|
@@ -795,6 +795,32 @@ RMDEF Matrix MatrixSubtract(Matrix left, Matrix right)
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
+// Returns two matrix multiplication
|
|
|
+// NOTE: When multiplying matrices... the order matters!
|
|
|
+RMDEF Matrix MatrixMultiply(Matrix left, Matrix right)
|
|
|
+{
|
|
|
+ Matrix result = { 0 };
|
|
|
+
|
|
|
+ result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12;
|
|
|
+ result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13;
|
|
|
+ result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14;
|
|
|
+ result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15;
|
|
|
+ result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12;
|
|
|
+ result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13;
|
|
|
+ result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14;
|
|
|
+ result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15;
|
|
|
+ result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12;
|
|
|
+ result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13;
|
|
|
+ result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14;
|
|
|
+ result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15;
|
|
|
+ result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12;
|
|
|
+ result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13;
|
|
|
+ result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14;
|
|
|
+ result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15;
|
|
|
+
|
|
|
+ return result;
|
|
|
+}
|
|
|
+
|
|
|
// Returns translation matrix
|
|
|
RMDEF Matrix MatrixTranslate(float x, float y, float z)
|
|
|
{
|
|
@@ -851,45 +877,6 @@ RMDEF Matrix MatrixRotate(Vector3 axis, float angle)
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
-// Returns xyz-rotation matrix (angles in radians)
|
|
|
-RMDEF Matrix MatrixRotateXYZ(Vector3 ang)
|
|
|
-{
|
|
|
- Matrix result = MatrixIdentity();
|
|
|
-
|
|
|
- float cosz = cosf(-ang.z);
|
|
|
- float sinz = sinf(-ang.z);
|
|
|
- float cosy = cosf(-ang.y);
|
|
|
- float siny = sinf(-ang.y);
|
|
|
- float cosx = cosf(-ang.x);
|
|
|
- float sinx = sinf(-ang.x);
|
|
|
-
|
|
|
- result.m0 = cosz * cosy;
|
|
|
- result.m4 = (cosz * siny * sinx) - (sinz * cosx);
|
|
|
- result.m8 = (cosz * siny * cosx) + (sinz * sinx);
|
|
|
-
|
|
|
- result.m1 = sinz * cosy;
|
|
|
- result.m5 = (sinz * siny * sinx) + (cosz * cosx);
|
|
|
- result.m9 = (sinz * siny * cosx) - (cosz * sinx);
|
|
|
-
|
|
|
- result.m2 = -siny;
|
|
|
- result.m6 = cosy * sinx;
|
|
|
- result.m10= cosy * cosx;
|
|
|
-
|
|
|
- return result;
|
|
|
-}
|
|
|
-
|
|
|
-// Returns zyx-rotation matrix (angles in radians)
|
|
|
-// TODO: This solution is suboptimal, it should be possible to create this matrix in one go
|
|
|
-// instead of using a 3 matrix multiplication
|
|
|
-RMDEF Matrix MatrixRotateZYX(Vector3 ang)
|
|
|
-{
|
|
|
- Matrix result = MatrixRotateZ(ang.z);
|
|
|
- result = MatrixMultiply(result, MatrixRotateY(ang.y));
|
|
|
- result = MatrixMultiply(result, MatrixRotateX(ang.x));
|
|
|
-
|
|
|
- return result;
|
|
|
-}
|
|
|
-
|
|
|
// Returns x-rotation matrix (angle in radians)
|
|
|
RMDEF Matrix MatrixRotateX(float angle)
|
|
|
{
|
|
@@ -938,39 +925,53 @@ RMDEF Matrix MatrixRotateZ(float angle)
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
-// Returns scaling matrix
|
|
|
-RMDEF Matrix MatrixScale(float x, float y, float z)
|
|
|
+
|
|
|
+// Returns xyz-rotation matrix (angles in radians)
|
|
|
+RMDEF Matrix MatrixRotateXYZ(Vector3 ang)
|
|
|
{
|
|
|
- Matrix result = { x, 0.0f, 0.0f, 0.0f,
|
|
|
- 0.0f, y, 0.0f, 0.0f,
|
|
|
- 0.0f, 0.0f, z, 0.0f,
|
|
|
- 0.0f, 0.0f, 0.0f, 1.0f };
|
|
|
+ Matrix result = MatrixIdentity();
|
|
|
+
|
|
|
+ float cosz = cosf(-ang.z);
|
|
|
+ float sinz = sinf(-ang.z);
|
|
|
+ float cosy = cosf(-ang.y);
|
|
|
+ float siny = sinf(-ang.y);
|
|
|
+ float cosx = cosf(-ang.x);
|
|
|
+ float sinx = sinf(-ang.x);
|
|
|
+
|
|
|
+ result.m0 = cosz * cosy;
|
|
|
+ result.m4 = (cosz * siny * sinx) - (sinz * cosx);
|
|
|
+ result.m8 = (cosz * siny * cosx) + (sinz * sinx);
|
|
|
+
|
|
|
+ result.m1 = sinz * cosy;
|
|
|
+ result.m5 = (sinz * siny * sinx) + (cosz * cosx);
|
|
|
+ result.m9 = (sinz * siny * cosx) - (cosz * sinx);
|
|
|
+
|
|
|
+ result.m2 = -siny;
|
|
|
+ result.m6 = cosy * sinx;
|
|
|
+ result.m10= cosy * cosx;
|
|
|
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
-// Returns two matrix multiplication
|
|
|
-// NOTE: When multiplying matrices... the order matters!
|
|
|
-RMDEF Matrix MatrixMultiply(Matrix left, Matrix right)
|
|
|
+// Returns zyx-rotation matrix (angles in radians)
|
|
|
+// TODO: This solution is suboptimal, it should be possible to create this matrix in one go
|
|
|
+// instead of using a 3 matrix multiplication
|
|
|
+RMDEF Matrix MatrixRotateZYX(Vector3 ang)
|
|
|
{
|
|
|
- Matrix result = { 0 };
|
|
|
+ Matrix result = MatrixRotateZ(ang.z);
|
|
|
+ result = MatrixMultiply(result, MatrixRotateY(ang.y));
|
|
|
+ result = MatrixMultiply(result, MatrixRotateX(ang.x));
|
|
|
+
|
|
|
+ return result;
|
|
|
+}
|
|
|
|
|
|
- result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12;
|
|
|
- result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13;
|
|
|
- result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14;
|
|
|
- result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15;
|
|
|
- result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12;
|
|
|
- result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13;
|
|
|
- result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14;
|
|
|
- result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15;
|
|
|
- result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12;
|
|
|
- result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13;
|
|
|
- result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14;
|
|
|
- result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15;
|
|
|
- result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12;
|
|
|
- result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13;
|
|
|
- result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14;
|
|
|
- result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15;
|
|
|
+// Returns scaling matrix
|
|
|
+RMDEF Matrix MatrixScale(float x, float y, float z)
|
|
|
+{
|
|
|
+ Matrix result = { x, 0.0f, 0.0f, 0.0f,
|
|
|
+ 0.0f, y, 0.0f, 0.0f,
|
|
|
+ 0.0f, 0.0f, z, 0.0f,
|
|
|
+ 0.0f, 0.0f, 0.0f, 1.0f };
|
|
|
|
|
|
return result;
|
|
|
}
|