawPhysicObjectInfo(PhysicObject *pObj, Vector2 position, int fontSize);          // Draw physic object information at screen position