Browse Source

work on quat and matrix math - deleted multiple copies of raymath.h causing issues (#1359)

Co-authored-by: codifies <[email protected]>
chriscamacho 5 years ago
parent
commit
d140dc81c0
6 changed files with 191 additions and 4493 deletions
  1. 5 3
      examples/Makefile
  2. 131 0
      examples/core/core_quat_conversion.c
  3. 0 1466
      examples/core/raymath.h
  4. 0 1466
      examples/models/raymath.h
  5. 0 1466
      examples/shaders/raymath.h
  6. 55 92
      src/raymath.h

+ 5 - 3
examples/Makefile

@@ -267,7 +267,8 @@ ifeq ($(PLATFORM),PLATFORM_DESKTOP)
     ifeq ($(PLATFORM_OS),LINUX)
         # Reset everything.
         # Precedence: immediately local, installed version, raysan5 provided libs -I$(RAYLIB_H_INSTALL_PATH) -I$(RAYLIB_PATH)/release/include
-        INCLUDE_PATHS = -I$(RAYLIB_H_INSTALL_PATH) -isystem. -isystem$(RAYLIB_PATH)/src -isystem$(RAYLIB_PATH)/release/include -isystem$(RAYLIB_PATH)/src/external
+        #INCLUDE_PATHS = -I$(RAYLIB_H_INSTALL_PATH) -isystem. -isystem$(RAYLIB_PATH)/src -isystem$(RAYLIB_PATH)/release/include -isystem$(RAYLIB_PATH)/src/external
+        INCLUDE_PATHS = -I$(RAYLIB_H_INSTALL_PATH) -I. -I$(RAYLIB_PATH)/src -I$(RAYLIB_PATH)/release/include -I$(RAYLIB_PATH)/src/external
     endif
 endif
 
@@ -290,7 +291,7 @@ ifeq ($(PLATFORM),PLATFORM_DESKTOP)
     ifeq ($(PLATFORM_OS),LINUX)
         # Reset everything.
         # Precedence: immediately local, installed version, raysan5 provided libs
-        LDFLAGS = -L. -L$(RAYLIB_INSTALL_PATH) -L$(RAYLIB_RELEASE_PATH)
+        LDFLAGS = -L. -L$(RAYLIB_INSTALL_PATH) -L$(RAYLIB_RELEASE_PATH)  -L$(RAYLIB_PATH)
     endif
 endif
 
@@ -378,7 +379,8 @@ CORE = \
     core/core_scissor_test \
     core/core_storage_values \
     core/core_vr_simulator \
-    core/core_loading_thread
+    core/core_loading_thread \
+    core/core_quat_conversion 
 
 SHAPES = \
     shapes/shapes_basic_shapes \

+ 131 - 0
examples/core/core_quat_conversion.c

@@ -0,0 +1,131 @@
+/*******************************************************************************************
+*
+*   raylib [core] example - quat conversions
+*
+*   Welcome to raylib!
+*
+*	generally you should really stick to eulers OR quats...
+*   This tests that various conversions are equivilant.
+*
+*   You can find all basic examples on [C:\raylib\raylib\examples] directory and
+*   raylib official webpage: [www.raylib.com]
+*
+*   Enjoy using raylib. :)
+*
+*   This example has been created using raylib 1.0 (www.raylib.com)
+*   raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details)
+*
+*   Copyright (c) 2013-2020 Ramon Santamaria (@raysan5)
+*
+********************************************************************************************/
+
+#include "raylib.h"
+#include "raymath.h"
+
+#ifndef PI2
+	#define PI2 PI*2
+#endif
+
+int main(void)
+{
+    // Initialization
+    //--------------------------------------------------------------------------------------
+    const int screenWidth = 800;
+    const int screenHeight = 450;
+
+    InitWindow(screenWidth, screenHeight, "raylib [core] example - quat conversions");
+    
+    Camera3D camera = { 0 };
+    camera.position = (Vector3){ 0.0f, 10.0f, 10.0f };  // Camera position
+    camera.target = (Vector3){ 0.0f, 0.0f, 0.0f };      // Camera looking at point
+    camera.up = (Vector3){ 0.0f, 1.0f, 0.0f };          // Camera up vector (rotation towards target)
+    camera.fovy = 45.0f;                                // Camera field-of-view Y
+    camera.type = CAMERA_PERSPECTIVE;                   // Camera mode type
+
+    Mesh msh = GenMeshCylinder(.2, 1, 32); 
+    Model mod = LoadModelFromMesh(msh);
+
+    SetTargetFPS(60);               // Set our game to run at 60 frames-per-second
+    //--------------------------------------------------------------------------------------
+
+	Quaternion q1;
+	Matrix m1,m2,m3,m4;
+	Vector3 v1,v2;
+	
+    // Main game loop
+    while (!WindowShouldClose())    // Detect window close button or ESC key
+    {
+        // Update
+        if (!IsKeyDown(KEY_SPACE)) {
+            v1.x += 0.01;
+            v1.y += 0.03;
+            v1.z += 0.05;
+        }
+            
+        if (v1.x > PI2) v1.x-=PI2;
+        if (v1.y > PI2) v1.y-=PI2;
+        if (v1.z > PI2) v1.z-=PI2;
+        
+        q1 = QuaternionFromEuler(v1.x, v1.y, v1.z);
+        m1 = MatrixRotateZYX(v1);
+        m2 = QuaternionToMatrix(q1);
+
+        q1 = QuaternionFromMatrix(m1);
+        m3 = QuaternionToMatrix(q1);
+        
+        v2 = QuaternionToEuler(q1);       
+        v2.x*=DEG2RAD; v2.y*=DEG2RAD; v2.z*=DEG2RAD; 
+        
+        m4 = MatrixRotateZYX(v2);
+
+        // Draw
+        //----------------------------------------------------------------------------------
+        BeginDrawing();
+
+            ClearBackground(RAYWHITE);
+            BeginMode3D(camera);
+
+                mod.transform = m1;
+                DrawModel(mod, (Vector3){-1,0,0},1.0,RED);
+                mod.transform = m2;
+                DrawModel(mod, (Vector3){1,0,0},1.0,RED);
+                mod.transform = m3;
+                DrawModel(mod, (Vector3){0,0,0},1.0,RED);
+                mod.transform = m4;
+                DrawModel(mod, (Vector3){0,0,-1},1.0,RED);
+
+
+                DrawGrid(10, 1.0f);
+ 
+            EndMode3D();
+        
+            if (v2.x<0) v2.x+=PI2;
+            if (v2.y<0) v2.y+=PI2;
+            if (v2.z<0) v2.z+=PI2;
+            
+            Color cx,cy,cz;
+            cx=cy=cz=BLACK;
+            if (v1.x == v2.x) cx = GREEN;
+            if (v1.y == v2.y) cy = GREEN;
+            if (v1.z == v2.z) cz = GREEN;
+            
+            DrawText(TextFormat("%2.3f",v1.x),20,20,20,cx);
+            DrawText(TextFormat("%2.3f",v1.y),20,40,20,cy);
+            DrawText(TextFormat("%2.3f",v1.z),20,60,20,cz);
+
+        
+            DrawText(TextFormat("%2.3f",v2.x),200,20,20,cx);
+            DrawText(TextFormat("%2.3f",v2.y),200,40,20,cy);
+            DrawText(TextFormat("%2.3f",v2.z),200,60,20,cz);
+
+        EndDrawing();
+        //----------------------------------------------------------------------------------
+    }
+
+    // De-Initialization
+    //--------------------------------------------------------------------------------------
+    CloseWindow();        // Close window and OpenGL context
+    //--------------------------------------------------------------------------------------
+
+    return 0;
+}

+ 0 - 1466
examples/core/raymath.h

@@ -1,1466 +0,0 @@
-/**********************************************************************************************
-*
-*   raymath v1.2 - Math functions to work with Vector3, Matrix and Quaternions
-*
-*   CONFIGURATION:
-*
-*   #define RAYMATH_IMPLEMENTATION
-*       Generates the implementation of the library into the included file.
-*       If not defined, the library is in header only mode and can be included in other headers
-*       or source files without problems. But only ONE file should hold the implementation.
-*
-*   #define RAYMATH_HEADER_ONLY
-*       Define static inline functions code, so #include header suffices for use.
-*       This may use up lots of memory.
-*
-*   #define RAYMATH_STANDALONE
-*       Avoid raylib.h header inclusion in this file.
-*       Vector3 and Matrix data types are defined internally in raymath module.
-*
-*
-*   LICENSE: zlib/libpng
-*
-*   Copyright (c) 2015-2020 Ramon Santamaria (@raysan5)
-*
-*   This software is provided "as-is", without any express or implied warranty. In no event
-*   will the authors be held liable for any damages arising from the use of this software.
-*
-*   Permission is granted to anyone to use this software for any purpose, including commercial
-*   applications, and to alter it and redistribute it freely, subject to the following restrictions:
-*
-*     1. The origin of this software must not be misrepresented; you must not claim that you
-*     wrote the original software. If you use this software in a product, an acknowledgment
-*     in the product documentation would be appreciated but is not required.
-*
-*     2. Altered source versions must be plainly marked as such, and must not be misrepresented
-*     as being the original software.
-*
-*     3. This notice may not be removed or altered from any source distribution.
-*
-**********************************************************************************************/
-
-#ifndef RAYMATH_H
-#define RAYMATH_H
-
-//#define RAYMATH_STANDALONE      // NOTE: To use raymath as standalone lib, just uncomment this line
-//#define RAYMATH_HEADER_ONLY     // NOTE: To compile functions as static inline, uncomment this line
-
-#ifndef RAYMATH_STANDALONE
-    #include "raylib.h"           // Required for structs: Vector3, Matrix
-#endif
-
-#if defined(RAYMATH_IMPLEMENTATION) && defined(RAYMATH_HEADER_ONLY)
-    #error "Specifying both RAYMATH_IMPLEMENTATION and RAYMATH_HEADER_ONLY is contradictory"
-#endif
-
-#if defined(RAYMATH_IMPLEMENTATION)
-    #if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED)
-        #define RMDEF __declspec(dllexport) extern inline // We are building raylib as a Win32 shared library (.dll).
-    #elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED)
-        #define RMDEF __declspec(dllimport)         // We are using raylib as a Win32 shared library (.dll)
-    #else
-        #define RMDEF extern inline // Provide external definition
-    #endif
-#elif defined(RAYMATH_HEADER_ONLY)
-    #define RMDEF static inline // Functions may be inlined, no external out-of-line definition
-#else
-    #if defined(__TINYC__)
-        #define RMDEF static inline // plain inline not supported by tinycc (See issue #435)
-    #else
-        #define RMDEF inline        // Functions may be inlined or external definition used
-    #endif
-#endif
-
-//----------------------------------------------------------------------------------
-// Defines and Macros
-//----------------------------------------------------------------------------------
-#ifndef PI
-    #define PI 3.14159265358979323846
-#endif
-
-#ifndef DEG2RAD
-    #define DEG2RAD (PI/180.0f)
-#endif
-
-#ifndef RAD2DEG
-    #define RAD2DEG (180.0f/PI)
-#endif
-
-// Return float vector for Matrix
-#ifndef MatrixToFloat
-    #define MatrixToFloat(mat) (MatrixToFloatV(mat).v)
-#endif
-
-// Return float vector for Vector3
-#ifndef Vector3ToFloat
-    #define Vector3ToFloat(vec) (Vector3ToFloatV(vec).v)
-#endif
-
-//----------------------------------------------------------------------------------
-// Types and Structures Definition
-//----------------------------------------------------------------------------------
-
-#if defined(RAYMATH_STANDALONE)
-    // Vector2 type
-    typedef struct Vector2 {
-        float x;
-        float y;
-    } Vector2;
-
-    // Vector3 type
-    typedef struct Vector3 {
-        float x;
-        float y;
-        float z;
-    } Vector3;
-
-    // Quaternion type
-    typedef struct Quaternion {
-        float x;
-        float y;
-        float z;
-        float w;
-    } Quaternion;
-
-    // Matrix type (OpenGL style 4x4 - right handed, column major)
-    typedef struct Matrix {
-        float m0, m4, m8, m12;
-        float m1, m5, m9, m13;
-        float m2, m6, m10, m14;
-        float m3, m7, m11, m15;
-    } Matrix;
-#endif
-
-// NOTE: Helper types to be used instead of array return types for *ToFloat functions
-typedef struct float3 { float v[3]; } float3;
-typedef struct float16 { float v[16]; } float16;
-
-#include <math.h>       // Required for: sinf(), cosf(), sqrtf(), tan(), fabs()
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Utils math
-//----------------------------------------------------------------------------------
-
-// Clamp float value
-RMDEF float Clamp(float value, float min, float max)
-{
-    const float res = value < min ? min : value;
-    return res > max ? max : res;
-}
-
-// Calculate linear interpolation between two floats
-RMDEF float Lerp(float start, float end, float amount)
-{
-    return start + amount*(end - start);
-}
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Vector2 math
-//----------------------------------------------------------------------------------
-
-// Vector with components value 0.0f
-RMDEF Vector2 Vector2Zero(void)
-{
-    Vector2 result = { 0.0f, 0.0f };
-    return result;
-}
-
-// Vector with components value 1.0f
-RMDEF Vector2 Vector2One(void)
-{
-    Vector2 result = { 1.0f, 1.0f };
-    return result;
-}
-
-// Add two vectors (v1 + v2)
-RMDEF Vector2 Vector2Add(Vector2 v1, Vector2 v2)
-{
-    Vector2 result = { v1.x + v2.x, v1.y + v2.y };
-    return result;
-}
-
-// Add vector and float value
-RMDEF Vector2 Vector2AddValue(Vector2 v, float add)
-{
-    Vector2 result = { v.x + add, v.y + add };
-    return result;
-}
-
-// Subtract two vectors (v1 - v2)
-RMDEF Vector2 Vector2Subtract(Vector2 v1, Vector2 v2)
-{
-    Vector2 result = { v1.x - v2.x, v1.y - v2.y };
-    return result;
-}
-
-// Subtract vector by float value
-RMDEF Vector2 Vector2SubtractValue(Vector2 v, float sub)
-{
-    Vector2 result = { v.x - sub, v.y - sub };
-    return result;
-}
-
-// Calculate vector length
-RMDEF float Vector2Length(Vector2 v)
-{
-    float result = sqrtf((v.x*v.x) + (v.y*v.y));
-    return result;
-}
-
-// Calculate two vectors dot product
-RMDEF float Vector2DotProduct(Vector2 v1, Vector2 v2)
-{
-    float result = (v1.x*v2.x + v1.y*v2.y);
-    return result;
-}
-
-// Calculate distance between two vectors
-RMDEF float Vector2Distance(Vector2 v1, Vector2 v2)
-{
-    float result = sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));
-    return result;
-}
-
-// Calculate angle from two vectors in X-axis
-RMDEF float Vector2Angle(Vector2 v1, Vector2 v2)
-{
-    float result = atan2f(v2.y - v1.y, v2.x - v1.x)*(180.0f/PI);
-    if (result < 0) result += 360.0f;
-    return result;
-}
-
-// Scale vector (multiply by value)
-RMDEF Vector2 Vector2Scale(Vector2 v, float scale)
-{
-    Vector2 result = { v.x*scale, v.y*scale };
-    return result;
-}
-
-// Multiply vector by vector
-RMDEF Vector2 Vector2Multiply(Vector2 v1, Vector2 v2)
-{
-    Vector2 result = { v1.x*v2.x, v1.y*v2.y };
-    return result;
-}
-
-// Negate vector
-RMDEF Vector2 Vector2Negate(Vector2 v)
-{
-    Vector2 result = { -v.x, -v.y };
-    return result;
-}
-
-// Divide vector by vector
-RMDEF Vector2 Vector2Divide(Vector2 v1, Vector2 v2)
-{
-    Vector2 result = { v1.x/v2.x, v1.y/v2.y };
-    return result;
-}
-
-// Normalize provided vector
-RMDEF Vector2 Vector2Normalize(Vector2 v)
-{
-    Vector2 result = Vector2Scale(v, 1/Vector2Length(v));
-    return result;
-}
-
-// Calculate linear interpolation between two vectors
-RMDEF Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount)
-{
-    Vector2 result = { 0 };
-
-    result.x = v1.x + amount*(v2.x - v1.x);
-    result.y = v1.y + amount*(v2.y - v1.y);
-
-    return result;
-}
-
-// Rotate Vector by float in Degrees.
-RMDEF Vector2 Vector2Rotate(Vector2 v, float degs)
-{
-    float rads = degs*DEG2RAD;
-    Vector2 result = {v.x * cosf(rads) - v.y * sinf(rads) , v.x * sinf(rads) + v.y * cosf(rads) };
-    return result;
-}
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Vector3 math
-//----------------------------------------------------------------------------------
-
-// Vector with components value 0.0f
-RMDEF Vector3 Vector3Zero(void)
-{
-    Vector3 result = { 0.0f, 0.0f, 0.0f };
-    return result;
-}
-
-// Vector with components value 1.0f
-RMDEF Vector3 Vector3One(void)
-{
-    Vector3 result = { 1.0f, 1.0f, 1.0f };
-    return result;
-}
-
-// Add two vectors
-RMDEF Vector3 Vector3Add(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z };
-    return result;
-}
-
-// Add vector and float value
-RMDEF Vector3 Vector3AddValue(Vector3 v, float add)
-{
-    Vector3 result = { v.x + add, v.y + add, v.z + add };
-    return result;
-}
-
-// Subtract two vectors
-RMDEF Vector3 Vector3Subtract(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
-    return result;
-}
-
-// Subtract vector by float value
-RMDEF Vector3 Vector3SubtractValue(Vector3 v, float sub)
-{
-    Vector3 result = { v.x - sub, v.y - sub, v.z - sub };
-    return result;
-}
-
-// Multiply vector by scalar
-RMDEF Vector3 Vector3Scale(Vector3 v, float scalar)
-{
-    Vector3 result = { v.x*scalar, v.y*scalar, v.z*scalar };
-    return result;
-}
-
-// Multiply vector by vector
-RMDEF Vector3 Vector3Multiply(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z };
-    return result;
-}
-
-// Calculate two vectors cross product
-RMDEF Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x };
-    return result;
-}
-
-// Calculate one vector perpendicular vector
-RMDEF Vector3 Vector3Perpendicular(Vector3 v)
-{
-    Vector3 result = { 0 };
-
-    float min = (float) fabs(v.x);
-    Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f};
-
-    if (fabs(v.y) < min)
-    {
-        min = (float) fabs(v.y);
-        Vector3 tmp = {0.0f, 1.0f, 0.0f};
-        cardinalAxis = tmp;
-    }
-
-    if (fabs(v.z) < min)
-    {
-        Vector3 tmp = {0.0f, 0.0f, 1.0f};
-        cardinalAxis = tmp;
-    }
-
-    result = Vector3CrossProduct(v, cardinalAxis);
-
-    return result;
-}
-
-// Calculate vector length
-RMDEF float Vector3Length(const Vector3 v)
-{
-    float result = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
-    return result;
-}
-
-// Calculate two vectors dot product
-RMDEF float Vector3DotProduct(Vector3 v1, Vector3 v2)
-{
-    float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
-    return result;
-}
-
-// Calculate distance between two vectors
-RMDEF float Vector3Distance(Vector3 v1, Vector3 v2)
-{
-    float dx = v2.x - v1.x;
-    float dy = v2.y - v1.y;
-    float dz = v2.z - v1.z;
-    float result = sqrtf(dx*dx + dy*dy + dz*dz);
-    return result;
-}
-
-// Negate provided vector (invert direction)
-RMDEF Vector3 Vector3Negate(Vector3 v)
-{
-    Vector3 result = { -v.x, -v.y, -v.z };
-    return result;
-}
-
-// Divide vector by vector
-RMDEF Vector3 Vector3Divide(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z };
-    return result;
-}
-
-// Normalize provided vector
-RMDEF Vector3 Vector3Normalize(Vector3 v)
-{
-    Vector3 result = v;
-
-    float length, ilength;
-    length = Vector3Length(v);
-    if (length == 0.0f) length = 1.0f;
-    ilength = 1.0f/length;
-
-    result.x *= ilength;
-    result.y *= ilength;
-    result.z *= ilength;
-
-    return result;
-}
-
-// Orthonormalize provided vectors
-// Makes vectors normalized and orthogonal to each other
-// Gram-Schmidt function implementation
-RMDEF void Vector3OrthoNormalize(Vector3 *v1, Vector3 *v2)
-{
-    *v1 = Vector3Normalize(*v1);
-    Vector3 vn = Vector3CrossProduct(*v1, *v2);
-    vn = Vector3Normalize(vn);
-    *v2 = Vector3CrossProduct(vn, *v1);
-}
-
-// Transforms a Vector3 by a given Matrix
-RMDEF Vector3 Vector3Transform(Vector3 v, Matrix mat)
-{
-    Vector3 result = { 0 };
-    float x = v.x;
-    float y = v.y;
-    float z = v.z;
-
-    result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
-    result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
-    result.z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
-
-    return result;
-}
-
-// Transform a vector by quaternion rotation
-RMDEF Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q)
-{
-    Vector3 result = { 0 };
-
-    result.x = v.x*(q.x*q.x + q.w*q.w - q.y*q.y - q.z*q.z) + v.y*(2*q.x*q.y - 2*q.w*q.z) + v.z*(2*q.x*q.z + 2*q.w*q.y);
-    result.y = v.x*(2*q.w*q.z + 2*q.x*q.y) + v.y*(q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z) + v.z*(-2*q.w*q.x + 2*q.y*q.z);
-    result.z = v.x*(-2*q.w*q.y + 2*q.x*q.z) + v.y*(2*q.w*q.x + 2*q.y*q.z)+ v.z*(q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z);
-
-    return result;
-}
-
-// Calculate linear interpolation between two vectors
-RMDEF Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount)
-{
-    Vector3 result = { 0 };
-
-    result.x = v1.x + amount*(v2.x - v1.x);
-    result.y = v1.y + amount*(v2.y - v1.y);
-    result.z = v1.z + amount*(v2.z - v1.z);
-
-    return result;
-}
-
-// Calculate reflected vector to normal
-RMDEF Vector3 Vector3Reflect(Vector3 v, Vector3 normal)
-{
-    // I is the original vector
-    // N is the normal of the incident plane
-    // R = I - (2*N*( DotProduct[ I,N] ))
-
-    Vector3 result = { 0 };
-
-    float dotProduct = Vector3DotProduct(v, normal);
-
-    result.x = v.x - (2.0f*normal.x)*dotProduct;
-    result.y = v.y - (2.0f*normal.y)*dotProduct;
-    result.z = v.z - (2.0f*normal.z)*dotProduct;
-
-    return result;
-}
-
-// Return min value for each pair of components
-RMDEF Vector3 Vector3Min(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { 0 };
-
-    result.x = fminf(v1.x, v2.x);
-    result.y = fminf(v1.y, v2.y);
-    result.z = fminf(v1.z, v2.z);
-
-    return result;
-}
-
-// Return max value for each pair of components
-RMDEF Vector3 Vector3Max(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { 0 };
-
-    result.x = fmaxf(v1.x, v2.x);
-    result.y = fmaxf(v1.y, v2.y);
-    result.z = fmaxf(v1.z, v2.z);
-
-    return result;
-}
-
-// Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c)
-// NOTE: Assumes P is on the plane of the triangle
-RMDEF Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
-{
-    //Vector v0 = b - a, v1 = c - a, v2 = p - a;
-
-    Vector3 v0 = Vector3Subtract(b, a);
-    Vector3 v1 = Vector3Subtract(c, a);
-    Vector3 v2 = Vector3Subtract(p, a);
-    float d00 = Vector3DotProduct(v0, v0);
-    float d01 = Vector3DotProduct(v0, v1);
-    float d11 = Vector3DotProduct(v1, v1);
-    float d20 = Vector3DotProduct(v2, v0);
-    float d21 = Vector3DotProduct(v2, v1);
-
-    float denom = d00*d11 - d01*d01;
-
-    Vector3 result = { 0 };
-
-    result.y = (d11*d20 - d01*d21)/denom;
-    result.z = (d00*d21 - d01*d20)/denom;
-    result.x = 1.0f - (result.z + result.y);
-
-    return result;
-}
-
-// Returns Vector3 as float array
-RMDEF float3 Vector3ToFloatV(Vector3 v)
-{
-    float3 buffer = { 0 };
-
-    buffer.v[0] = v.x;
-    buffer.v[1] = v.y;
-    buffer.v[2] = v.z;
-
-    return buffer;
-}
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Matrix math
-//----------------------------------------------------------------------------------
-
-// Compute matrix determinant
-RMDEF float MatrixDeterminant(Matrix mat)
-{
-    // Cache the matrix values (speed optimization)
-    float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
-    float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
-    float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
-    float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
-
-    float result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 +
-                   a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 +
-                   a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 +
-                   a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 +
-                   a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 +
-                   a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33;
-
-    return result;
-}
-
-// Returns the trace of the matrix (sum of the values along the diagonal)
-RMDEF float MatrixTrace(Matrix mat)
-{
-    float result = (mat.m0 + mat.m5 + mat.m10 + mat.m15);
-    return result;
-}
-
-// Transposes provided matrix
-RMDEF Matrix MatrixTranspose(Matrix mat)
-{
-    Matrix result = { 0 };
-
-    result.m0 = mat.m0;
-    result.m1 = mat.m4;
-    result.m2 = mat.m8;
-    result.m3 = mat.m12;
-    result.m4 = mat.m1;
-    result.m5 = mat.m5;
-    result.m6 = mat.m9;
-    result.m7 = mat.m13;
-    result.m8 = mat.m2;
-    result.m9 = mat.m6;
-    result.m10 = mat.m10;
-    result.m11 = mat.m14;
-    result.m12 = mat.m3;
-    result.m13 = mat.m7;
-    result.m14 = mat.m11;
-    result.m15 = mat.m15;
-
-    return result;
-}
-
-// Invert provided matrix
-RMDEF Matrix MatrixInvert(Matrix mat)
-{
-    Matrix result = { 0 };
-
-    // Cache the matrix values (speed optimization)
-    float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
-    float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
-    float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
-    float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
-
-    float b00 = a00*a11 - a01*a10;
-    float b01 = a00*a12 - a02*a10;
-    float b02 = a00*a13 - a03*a10;
-    float b03 = a01*a12 - a02*a11;
-    float b04 = a01*a13 - a03*a11;
-    float b05 = a02*a13 - a03*a12;
-    float b06 = a20*a31 - a21*a30;
-    float b07 = a20*a32 - a22*a30;
-    float b08 = a20*a33 - a23*a30;
-    float b09 = a21*a32 - a22*a31;
-    float b10 = a21*a33 - a23*a31;
-    float b11 = a22*a33 - a23*a32;
-
-    // Calculate the invert determinant (inlined to avoid double-caching)
-    float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
-
-    result.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet;
-    result.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet;
-    result.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet;
-    result.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet;
-    result.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet;
-    result.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet;
-    result.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet;
-    result.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet;
-    result.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet;
-    result.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet;
-    result.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet;
-    result.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet;
-    result.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet;
-    result.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet;
-    result.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet;
-    result.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet;
-
-    return result;
-}
-
-// Normalize provided matrix
-RMDEF Matrix MatrixNormalize(Matrix mat)
-{
-    Matrix result = { 0 };
-
-    float det = MatrixDeterminant(mat);
-
-    result.m0 = mat.m0/det;
-    result.m1 = mat.m1/det;
-    result.m2 = mat.m2/det;
-    result.m3 = mat.m3/det;
-    result.m4 = mat.m4/det;
-    result.m5 = mat.m5/det;
-    result.m6 = mat.m6/det;
-    result.m7 = mat.m7/det;
-    result.m8 = mat.m8/det;
-    result.m9 = mat.m9/det;
-    result.m10 = mat.m10/det;
-    result.m11 = mat.m11/det;
-    result.m12 = mat.m12/det;
-    result.m13 = mat.m13/det;
-    result.m14 = mat.m14/det;
-    result.m15 = mat.m15/det;
-
-    return result;
-}
-
-// Returns identity matrix
-RMDEF Matrix MatrixIdentity(void)
-{
-    Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
-                      0.0f, 1.0f, 0.0f, 0.0f,
-                      0.0f, 0.0f, 1.0f, 0.0f,
-                      0.0f, 0.0f, 0.0f, 1.0f };
-
-    return result;
-}
-
-// Add two matrices
-RMDEF Matrix MatrixAdd(Matrix left, Matrix right)
-{
-    Matrix result = MatrixIdentity();
-
-    result.m0 = left.m0 + right.m0;
-    result.m1 = left.m1 + right.m1;
-    result.m2 = left.m2 + right.m2;
-    result.m3 = left.m3 + right.m3;
-    result.m4 = left.m4 + right.m4;
-    result.m5 = left.m5 + right.m5;
-    result.m6 = left.m6 + right.m6;
-    result.m7 = left.m7 + right.m7;
-    result.m8 = left.m8 + right.m8;
-    result.m9 = left.m9 + right.m9;
-    result.m10 = left.m10 + right.m10;
-    result.m11 = left.m11 + right.m11;
-    result.m12 = left.m12 + right.m12;
-    result.m13 = left.m13 + right.m13;
-    result.m14 = left.m14 + right.m14;
-    result.m15 = left.m15 + right.m15;
-
-    return result;
-}
-
-// Subtract two matrices (left - right)
-RMDEF Matrix MatrixSubtract(Matrix left, Matrix right)
-{
-    Matrix result = MatrixIdentity();
-
-    result.m0 = left.m0 - right.m0;
-    result.m1 = left.m1 - right.m1;
-    result.m2 = left.m2 - right.m2;
-    result.m3 = left.m3 - right.m3;
-    result.m4 = left.m4 - right.m4;
-    result.m5 = left.m5 - right.m5;
-    result.m6 = left.m6 - right.m6;
-    result.m7 = left.m7 - right.m7;
-    result.m8 = left.m8 - right.m8;
-    result.m9 = left.m9 - right.m9;
-    result.m10 = left.m10 - right.m10;
-    result.m11 = left.m11 - right.m11;
-    result.m12 = left.m12 - right.m12;
-    result.m13 = left.m13 - right.m13;
-    result.m14 = left.m14 - right.m14;
-    result.m15 = left.m15 - right.m15;
-
-    return result;
-}
-
-// Returns translation matrix
-RMDEF Matrix MatrixTranslate(float x, float y, float z)
-{
-    Matrix result = { 1.0f, 0.0f, 0.0f, x,
-                      0.0f, 1.0f, 0.0f, y,
-                      0.0f, 0.0f, 1.0f, z,
-                      0.0f, 0.0f, 0.0f, 1.0f };
-
-    return result;
-}
-
-// Create rotation matrix from axis and angle
-// NOTE: Angle should be provided in radians
-RMDEF Matrix MatrixRotate(Vector3 axis, float angle)
-{
-    Matrix result = { 0 };
-
-    float x = axis.x, y = axis.y, z = axis.z;
-
-    float length = sqrtf(x*x + y*y + z*z);
-
-    if ((length != 1.0f) && (length != 0.0f))
-    {
-        length = 1.0f/length;
-        x *= length;
-        y *= length;
-        z *= length;
-    }
-
-    float sinres = sinf(angle);
-    float cosres = cosf(angle);
-    float t = 1.0f - cosres;
-
-    result.m0  = x*x*t + cosres;
-    result.m1  = y*x*t + z*sinres;
-    result.m2  = z*x*t - y*sinres;
-    result.m3  = 0.0f;
-
-    result.m4  = x*y*t - z*sinres;
-    result.m5  = y*y*t + cosres;
-    result.m6  = z*y*t + x*sinres;
-    result.m7  = 0.0f;
-
-    result.m8  = x*z*t + y*sinres;
-    result.m9  = y*z*t - x*sinres;
-    result.m10 = z*z*t + cosres;
-    result.m11 = 0.0f;
-
-    result.m12 = 0.0f;
-    result.m13 = 0.0f;
-    result.m14 = 0.0f;
-    result.m15 = 1.0f;
-
-    return result;
-}
-
-// Returns xyz-rotation matrix (angles in radians)
-RMDEF Matrix MatrixRotateXYZ(Vector3 ang)
-{
-    Matrix result = MatrixIdentity();
-
-    float cosz = cosf(-ang.z);
-    float sinz = sinf(-ang.z);
-    float cosy = cosf(-ang.y);
-    float siny = sinf(-ang.y);
-    float cosx = cosf(-ang.x);
-    float sinx = sinf(-ang.x);
-
-    result.m0 = cosz * cosy;
-    result.m4 = (cosz * siny * sinx) - (sinz * cosx);
-    result.m8 = (cosz * siny * cosx) + (sinz * sinx);
-
-    result.m1 = sinz * cosy;
-    result.m5 = (sinz * siny * sinx) + (cosz * cosx);
-    result.m9 = (sinz * siny * cosx) - (cosz * sinx);
-
-    result.m2 = -siny;
-    result.m6 = cosy * sinx;
-    result.m10= cosy * cosx;
-
-    return result;
-}
-
-// Returns x-rotation matrix (angle in radians)
-RMDEF Matrix MatrixRotateX(float angle)
-{
-    Matrix result = MatrixIdentity();
-
-    float cosres = cosf(angle);
-    float sinres = sinf(angle);
-
-    result.m5 = cosres;
-    result.m6 = -sinres;
-    result.m9 = sinres;
-    result.m10 = cosres;
-
-    return result;
-}
-
-// Returns y-rotation matrix (angle in radians)
-RMDEF Matrix MatrixRotateY(float angle)
-{
-    Matrix result = MatrixIdentity();
-
-    float cosres = cosf(angle);
-    float sinres = sinf(angle);
-
-    result.m0 = cosres;
-    result.m2 = sinres;
-    result.m8 = -sinres;
-    result.m10 = cosres;
-
-    return result;
-}
-
-// Returns z-rotation matrix (angle in radians)
-RMDEF Matrix MatrixRotateZ(float angle)
-{
-    Matrix result = MatrixIdentity();
-
-    float cosres = cosf(angle);
-    float sinres = sinf(angle);
-
-    result.m0 = cosres;
-    result.m1 = -sinres;
-    result.m4 = sinres;
-    result.m5 = cosres;
-
-    return result;
-}
-
-// Returns scaling matrix
-RMDEF Matrix MatrixScale(float x, float y, float z)
-{
-    Matrix result = { x, 0.0f, 0.0f, 0.0f,
-                      0.0f, y, 0.0f, 0.0f,
-                      0.0f, 0.0f, z, 0.0f,
-                      0.0f, 0.0f, 0.0f, 1.0f };
-
-    return result;
-}
-
-// Returns two matrix multiplication
-// NOTE: When multiplying matrices... the order matters!
-RMDEF Matrix MatrixMultiply(Matrix left, Matrix right)
-{
-    Matrix result = { 0 };
-
-    result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12;
-    result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13;
-    result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14;
-    result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15;
-    result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12;
-    result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13;
-    result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14;
-    result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15;
-    result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12;
-    result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13;
-    result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14;
-    result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15;
-    result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12;
-    result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13;
-    result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14;
-    result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15;
-
-    return result;
-}
-
-// Returns perspective projection matrix
-RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far)
-{
-    Matrix result = { 0 };
-
-    float rl = (float)(right - left);
-    float tb = (float)(top - bottom);
-    float fn = (float)(far - near);
-
-    result.m0 = ((float) near*2.0f)/rl;
-    result.m1 = 0.0f;
-    result.m2 = 0.0f;
-    result.m3 = 0.0f;
-
-    result.m4 = 0.0f;
-    result.m5 = ((float) near*2.0f)/tb;
-    result.m6 = 0.0f;
-    result.m7 = 0.0f;
-
-    result.m8 = ((float)right + (float)left)/rl;
-    result.m9 = ((float)top + (float)bottom)/tb;
-    result.m10 = -((float)far + (float)near)/fn;
-    result.m11 = -1.0f;
-
-    result.m12 = 0.0f;
-    result.m13 = 0.0f;
-    result.m14 = -((float)far*(float)near*2.0f)/fn;
-    result.m15 = 0.0f;
-
-    return result;
-}
-
-// Returns perspective projection matrix
-// NOTE: Angle should be provided in radians
-RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double far)
-{
-    double top = near*tan(fovy*0.5);
-    double right = top*aspect;
-    Matrix result = MatrixFrustum(-right, right, -top, top, near, far);
-
-    return result;
-}
-
-// Returns orthographic projection matrix
-RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far)
-{
-    Matrix result = { 0 };
-
-    float rl = (float)(right - left);
-    float tb = (float)(top - bottom);
-    float fn = (float)(far - near);
-
-    result.m0 = 2.0f/rl;
-    result.m1 = 0.0f;
-    result.m2 = 0.0f;
-    result.m3 = 0.0f;
-    result.m4 = 0.0f;
-    result.m5 = 2.0f/tb;
-    result.m6 = 0.0f;
-    result.m7 = 0.0f;
-    result.m8 = 0.0f;
-    result.m9 = 0.0f;
-    result.m10 = -2.0f/fn;
-    result.m11 = 0.0f;
-    result.m12 = -((float)left + (float)right)/rl;
-    result.m13 = -((float)top + (float)bottom)/tb;
-    result.m14 = -((float)far + (float)near)/fn;
-    result.m15 = 1.0f;
-
-    return result;
-}
-
-// Returns camera look-at matrix (view matrix)
-RMDEF Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
-{
-    Matrix result = { 0 };
-
-    Vector3 z = Vector3Subtract(eye, target);
-    z = Vector3Normalize(z);
-    Vector3 x = Vector3CrossProduct(up, z);
-    x = Vector3Normalize(x);
-    Vector3 y = Vector3CrossProduct(z, x);
-    y = Vector3Normalize(y);
-
-    result.m0 = x.x;
-    result.m1 = x.y;
-    result.m2 = x.z;
-    result.m3 = 0.0f;
-    result.m4 = y.x;
-    result.m5 = y.y;
-    result.m6 = y.z;
-    result.m7 = 0.0f;
-    result.m8 = z.x;
-    result.m9 = z.y;
-    result.m10 = z.z;
-    result.m11 = 0.0f;
-    result.m12 = eye.x;
-    result.m13 = eye.y;
-    result.m14 = eye.z;
-    result.m15 = 1.0f;
-
-    result = MatrixInvert(result);
-
-    return result;
-}
-
-// Returns float array of matrix data
-RMDEF float16 MatrixToFloatV(Matrix mat)
-{
-    float16 buffer = { 0 };
-
-    buffer.v[0] = mat.m0;
-    buffer.v[1] = mat.m1;
-    buffer.v[2] = mat.m2;
-    buffer.v[3] = mat.m3;
-    buffer.v[4] = mat.m4;
-    buffer.v[5] = mat.m5;
-    buffer.v[6] = mat.m6;
-    buffer.v[7] = mat.m7;
-    buffer.v[8] = mat.m8;
-    buffer.v[9] = mat.m9;
-    buffer.v[10] = mat.m10;
-    buffer.v[11] = mat.m11;
-    buffer.v[12] = mat.m12;
-    buffer.v[13] = mat.m13;
-    buffer.v[14] = mat.m14;
-    buffer.v[15] = mat.m15;
-
-    return buffer;
-}
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Quaternion math
-//----------------------------------------------------------------------------------
-
-// Add two quaternions
-RMDEF Quaternion QuaternionAdd(Quaternion q1, Quaternion q2)
-{
-    Quaternion result = {q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w};
-    return result;
-}
-
-// Add quaternion and float value
-RMDEF Quaternion QuaternionAddValue(Quaternion q, float add)
-{
-    Quaternion result = {q.x + add, q.y + add, q.z + add, q.w + add};
-    return result;
-}
-
-// Subtract two quaternions
-RMDEF Quaternion QuaternionSubtract(Quaternion q1, Quaternion q2)
-{
-    Quaternion result = {q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w};
-    return result;
-}
-
-// Subtract quaternion and float value
-RMDEF Quaternion QuaternionSubtractValue(Quaternion q, float sub)
-{
-    Quaternion result = {q.x - sub, q.y - sub, q.z - sub, q.w - sub};
-    return result;
-}
-
-// Returns identity quaternion
-RMDEF Quaternion QuaternionIdentity(void)
-{
-    Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
-    return result;
-}
-
-// Computes the length of a quaternion
-RMDEF float QuaternionLength(Quaternion q)
-{
-    float result = (float)sqrt(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
-    return result;
-}
-
-// Normalize provided quaternion
-RMDEF Quaternion QuaternionNormalize(Quaternion q)
-{
-    Quaternion result = { 0 };
-
-    float length, ilength;
-    length = QuaternionLength(q);
-    if (length == 0.0f) length = 1.0f;
-    ilength = 1.0f/length;
-
-    result.x = q.x*ilength;
-    result.y = q.y*ilength;
-    result.z = q.z*ilength;
-    result.w = q.w*ilength;
-
-    return result;
-}
-
-// Invert provided quaternion
-RMDEF Quaternion QuaternionInvert(Quaternion q)
-{
-    Quaternion result = q;
-    float length = QuaternionLength(q);
-    float lengthSq = length*length;
-
-    if (lengthSq != 0.0)
-    {
-        float i = 1.0f/lengthSq;
-
-        result.x *= -i;
-        result.y *= -i;
-        result.z *= -i;
-        result.w *= i;
-    }
-
-    return result;
-}
-
-// Calculate two quaternion multiplication
-RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2)
-{
-    Quaternion result = { 0 };
-
-    float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w;
-    float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w;
-
-    result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby;
-    result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz;
-    result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx;
-    result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz;
-
-    return result;
-}
-
-// Scale quaternion by float value
-RMDEF Quaternion QuaternionScale(Quaternion q, float mul)
-{
-    Quaternion result = { 0 };
-
-    float qax = q.x, qay = q.y, qaz = q.z, qaw = q.w;
-
-    result.x = qax * mul + qaw * mul + qay * mul - qaz * mul;
-    result.y = qay * mul + qaw * mul + qaz * mul - qax * mul;
-    result.z = qaz * mul + qaw * mul + qax * mul - qay * mul;
-    result.w = qaw * mul - qax * mul - qay * mul - qaz * mul;
-
-    return result;
-}
-
-// Divide two quaternions
-RMDEF Quaternion QuaternionDivide(Quaternion q1, Quaternion q2)
-{
-    Quaternion result = {q1.x / q2.x, q1.y / q2.y, q1.z / q2.z, q1.w / q2.w};
-    return result;
-}
-
-// Calculate linear interpolation between two quaternions
-RMDEF Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount)
-{
-    Quaternion result = { 0 };
-
-    result.x = q1.x + amount*(q2.x - q1.x);
-    result.y = q1.y + amount*(q2.y - q1.y);
-    result.z = q1.z + amount*(q2.z - q1.z);
-    result.w = q1.w + amount*(q2.w - q1.w);
-
-    return result;
-}
-
-// Calculate slerp-optimized interpolation between two quaternions
-RMDEF Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount)
-{
-    Quaternion result = QuaternionLerp(q1, q2, amount);
-    result = QuaternionNormalize(result);
-
-    return result;
-}
-
-// Calculates spherical linear interpolation between two quaternions
-RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
-{
-    Quaternion result = { 0 };
-
-    float cosHalfTheta =  q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w;
-
-    if (fabs(cosHalfTheta) >= 1.0f) result = q1;
-    else if (cosHalfTheta > 0.95f) result = QuaternionNlerp(q1, q2, amount);
-    else
-    {
-        float halfTheta = acosf(cosHalfTheta);
-        float sinHalfTheta = sqrtf(1.0f - cosHalfTheta*cosHalfTheta);
-
-        if (fabs(sinHalfTheta) < 0.001f)
-        {
-            result.x = (q1.x*0.5f + q2.x*0.5f);
-            result.y = (q1.y*0.5f + q2.y*0.5f);
-            result.z = (q1.z*0.5f + q2.z*0.5f);
-            result.w = (q1.w*0.5f + q2.w*0.5f);
-        }
-        else
-        {
-            float ratioA = sinf((1 - amount)*halfTheta)/sinHalfTheta;
-            float ratioB = sinf(amount*halfTheta)/sinHalfTheta;
-
-            result.x = (q1.x*ratioA + q2.x*ratioB);
-            result.y = (q1.y*ratioA + q2.y*ratioB);
-            result.z = (q1.z*ratioA + q2.z*ratioB);
-            result.w = (q1.w*ratioA + q2.w*ratioB);
-        }
-    }
-
-    return result;
-}
-
-// Calculate quaternion based on the rotation from one vector to another
-RMDEF Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
-{
-    Quaternion result = { 0 };
-
-    float cos2Theta = Vector3DotProduct(from, to);
-    Vector3 cross = Vector3CrossProduct(from, to);
-
-    result.x = cross.x;
-    result.y = cross.y;
-    result.z = cross.y;
-    result.w = 1.0f + cos2Theta;     // NOTE: Added QuaternioIdentity()
-
-    // Normalize to essentially nlerp the original and identity to 0.5
-    result = QuaternionNormalize(result);
-
-    // Above lines are equivalent to:
-    //Quaternion result = QuaternionNlerp(q, QuaternionIdentity(), 0.5f);
-
-    return result;
-}
-
-// Returns a quaternion for a given rotation matrix
-RMDEF Quaternion QuaternionFromMatrix(Matrix mat)
-{
-    Quaternion result = { 0 };
-
-    float trace = MatrixTrace(mat);
-
-    if (trace > 0.0f)
-    {
-        float s = sqrtf(trace + 1)*2.0f;
-        float invS = 1.0f/s;
-
-        result.w = s*0.25f;
-        result.x = (mat.m6 - mat.m9)*invS;
-        result.y = (mat.m8 - mat.m2)*invS;
-        result.z = (mat.m1 - mat.m4)*invS;
-    }
-    else
-    {
-        float m00 = mat.m0, m11 = mat.m5, m22 = mat.m10;
-
-        if (m00 > m11 && m00 > m22)
-        {
-            float s = (float)sqrt(1.0f + m00 - m11 - m22)*2.0f;
-            float invS = 1.0f/s;
-
-            result.w = (mat.m6 - mat.m9)*invS;
-            result.x = s*0.25f;
-            result.y = (mat.m4 + mat.m1)*invS;
-            result.z = (mat.m8 + mat.m2)*invS;
-        }
-        else if (m11 > m22)
-        {
-            float s = sqrtf(1.0f + m11 - m00 - m22)*2.0f;
-            float invS = 1.0f/s;
-
-            result.w = (mat.m8 - mat.m2)*invS;
-            result.x = (mat.m4 + mat.m1)*invS;
-            result.y = s*0.25f;
-            result.z = (mat.m9 + mat.m6)*invS;
-        }
-        else
-        {
-            float s = sqrtf(1.0f + m22 - m00 - m11)*2.0f;
-            float invS = 1.0f/s;
-
-            result.w = (mat.m1 - mat.m4)*invS;
-            result.x = (mat.m8 + mat.m2)*invS;
-            result.y = (mat.m9 + mat.m6)*invS;
-            result.z = s*0.25f;
-        }
-    }
-
-    return result;
-}
-
-// Returns a matrix for a given quaternion
-RMDEF Matrix QuaternionToMatrix(Quaternion q)
-{
-    Matrix result = { 0 };
-
-    float x = q.x, y = q.y, z = q.z, w = q.w;
-
-    float x2 = x + x;
-    float y2 = y + y;
-    float z2 = z + z;
-
-    float length = QuaternionLength(q);
-    float lengthSquared = length*length;
-
-    float xx = x*x2/lengthSquared;
-    float xy = x*y2/lengthSquared;
-    float xz = x*z2/lengthSquared;
-
-    float yy = y*y2/lengthSquared;
-    float yz = y*z2/lengthSquared;
-    float zz = z*z2/lengthSquared;
-
-    float wx = w*x2/lengthSquared;
-    float wy = w*y2/lengthSquared;
-    float wz = w*z2/lengthSquared;
-
-    result.m0 = 1.0f - (yy + zz);
-    result.m1 = xy - wz;
-    result.m2 = xz + wy;
-    result.m3 = 0.0f;
-    result.m4 = xy + wz;
-    result.m5 = 1.0f - (xx + zz);
-    result.m6 = yz - wx;
-    result.m7 = 0.0f;
-    result.m8 = xz - wy;
-    result.m9 = yz + wx;
-    result.m10 = 1.0f - (xx + yy);
-    result.m11 = 0.0f;
-    result.m12 = 0.0f;
-    result.m13 = 0.0f;
-    result.m14 = 0.0f;
-    result.m15 = 1.0f;
-
-    return result;
-}
-
-// Returns rotation quaternion for an angle and axis
-// NOTE: angle must be provided in radians
-RMDEF Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle)
-{
-    Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
-
-    if (Vector3Length(axis) != 0.0f)
-
-    angle *= 0.5f;
-
-    axis = Vector3Normalize(axis);
-
-    float sinres = sinf(angle);
-    float cosres = cosf(angle);
-
-    result.x = axis.x*sinres;
-    result.y = axis.y*sinres;
-    result.z = axis.z*sinres;
-    result.w = cosres;
-
-    result = QuaternionNormalize(result);
-
-    return result;
-}
-
-// Returns the rotation angle and axis for a given quaternion
-RMDEF void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle)
-{
-    if (fabs(q.w) > 1.0f) q = QuaternionNormalize(q);
-
-    Vector3 resAxis = { 0.0f, 0.0f, 0.0f };
-    float resAngle = 2.0f*acosf(q.w);
-    float den = sqrtf(1.0f - q.w*q.w);
-
-    if (den > 0.0001f)
-    {
-        resAxis.x = q.x/den;
-        resAxis.y = q.y/den;
-        resAxis.z = q.z/den;
-    }
-    else
-    {
-        // This occurs when the angle is zero.
-        // Not a problem: just set an arbitrary normalized axis.
-        resAxis.x = 1.0f;
-    }
-
-    *outAxis = resAxis;
-    *outAngle = resAngle;
-}
-
-// Returns he quaternion equivalent to Euler angles
-RMDEF Quaternion QuaternionFromEuler(float roll, float pitch, float yaw)
-{
-    Quaternion q = { 0 };
-
-    float x0 = cosf(roll*0.5f);
-    float x1 = sinf(roll*0.5f);
-    float y0 = cosf(pitch*0.5f);
-    float y1 = sinf(pitch*0.5f);
-    float z0 = cosf(yaw*0.5f);
-    float z1 = sinf(yaw*0.5f);
-
-    q.x = x1*y0*z0 - x0*y1*z1;
-    q.y = x0*y1*z0 + x1*y0*z1;
-    q.z = x0*y0*z1 - x1*y1*z0;
-    q.w = x0*y0*z0 + x1*y1*z1;
-
-    return q;
-}
-
-// Return the Euler angles equivalent to quaternion (roll, pitch, yaw)
-// NOTE: Angles are returned in a Vector3 struct in degrees
-RMDEF Vector3 QuaternionToEuler(Quaternion q)
-{
-    Vector3 result = { 0 };
-
-    // roll (x-axis rotation)
-    float x0 = 2.0f*(q.w*q.x + q.y*q.z);
-    float x1 = 1.0f - 2.0f*(q.x*q.x + q.y*q.y);
-    result.x = atan2f(x0, x1)*RAD2DEG;
-
-    // pitch (y-axis rotation)
-    float y0 = 2.0f*(q.w*q.y - q.z*q.x);
-    y0 = y0 > 1.0f ? 1.0f : y0;
-    y0 = y0 < -1.0f ? -1.0f : y0;
-    result.y = asinf(y0)*RAD2DEG;
-
-    // yaw (z-axis rotation)
-    float z0 = 2.0f*(q.w*q.z + q.x*q.y);
-    float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z);
-    result.z = atan2f(z0, z1)*RAD2DEG;
-
-    return result;
-}
-
-// Transform a quaternion given a transformation matrix
-RMDEF Quaternion QuaternionTransform(Quaternion q, Matrix mat)
-{
-    Quaternion result = { 0 };
-
-    result.x = mat.m0*q.x + mat.m4*q.y + mat.m8*q.z + mat.m12*q.w;
-    result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w;
-    result.z = mat.m2*q.x + mat.m6*q.y + mat.m10*q.z + mat.m14*q.w;
-    result.w = mat.m3*q.x + mat.m7*q.y + mat.m11*q.z + mat.m15*q.w;
-
-    return result;
-}
-
-#endif  // RAYMATH_H

+ 0 - 1466
examples/models/raymath.h

@@ -1,1466 +0,0 @@
-/**********************************************************************************************
-*
-*   raymath v1.2 - Math functions to work with Vector3, Matrix and Quaternions
-*
-*   CONFIGURATION:
-*
-*   #define RAYMATH_IMPLEMENTATION
-*       Generates the implementation of the library into the included file.
-*       If not defined, the library is in header only mode and can be included in other headers
-*       or source files without problems. But only ONE file should hold the implementation.
-*
-*   #define RAYMATH_HEADER_ONLY
-*       Define static inline functions code, so #include header suffices for use.
-*       This may use up lots of memory.
-*
-*   #define RAYMATH_STANDALONE
-*       Avoid raylib.h header inclusion in this file.
-*       Vector3 and Matrix data types are defined internally in raymath module.
-*
-*
-*   LICENSE: zlib/libpng
-*
-*   Copyright (c) 2015-2020 Ramon Santamaria (@raysan5)
-*
-*   This software is provided "as-is", without any express or implied warranty. In no event
-*   will the authors be held liable for any damages arising from the use of this software.
-*
-*   Permission is granted to anyone to use this software for any purpose, including commercial
-*   applications, and to alter it and redistribute it freely, subject to the following restrictions:
-*
-*     1. The origin of this software must not be misrepresented; you must not claim that you
-*     wrote the original software. If you use this software in a product, an acknowledgment
-*     in the product documentation would be appreciated but is not required.
-*
-*     2. Altered source versions must be plainly marked as such, and must not be misrepresented
-*     as being the original software.
-*
-*     3. This notice may not be removed or altered from any source distribution.
-*
-**********************************************************************************************/
-
-#ifndef RAYMATH_H
-#define RAYMATH_H
-
-//#define RAYMATH_STANDALONE      // NOTE: To use raymath as standalone lib, just uncomment this line
-//#define RAYMATH_HEADER_ONLY     // NOTE: To compile functions as static inline, uncomment this line
-
-#ifndef RAYMATH_STANDALONE
-    #include "raylib.h"           // Required for structs: Vector3, Matrix
-#endif
-
-#if defined(RAYMATH_IMPLEMENTATION) && defined(RAYMATH_HEADER_ONLY)
-    #error "Specifying both RAYMATH_IMPLEMENTATION and RAYMATH_HEADER_ONLY is contradictory"
-#endif
-
-#if defined(RAYMATH_IMPLEMENTATION)
-    #if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED)
-        #define RMDEF __declspec(dllexport) extern inline // We are building raylib as a Win32 shared library (.dll).
-    #elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED)
-        #define RMDEF __declspec(dllimport)         // We are using raylib as a Win32 shared library (.dll)
-    #else
-        #define RMDEF extern inline // Provide external definition
-    #endif
-#elif defined(RAYMATH_HEADER_ONLY)
-    #define RMDEF static inline // Functions may be inlined, no external out-of-line definition
-#else
-    #if defined(__TINYC__)
-        #define RMDEF static inline // plain inline not supported by tinycc (See issue #435)
-    #else
-        #define RMDEF inline        // Functions may be inlined or external definition used
-    #endif
-#endif
-
-//----------------------------------------------------------------------------------
-// Defines and Macros
-//----------------------------------------------------------------------------------
-#ifndef PI
-    #define PI 3.14159265358979323846
-#endif
-
-#ifndef DEG2RAD
-    #define DEG2RAD (PI/180.0f)
-#endif
-
-#ifndef RAD2DEG
-    #define RAD2DEG (180.0f/PI)
-#endif
-
-// Return float vector for Matrix
-#ifndef MatrixToFloat
-    #define MatrixToFloat(mat) (MatrixToFloatV(mat).v)
-#endif
-
-// Return float vector for Vector3
-#ifndef Vector3ToFloat
-    #define Vector3ToFloat(vec) (Vector3ToFloatV(vec).v)
-#endif
-
-//----------------------------------------------------------------------------------
-// Types and Structures Definition
-//----------------------------------------------------------------------------------
-
-#if defined(RAYMATH_STANDALONE)
-    // Vector2 type
-    typedef struct Vector2 {
-        float x;
-        float y;
-    } Vector2;
-
-    // Vector3 type
-    typedef struct Vector3 {
-        float x;
-        float y;
-        float z;
-    } Vector3;
-
-    // Quaternion type
-    typedef struct Quaternion {
-        float x;
-        float y;
-        float z;
-        float w;
-    } Quaternion;
-
-    // Matrix type (OpenGL style 4x4 - right handed, column major)
-    typedef struct Matrix {
-        float m0, m4, m8, m12;
-        float m1, m5, m9, m13;
-        float m2, m6, m10, m14;
-        float m3, m7, m11, m15;
-    } Matrix;
-#endif
-
-// NOTE: Helper types to be used instead of array return types for *ToFloat functions
-typedef struct float3 { float v[3]; } float3;
-typedef struct float16 { float v[16]; } float16;
-
-#include <math.h>       // Required for: sinf(), cosf(), sqrtf(), tan(), fabs()
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Utils math
-//----------------------------------------------------------------------------------
-
-// Clamp float value
-RMDEF float Clamp(float value, float min, float max)
-{
-    const float res = value < min ? min : value;
-    return res > max ? max : res;
-}
-
-// Calculate linear interpolation between two floats
-RMDEF float Lerp(float start, float end, float amount)
-{
-    return start + amount*(end - start);
-}
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Vector2 math
-//----------------------------------------------------------------------------------
-
-// Vector with components value 0.0f
-RMDEF Vector2 Vector2Zero(void)
-{
-    Vector2 result = { 0.0f, 0.0f };
-    return result;
-}
-
-// Vector with components value 1.0f
-RMDEF Vector2 Vector2One(void)
-{
-    Vector2 result = { 1.0f, 1.0f };
-    return result;
-}
-
-// Add two vectors (v1 + v2)
-RMDEF Vector2 Vector2Add(Vector2 v1, Vector2 v2)
-{
-    Vector2 result = { v1.x + v2.x, v1.y + v2.y };
-    return result;
-}
-
-// Add vector and float value
-RMDEF Vector2 Vector2AddValue(Vector2 v, float add)
-{
-    Vector2 result = { v.x + add, v.y + add };
-    return result;
-}
-
-// Subtract two vectors (v1 - v2)
-RMDEF Vector2 Vector2Subtract(Vector2 v1, Vector2 v2)
-{
-    Vector2 result = { v1.x - v2.x, v1.y - v2.y };
-    return result;
-}
-
-// Subtract vector by float value
-RMDEF Vector2 Vector2SubtractValue(Vector2 v, float sub)
-{
-    Vector2 result = { v.x - sub, v.y - sub };
-    return result;
-}
-
-// Calculate vector length
-RMDEF float Vector2Length(Vector2 v)
-{
-    float result = sqrtf((v.x*v.x) + (v.y*v.y));
-    return result;
-}
-
-// Calculate two vectors dot product
-RMDEF float Vector2DotProduct(Vector2 v1, Vector2 v2)
-{
-    float result = (v1.x*v2.x + v1.y*v2.y);
-    return result;
-}
-
-// Calculate distance between two vectors
-RMDEF float Vector2Distance(Vector2 v1, Vector2 v2)
-{
-    float result = sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));
-    return result;
-}
-
-// Calculate angle from two vectors in X-axis
-RMDEF float Vector2Angle(Vector2 v1, Vector2 v2)
-{
-    float result = atan2f(v2.y - v1.y, v2.x - v1.x)*(180.0f/PI);
-    if (result < 0) result += 360.0f;
-    return result;
-}
-
-// Scale vector (multiply by value)
-RMDEF Vector2 Vector2Scale(Vector2 v, float scale)
-{
-    Vector2 result = { v.x*scale, v.y*scale };
-    return result;
-}
-
-// Multiply vector by vector
-RMDEF Vector2 Vector2Multiply(Vector2 v1, Vector2 v2)
-{
-    Vector2 result = { v1.x*v2.x, v1.y*v2.y };
-    return result;
-}
-
-// Negate vector
-RMDEF Vector2 Vector2Negate(Vector2 v)
-{
-    Vector2 result = { -v.x, -v.y };
-    return result;
-}
-
-// Divide vector by vector
-RMDEF Vector2 Vector2Divide(Vector2 v1, Vector2 v2)
-{
-    Vector2 result = { v1.x/v2.x, v1.y/v2.y };
-    return result;
-}
-
-// Normalize provided vector
-RMDEF Vector2 Vector2Normalize(Vector2 v)
-{
-    Vector2 result = Vector2Scale(v, 1/Vector2Length(v));
-    return result;
-}
-
-// Calculate linear interpolation between two vectors
-RMDEF Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount)
-{
-    Vector2 result = { 0 };
-
-    result.x = v1.x + amount*(v2.x - v1.x);
-    result.y = v1.y + amount*(v2.y - v1.y);
-
-    return result;
-}
-
-// Rotate Vector by float in Degrees.
-RMDEF Vector2 Vector2Rotate(Vector2 v, float degs)
-{
-    float rads = degs*DEG2RAD;
-    Vector2 result = {v.x * cosf(rads) - v.y * sinf(rads) , v.x * sinf(rads) + v.y * cosf(rads) };
-    return result;
-}
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Vector3 math
-//----------------------------------------------------------------------------------
-
-// Vector with components value 0.0f
-RMDEF Vector3 Vector3Zero(void)
-{
-    Vector3 result = { 0.0f, 0.0f, 0.0f };
-    return result;
-}
-
-// Vector with components value 1.0f
-RMDEF Vector3 Vector3One(void)
-{
-    Vector3 result = { 1.0f, 1.0f, 1.0f };
-    return result;
-}
-
-// Add two vectors
-RMDEF Vector3 Vector3Add(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z };
-    return result;
-}
-
-// Add vector and float value
-RMDEF Vector3 Vector3AddValue(Vector3 v, float add)
-{
-    Vector3 result = { v.x + add, v.y + add, v.z + add };
-    return result;
-}
-
-// Subtract two vectors
-RMDEF Vector3 Vector3Subtract(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
-    return result;
-}
-
-// Subtract vector by float value
-RMDEF Vector3 Vector3SubtractValue(Vector3 v, float sub)
-{
-    Vector3 result = { v.x - sub, v.y - sub, v.z - sub };
-    return result;
-}
-
-// Multiply vector by scalar
-RMDEF Vector3 Vector3Scale(Vector3 v, float scalar)
-{
-    Vector3 result = { v.x*scalar, v.y*scalar, v.z*scalar };
-    return result;
-}
-
-// Multiply vector by vector
-RMDEF Vector3 Vector3Multiply(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z };
-    return result;
-}
-
-// Calculate two vectors cross product
-RMDEF Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x };
-    return result;
-}
-
-// Calculate one vector perpendicular vector
-RMDEF Vector3 Vector3Perpendicular(Vector3 v)
-{
-    Vector3 result = { 0 };
-
-    float min = (float) fabs(v.x);
-    Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f};
-
-    if (fabs(v.y) < min)
-    {
-        min = (float) fabs(v.y);
-        Vector3 tmp = {0.0f, 1.0f, 0.0f};
-        cardinalAxis = tmp;
-    }
-
-    if (fabs(v.z) < min)
-    {
-        Vector3 tmp = {0.0f, 0.0f, 1.0f};
-        cardinalAxis = tmp;
-    }
-
-    result = Vector3CrossProduct(v, cardinalAxis);
-
-    return result;
-}
-
-// Calculate vector length
-RMDEF float Vector3Length(const Vector3 v)
-{
-    float result = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
-    return result;
-}
-
-// Calculate two vectors dot product
-RMDEF float Vector3DotProduct(Vector3 v1, Vector3 v2)
-{
-    float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
-    return result;
-}
-
-// Calculate distance between two vectors
-RMDEF float Vector3Distance(Vector3 v1, Vector3 v2)
-{
-    float dx = v2.x - v1.x;
-    float dy = v2.y - v1.y;
-    float dz = v2.z - v1.z;
-    float result = sqrtf(dx*dx + dy*dy + dz*dz);
-    return result;
-}
-
-// Negate provided vector (invert direction)
-RMDEF Vector3 Vector3Negate(Vector3 v)
-{
-    Vector3 result = { -v.x, -v.y, -v.z };
-    return result;
-}
-
-// Divide vector by vector
-RMDEF Vector3 Vector3Divide(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z };
-    return result;
-}
-
-// Normalize provided vector
-RMDEF Vector3 Vector3Normalize(Vector3 v)
-{
-    Vector3 result = v;
-
-    float length, ilength;
-    length = Vector3Length(v);
-    if (length == 0.0f) length = 1.0f;
-    ilength = 1.0f/length;
-
-    result.x *= ilength;
-    result.y *= ilength;
-    result.z *= ilength;
-
-    return result;
-}
-
-// Orthonormalize provided vectors
-// Makes vectors normalized and orthogonal to each other
-// Gram-Schmidt function implementation
-RMDEF void Vector3OrthoNormalize(Vector3 *v1, Vector3 *v2)
-{
-    *v1 = Vector3Normalize(*v1);
-    Vector3 vn = Vector3CrossProduct(*v1, *v2);
-    vn = Vector3Normalize(vn);
-    *v2 = Vector3CrossProduct(vn, *v1);
-}
-
-// Transforms a Vector3 by a given Matrix
-RMDEF Vector3 Vector3Transform(Vector3 v, Matrix mat)
-{
-    Vector3 result = { 0 };
-    float x = v.x;
-    float y = v.y;
-    float z = v.z;
-
-    result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
-    result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
-    result.z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
-
-    return result;
-}
-
-// Transform a vector by quaternion rotation
-RMDEF Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q)
-{
-    Vector3 result = { 0 };
-
-    result.x = v.x*(q.x*q.x + q.w*q.w - q.y*q.y - q.z*q.z) + v.y*(2*q.x*q.y - 2*q.w*q.z) + v.z*(2*q.x*q.z + 2*q.w*q.y);
-    result.y = v.x*(2*q.w*q.z + 2*q.x*q.y) + v.y*(q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z) + v.z*(-2*q.w*q.x + 2*q.y*q.z);
-    result.z = v.x*(-2*q.w*q.y + 2*q.x*q.z) + v.y*(2*q.w*q.x + 2*q.y*q.z)+ v.z*(q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z);
-
-    return result;
-}
-
-// Calculate linear interpolation between two vectors
-RMDEF Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount)
-{
-    Vector3 result = { 0 };
-
-    result.x = v1.x + amount*(v2.x - v1.x);
-    result.y = v1.y + amount*(v2.y - v1.y);
-    result.z = v1.z + amount*(v2.z - v1.z);
-
-    return result;
-}
-
-// Calculate reflected vector to normal
-RMDEF Vector3 Vector3Reflect(Vector3 v, Vector3 normal)
-{
-    // I is the original vector
-    // N is the normal of the incident plane
-    // R = I - (2*N*( DotProduct[ I,N] ))
-
-    Vector3 result = { 0 };
-
-    float dotProduct = Vector3DotProduct(v, normal);
-
-    result.x = v.x - (2.0f*normal.x)*dotProduct;
-    result.y = v.y - (2.0f*normal.y)*dotProduct;
-    result.z = v.z - (2.0f*normal.z)*dotProduct;
-
-    return result;
-}
-
-// Return min value for each pair of components
-RMDEF Vector3 Vector3Min(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { 0 };
-
-    result.x = fminf(v1.x, v2.x);
-    result.y = fminf(v1.y, v2.y);
-    result.z = fminf(v1.z, v2.z);
-
-    return result;
-}
-
-// Return max value for each pair of components
-RMDEF Vector3 Vector3Max(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { 0 };
-
-    result.x = fmaxf(v1.x, v2.x);
-    result.y = fmaxf(v1.y, v2.y);
-    result.z = fmaxf(v1.z, v2.z);
-
-    return result;
-}
-
-// Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c)
-// NOTE: Assumes P is on the plane of the triangle
-RMDEF Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
-{
-    //Vector v0 = b - a, v1 = c - a, v2 = p - a;
-
-    Vector3 v0 = Vector3Subtract(b, a);
-    Vector3 v1 = Vector3Subtract(c, a);
-    Vector3 v2 = Vector3Subtract(p, a);
-    float d00 = Vector3DotProduct(v0, v0);
-    float d01 = Vector3DotProduct(v0, v1);
-    float d11 = Vector3DotProduct(v1, v1);
-    float d20 = Vector3DotProduct(v2, v0);
-    float d21 = Vector3DotProduct(v2, v1);
-
-    float denom = d00*d11 - d01*d01;
-
-    Vector3 result = { 0 };
-
-    result.y = (d11*d20 - d01*d21)/denom;
-    result.z = (d00*d21 - d01*d20)/denom;
-    result.x = 1.0f - (result.z + result.y);
-
-    return result;
-}
-
-// Returns Vector3 as float array
-RMDEF float3 Vector3ToFloatV(Vector3 v)
-{
-    float3 buffer = { 0 };
-
-    buffer.v[0] = v.x;
-    buffer.v[1] = v.y;
-    buffer.v[2] = v.z;
-
-    return buffer;
-}
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Matrix math
-//----------------------------------------------------------------------------------
-
-// Compute matrix determinant
-RMDEF float MatrixDeterminant(Matrix mat)
-{
-    // Cache the matrix values (speed optimization)
-    float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
-    float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
-    float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
-    float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
-
-    float result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 +
-                   a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 +
-                   a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 +
-                   a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 +
-                   a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 +
-                   a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33;
-
-    return result;
-}
-
-// Returns the trace of the matrix (sum of the values along the diagonal)
-RMDEF float MatrixTrace(Matrix mat)
-{
-    float result = (mat.m0 + mat.m5 + mat.m10 + mat.m15);
-    return result;
-}
-
-// Transposes provided matrix
-RMDEF Matrix MatrixTranspose(Matrix mat)
-{
-    Matrix result = { 0 };
-
-    result.m0 = mat.m0;
-    result.m1 = mat.m4;
-    result.m2 = mat.m8;
-    result.m3 = mat.m12;
-    result.m4 = mat.m1;
-    result.m5 = mat.m5;
-    result.m6 = mat.m9;
-    result.m7 = mat.m13;
-    result.m8 = mat.m2;
-    result.m9 = mat.m6;
-    result.m10 = mat.m10;
-    result.m11 = mat.m14;
-    result.m12 = mat.m3;
-    result.m13 = mat.m7;
-    result.m14 = mat.m11;
-    result.m15 = mat.m15;
-
-    return result;
-}
-
-// Invert provided matrix
-RMDEF Matrix MatrixInvert(Matrix mat)
-{
-    Matrix result = { 0 };
-
-    // Cache the matrix values (speed optimization)
-    float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
-    float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
-    float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
-    float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
-
-    float b00 = a00*a11 - a01*a10;
-    float b01 = a00*a12 - a02*a10;
-    float b02 = a00*a13 - a03*a10;
-    float b03 = a01*a12 - a02*a11;
-    float b04 = a01*a13 - a03*a11;
-    float b05 = a02*a13 - a03*a12;
-    float b06 = a20*a31 - a21*a30;
-    float b07 = a20*a32 - a22*a30;
-    float b08 = a20*a33 - a23*a30;
-    float b09 = a21*a32 - a22*a31;
-    float b10 = a21*a33 - a23*a31;
-    float b11 = a22*a33 - a23*a32;
-
-    // Calculate the invert determinant (inlined to avoid double-caching)
-    float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
-
-    result.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet;
-    result.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet;
-    result.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet;
-    result.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet;
-    result.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet;
-    result.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet;
-    result.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet;
-    result.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet;
-    result.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet;
-    result.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet;
-    result.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet;
-    result.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet;
-    result.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet;
-    result.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet;
-    result.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet;
-    result.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet;
-
-    return result;
-}
-
-// Normalize provided matrix
-RMDEF Matrix MatrixNormalize(Matrix mat)
-{
-    Matrix result = { 0 };
-
-    float det = MatrixDeterminant(mat);
-
-    result.m0 = mat.m0/det;
-    result.m1 = mat.m1/det;
-    result.m2 = mat.m2/det;
-    result.m3 = mat.m3/det;
-    result.m4 = mat.m4/det;
-    result.m5 = mat.m5/det;
-    result.m6 = mat.m6/det;
-    result.m7 = mat.m7/det;
-    result.m8 = mat.m8/det;
-    result.m9 = mat.m9/det;
-    result.m10 = mat.m10/det;
-    result.m11 = mat.m11/det;
-    result.m12 = mat.m12/det;
-    result.m13 = mat.m13/det;
-    result.m14 = mat.m14/det;
-    result.m15 = mat.m15/det;
-
-    return result;
-}
-
-// Returns identity matrix
-RMDEF Matrix MatrixIdentity(void)
-{
-    Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
-                      0.0f, 1.0f, 0.0f, 0.0f,
-                      0.0f, 0.0f, 1.0f, 0.0f,
-                      0.0f, 0.0f, 0.0f, 1.0f };
-
-    return result;
-}
-
-// Add two matrices
-RMDEF Matrix MatrixAdd(Matrix left, Matrix right)
-{
-    Matrix result = MatrixIdentity();
-
-    result.m0 = left.m0 + right.m0;
-    result.m1 = left.m1 + right.m1;
-    result.m2 = left.m2 + right.m2;
-    result.m3 = left.m3 + right.m3;
-    result.m4 = left.m4 + right.m4;
-    result.m5 = left.m5 + right.m5;
-    result.m6 = left.m6 + right.m6;
-    result.m7 = left.m7 + right.m7;
-    result.m8 = left.m8 + right.m8;
-    result.m9 = left.m9 + right.m9;
-    result.m10 = left.m10 + right.m10;
-    result.m11 = left.m11 + right.m11;
-    result.m12 = left.m12 + right.m12;
-    result.m13 = left.m13 + right.m13;
-    result.m14 = left.m14 + right.m14;
-    result.m15 = left.m15 + right.m15;
-
-    return result;
-}
-
-// Subtract two matrices (left - right)
-RMDEF Matrix MatrixSubtract(Matrix left, Matrix right)
-{
-    Matrix result = MatrixIdentity();
-
-    result.m0 = left.m0 - right.m0;
-    result.m1 = left.m1 - right.m1;
-    result.m2 = left.m2 - right.m2;
-    result.m3 = left.m3 - right.m3;
-    result.m4 = left.m4 - right.m4;
-    result.m5 = left.m5 - right.m5;
-    result.m6 = left.m6 - right.m6;
-    result.m7 = left.m7 - right.m7;
-    result.m8 = left.m8 - right.m8;
-    result.m9 = left.m9 - right.m9;
-    result.m10 = left.m10 - right.m10;
-    result.m11 = left.m11 - right.m11;
-    result.m12 = left.m12 - right.m12;
-    result.m13 = left.m13 - right.m13;
-    result.m14 = left.m14 - right.m14;
-    result.m15 = left.m15 - right.m15;
-
-    return result;
-}
-
-// Returns translation matrix
-RMDEF Matrix MatrixTranslate(float x, float y, float z)
-{
-    Matrix result = { 1.0f, 0.0f, 0.0f, x,
-                      0.0f, 1.0f, 0.0f, y,
-                      0.0f, 0.0f, 1.0f, z,
-                      0.0f, 0.0f, 0.0f, 1.0f };
-
-    return result;
-}
-
-// Create rotation matrix from axis and angle
-// NOTE: Angle should be provided in radians
-RMDEF Matrix MatrixRotate(Vector3 axis, float angle)
-{
-    Matrix result = { 0 };
-
-    float x = axis.x, y = axis.y, z = axis.z;
-
-    float length = sqrtf(x*x + y*y + z*z);
-
-    if ((length != 1.0f) && (length != 0.0f))
-    {
-        length = 1.0f/length;
-        x *= length;
-        y *= length;
-        z *= length;
-    }
-
-    float sinres = sinf(angle);
-    float cosres = cosf(angle);
-    float t = 1.0f - cosres;
-
-    result.m0  = x*x*t + cosres;
-    result.m1  = y*x*t + z*sinres;
-    result.m2  = z*x*t - y*sinres;
-    result.m3  = 0.0f;
-
-    result.m4  = x*y*t - z*sinres;
-    result.m5  = y*y*t + cosres;
-    result.m6  = z*y*t + x*sinres;
-    result.m7  = 0.0f;
-
-    result.m8  = x*z*t + y*sinres;
-    result.m9  = y*z*t - x*sinres;
-    result.m10 = z*z*t + cosres;
-    result.m11 = 0.0f;
-
-    result.m12 = 0.0f;
-    result.m13 = 0.0f;
-    result.m14 = 0.0f;
-    result.m15 = 1.0f;
-
-    return result;
-}
-
-// Returns xyz-rotation matrix (angles in radians)
-RMDEF Matrix MatrixRotateXYZ(Vector3 ang)
-{
-    Matrix result = MatrixIdentity();
-
-    float cosz = cosf(-ang.z);
-    float sinz = sinf(-ang.z);
-    float cosy = cosf(-ang.y);
-    float siny = sinf(-ang.y);
-    float cosx = cosf(-ang.x);
-    float sinx = sinf(-ang.x);
-
-    result.m0 = cosz * cosy;
-    result.m4 = (cosz * siny * sinx) - (sinz * cosx);
-    result.m8 = (cosz * siny * cosx) + (sinz * sinx);
-
-    result.m1 = sinz * cosy;
-    result.m5 = (sinz * siny * sinx) + (cosz * cosx);
-    result.m9 = (sinz * siny * cosx) - (cosz * sinx);
-
-    result.m2 = -siny;
-    result.m6 = cosy * sinx;
-    result.m10= cosy * cosx;
-
-    return result;
-}
-
-// Returns x-rotation matrix (angle in radians)
-RMDEF Matrix MatrixRotateX(float angle)
-{
-    Matrix result = MatrixIdentity();
-
-    float cosres = cosf(angle);
-    float sinres = sinf(angle);
-
-    result.m5 = cosres;
-    result.m6 = -sinres;
-    result.m9 = sinres;
-    result.m10 = cosres;
-
-    return result;
-}
-
-// Returns y-rotation matrix (angle in radians)
-RMDEF Matrix MatrixRotateY(float angle)
-{
-    Matrix result = MatrixIdentity();
-
-    float cosres = cosf(angle);
-    float sinres = sinf(angle);
-
-    result.m0 = cosres;
-    result.m2 = sinres;
-    result.m8 = -sinres;
-    result.m10 = cosres;
-
-    return result;
-}
-
-// Returns z-rotation matrix (angle in radians)
-RMDEF Matrix MatrixRotateZ(float angle)
-{
-    Matrix result = MatrixIdentity();
-
-    float cosres = cosf(angle);
-    float sinres = sinf(angle);
-
-    result.m0 = cosres;
-    result.m1 = -sinres;
-    result.m4 = sinres;
-    result.m5 = cosres;
-
-    return result;
-}
-
-// Returns scaling matrix
-RMDEF Matrix MatrixScale(float x, float y, float z)
-{
-    Matrix result = { x, 0.0f, 0.0f, 0.0f,
-                      0.0f, y, 0.0f, 0.0f,
-                      0.0f, 0.0f, z, 0.0f,
-                      0.0f, 0.0f, 0.0f, 1.0f };
-
-    return result;
-}
-
-// Returns two matrix multiplication
-// NOTE: When multiplying matrices... the order matters!
-RMDEF Matrix MatrixMultiply(Matrix left, Matrix right)
-{
-    Matrix result = { 0 };
-
-    result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12;
-    result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13;
-    result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14;
-    result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15;
-    result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12;
-    result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13;
-    result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14;
-    result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15;
-    result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12;
-    result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13;
-    result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14;
-    result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15;
-    result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12;
-    result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13;
-    result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14;
-    result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15;
-
-    return result;
-}
-
-// Returns perspective projection matrix
-RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far)
-{
-    Matrix result = { 0 };
-
-    float rl = (float)(right - left);
-    float tb = (float)(top - bottom);
-    float fn = (float)(far - near);
-
-    result.m0 = ((float) near*2.0f)/rl;
-    result.m1 = 0.0f;
-    result.m2 = 0.0f;
-    result.m3 = 0.0f;
-
-    result.m4 = 0.0f;
-    result.m5 = ((float) near*2.0f)/tb;
-    result.m6 = 0.0f;
-    result.m7 = 0.0f;
-
-    result.m8 = ((float)right + (float)left)/rl;
-    result.m9 = ((float)top + (float)bottom)/tb;
-    result.m10 = -((float)far + (float)near)/fn;
-    result.m11 = -1.0f;
-
-    result.m12 = 0.0f;
-    result.m13 = 0.0f;
-    result.m14 = -((float)far*(float)near*2.0f)/fn;
-    result.m15 = 0.0f;
-
-    return result;
-}
-
-// Returns perspective projection matrix
-// NOTE: Angle should be provided in radians
-RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double far)
-{
-    double top = near*tan(fovy*0.5);
-    double right = top*aspect;
-    Matrix result = MatrixFrustum(-right, right, -top, top, near, far);
-
-    return result;
-}
-
-// Returns orthographic projection matrix
-RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far)
-{
-    Matrix result = { 0 };
-
-    float rl = (float)(right - left);
-    float tb = (float)(top - bottom);
-    float fn = (float)(far - near);
-
-    result.m0 = 2.0f/rl;
-    result.m1 = 0.0f;
-    result.m2 = 0.0f;
-    result.m3 = 0.0f;
-    result.m4 = 0.0f;
-    result.m5 = 2.0f/tb;
-    result.m6 = 0.0f;
-    result.m7 = 0.0f;
-    result.m8 = 0.0f;
-    result.m9 = 0.0f;
-    result.m10 = -2.0f/fn;
-    result.m11 = 0.0f;
-    result.m12 = -((float)left + (float)right)/rl;
-    result.m13 = -((float)top + (float)bottom)/tb;
-    result.m14 = -((float)far + (float)near)/fn;
-    result.m15 = 1.0f;
-
-    return result;
-}
-
-// Returns camera look-at matrix (view matrix)
-RMDEF Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
-{
-    Matrix result = { 0 };
-
-    Vector3 z = Vector3Subtract(eye, target);
-    z = Vector3Normalize(z);
-    Vector3 x = Vector3CrossProduct(up, z);
-    x = Vector3Normalize(x);
-    Vector3 y = Vector3CrossProduct(z, x);
-    y = Vector3Normalize(y);
-
-    result.m0 = x.x;
-    result.m1 = x.y;
-    result.m2 = x.z;
-    result.m3 = 0.0f;
-    result.m4 = y.x;
-    result.m5 = y.y;
-    result.m6 = y.z;
-    result.m7 = 0.0f;
-    result.m8 = z.x;
-    result.m9 = z.y;
-    result.m10 = z.z;
-    result.m11 = 0.0f;
-    result.m12 = eye.x;
-    result.m13 = eye.y;
-    result.m14 = eye.z;
-    result.m15 = 1.0f;
-
-    result = MatrixInvert(result);
-
-    return result;
-}
-
-// Returns float array of matrix data
-RMDEF float16 MatrixToFloatV(Matrix mat)
-{
-    float16 buffer = { 0 };
-
-    buffer.v[0] = mat.m0;
-    buffer.v[1] = mat.m1;
-    buffer.v[2] = mat.m2;
-    buffer.v[3] = mat.m3;
-    buffer.v[4] = mat.m4;
-    buffer.v[5] = mat.m5;
-    buffer.v[6] = mat.m6;
-    buffer.v[7] = mat.m7;
-    buffer.v[8] = mat.m8;
-    buffer.v[9] = mat.m9;
-    buffer.v[10] = mat.m10;
-    buffer.v[11] = mat.m11;
-    buffer.v[12] = mat.m12;
-    buffer.v[13] = mat.m13;
-    buffer.v[14] = mat.m14;
-    buffer.v[15] = mat.m15;
-
-    return buffer;
-}
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Quaternion math
-//----------------------------------------------------------------------------------
-
-// Add two quaternions
-RMDEF Quaternion QuaternionAdd(Quaternion q1, Quaternion q2)
-{
-    Quaternion result = {q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w};
-    return result;
-}
-
-// Add quaternion and float value
-RMDEF Quaternion QuaternionAddValue(Quaternion q, float add)
-{
-    Quaternion result = {q.x + add, q.y + add, q.z + add, q.w + add};
-    return result;
-}
-
-// Subtract two quaternions
-RMDEF Quaternion QuaternionSubtract(Quaternion q1, Quaternion q2)
-{
-    Quaternion result = {q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w};
-    return result;
-}
-
-// Subtract quaternion and float value
-RMDEF Quaternion QuaternionSubtractValue(Quaternion q, float sub)
-{
-    Quaternion result = {q.x - sub, q.y - sub, q.z - sub, q.w - sub};
-    return result;
-}
-
-// Returns identity quaternion
-RMDEF Quaternion QuaternionIdentity(void)
-{
-    Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
-    return result;
-}
-
-// Computes the length of a quaternion
-RMDEF float QuaternionLength(Quaternion q)
-{
-    float result = (float)sqrt(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
-    return result;
-}
-
-// Normalize provided quaternion
-RMDEF Quaternion QuaternionNormalize(Quaternion q)
-{
-    Quaternion result = { 0 };
-
-    float length, ilength;
-    length = QuaternionLength(q);
-    if (length == 0.0f) length = 1.0f;
-    ilength = 1.0f/length;
-
-    result.x = q.x*ilength;
-    result.y = q.y*ilength;
-    result.z = q.z*ilength;
-    result.w = q.w*ilength;
-
-    return result;
-}
-
-// Invert provided quaternion
-RMDEF Quaternion QuaternionInvert(Quaternion q)
-{
-    Quaternion result = q;
-    float length = QuaternionLength(q);
-    float lengthSq = length*length;
-
-    if (lengthSq != 0.0)
-    {
-        float i = 1.0f/lengthSq;
-
-        result.x *= -i;
-        result.y *= -i;
-        result.z *= -i;
-        result.w *= i;
-    }
-
-    return result;
-}
-
-// Calculate two quaternion multiplication
-RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2)
-{
-    Quaternion result = { 0 };
-
-    float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w;
-    float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w;
-
-    result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby;
-    result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz;
-    result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx;
-    result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz;
-
-    return result;
-}
-
-// Scale quaternion by float value
-RMDEF Quaternion QuaternionScale(Quaternion q, float mul)
-{
-    Quaternion result = { 0 };
-
-    float qax = q.x, qay = q.y, qaz = q.z, qaw = q.w;
-
-    result.x = qax * mul + qaw * mul + qay * mul - qaz * mul;
-    result.y = qay * mul + qaw * mul + qaz * mul - qax * mul;
-    result.z = qaz * mul + qaw * mul + qax * mul - qay * mul;
-    result.w = qaw * mul - qax * mul - qay * mul - qaz * mul;
-
-    return result;
-}
-
-// Divide two quaternions
-RMDEF Quaternion QuaternionDivide(Quaternion q1, Quaternion q2)
-{
-    Quaternion result = {q1.x / q2.x, q1.y / q2.y, q1.z / q2.z, q1.w / q2.w};
-    return result;
-}
-
-// Calculate linear interpolation between two quaternions
-RMDEF Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount)
-{
-    Quaternion result = { 0 };
-
-    result.x = q1.x + amount*(q2.x - q1.x);
-    result.y = q1.y + amount*(q2.y - q1.y);
-    result.z = q1.z + amount*(q2.z - q1.z);
-    result.w = q1.w + amount*(q2.w - q1.w);
-
-    return result;
-}
-
-// Calculate slerp-optimized interpolation between two quaternions
-RMDEF Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount)
-{
-    Quaternion result = QuaternionLerp(q1, q2, amount);
-    result = QuaternionNormalize(result);
-
-    return result;
-}
-
-// Calculates spherical linear interpolation between two quaternions
-RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
-{
-    Quaternion result = { 0 };
-
-    float cosHalfTheta =  q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w;
-
-    if (fabs(cosHalfTheta) >= 1.0f) result = q1;
-    else if (cosHalfTheta > 0.95f) result = QuaternionNlerp(q1, q2, amount);
-    else
-    {
-        float halfTheta = acosf(cosHalfTheta);
-        float sinHalfTheta = sqrtf(1.0f - cosHalfTheta*cosHalfTheta);
-
-        if (fabs(sinHalfTheta) < 0.001f)
-        {
-            result.x = (q1.x*0.5f + q2.x*0.5f);
-            result.y = (q1.y*0.5f + q2.y*0.5f);
-            result.z = (q1.z*0.5f + q2.z*0.5f);
-            result.w = (q1.w*0.5f + q2.w*0.5f);
-        }
-        else
-        {
-            float ratioA = sinf((1 - amount)*halfTheta)/sinHalfTheta;
-            float ratioB = sinf(amount*halfTheta)/sinHalfTheta;
-
-            result.x = (q1.x*ratioA + q2.x*ratioB);
-            result.y = (q1.y*ratioA + q2.y*ratioB);
-            result.z = (q1.z*ratioA + q2.z*ratioB);
-            result.w = (q1.w*ratioA + q2.w*ratioB);
-        }
-    }
-
-    return result;
-}
-
-// Calculate quaternion based on the rotation from one vector to another
-RMDEF Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
-{
-    Quaternion result = { 0 };
-
-    float cos2Theta = Vector3DotProduct(from, to);
-    Vector3 cross = Vector3CrossProduct(from, to);
-
-    result.x = cross.x;
-    result.y = cross.y;
-    result.z = cross.y;
-    result.w = 1.0f + cos2Theta;     // NOTE: Added QuaternioIdentity()
-
-    // Normalize to essentially nlerp the original and identity to 0.5
-    result = QuaternionNormalize(result);
-
-    // Above lines are equivalent to:
-    //Quaternion result = QuaternionNlerp(q, QuaternionIdentity(), 0.5f);
-
-    return result;
-}
-
-// Returns a quaternion for a given rotation matrix
-RMDEF Quaternion QuaternionFromMatrix(Matrix mat)
-{
-    Quaternion result = { 0 };
-
-    float trace = MatrixTrace(mat);
-
-    if (trace > 0.0f)
-    {
-        float s = sqrtf(trace + 1)*2.0f;
-        float invS = 1.0f/s;
-
-        result.w = s*0.25f;
-        result.x = (mat.m6 - mat.m9)*invS;
-        result.y = (mat.m8 - mat.m2)*invS;
-        result.z = (mat.m1 - mat.m4)*invS;
-    }
-    else
-    {
-        float m00 = mat.m0, m11 = mat.m5, m22 = mat.m10;
-
-        if (m00 > m11 && m00 > m22)
-        {
-            float s = (float)sqrt(1.0f + m00 - m11 - m22)*2.0f;
-            float invS = 1.0f/s;
-
-            result.w = (mat.m6 - mat.m9)*invS;
-            result.x = s*0.25f;
-            result.y = (mat.m4 + mat.m1)*invS;
-            result.z = (mat.m8 + mat.m2)*invS;
-        }
-        else if (m11 > m22)
-        {
-            float s = sqrtf(1.0f + m11 - m00 - m22)*2.0f;
-            float invS = 1.0f/s;
-
-            result.w = (mat.m8 - mat.m2)*invS;
-            result.x = (mat.m4 + mat.m1)*invS;
-            result.y = s*0.25f;
-            result.z = (mat.m9 + mat.m6)*invS;
-        }
-        else
-        {
-            float s = sqrtf(1.0f + m22 - m00 - m11)*2.0f;
-            float invS = 1.0f/s;
-
-            result.w = (mat.m1 - mat.m4)*invS;
-            result.x = (mat.m8 + mat.m2)*invS;
-            result.y = (mat.m9 + mat.m6)*invS;
-            result.z = s*0.25f;
-        }
-    }
-
-    return result;
-}
-
-// Returns a matrix for a given quaternion
-RMDEF Matrix QuaternionToMatrix(Quaternion q)
-{
-    Matrix result = { 0 };
-
-    float x = q.x, y = q.y, z = q.z, w = q.w;
-
-    float x2 = x + x;
-    float y2 = y + y;
-    float z2 = z + z;
-
-    float length = QuaternionLength(q);
-    float lengthSquared = length*length;
-
-    float xx = x*x2/lengthSquared;
-    float xy = x*y2/lengthSquared;
-    float xz = x*z2/lengthSquared;
-
-    float yy = y*y2/lengthSquared;
-    float yz = y*z2/lengthSquared;
-    float zz = z*z2/lengthSquared;
-
-    float wx = w*x2/lengthSquared;
-    float wy = w*y2/lengthSquared;
-    float wz = w*z2/lengthSquared;
-
-    result.m0 = 1.0f - (yy + zz);
-    result.m1 = xy - wz;
-    result.m2 = xz + wy;
-    result.m3 = 0.0f;
-    result.m4 = xy + wz;
-    result.m5 = 1.0f - (xx + zz);
-    result.m6 = yz - wx;
-    result.m7 = 0.0f;
-    result.m8 = xz - wy;
-    result.m9 = yz + wx;
-    result.m10 = 1.0f - (xx + yy);
-    result.m11 = 0.0f;
-    result.m12 = 0.0f;
-    result.m13 = 0.0f;
-    result.m14 = 0.0f;
-    result.m15 = 1.0f;
-
-    return result;
-}
-
-// Returns rotation quaternion for an angle and axis
-// NOTE: angle must be provided in radians
-RMDEF Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle)
-{
-    Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
-
-    if (Vector3Length(axis) != 0.0f)
-
-    angle *= 0.5f;
-
-    axis = Vector3Normalize(axis);
-
-    float sinres = sinf(angle);
-    float cosres = cosf(angle);
-
-    result.x = axis.x*sinres;
-    result.y = axis.y*sinres;
-    result.z = axis.z*sinres;
-    result.w = cosres;
-
-    result = QuaternionNormalize(result);
-
-    return result;
-}
-
-// Returns the rotation angle and axis for a given quaternion
-RMDEF void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle)
-{
-    if (fabs(q.w) > 1.0f) q = QuaternionNormalize(q);
-
-    Vector3 resAxis = { 0.0f, 0.0f, 0.0f };
-    float resAngle = 2.0f*acosf(q.w);
-    float den = sqrtf(1.0f - q.w*q.w);
-
-    if (den > 0.0001f)
-    {
-        resAxis.x = q.x/den;
-        resAxis.y = q.y/den;
-        resAxis.z = q.z/den;
-    }
-    else
-    {
-        // This occurs when the angle is zero.
-        // Not a problem: just set an arbitrary normalized axis.
-        resAxis.x = 1.0f;
-    }
-
-    *outAxis = resAxis;
-    *outAngle = resAngle;
-}
-
-// Returns he quaternion equivalent to Euler angles
-RMDEF Quaternion QuaternionFromEuler(float roll, float pitch, float yaw)
-{
-    Quaternion q = { 0 };
-
-    float x0 = cosf(roll*0.5f);
-    float x1 = sinf(roll*0.5f);
-    float y0 = cosf(pitch*0.5f);
-    float y1 = sinf(pitch*0.5f);
-    float z0 = cosf(yaw*0.5f);
-    float z1 = sinf(yaw*0.5f);
-
-    q.x = x1*y0*z0 - x0*y1*z1;
-    q.y = x0*y1*z0 + x1*y0*z1;
-    q.z = x0*y0*z1 - x1*y1*z0;
-    q.w = x0*y0*z0 + x1*y1*z1;
-
-    return q;
-}
-
-// Return the Euler angles equivalent to quaternion (roll, pitch, yaw)
-// NOTE: Angles are returned in a Vector3 struct in degrees
-RMDEF Vector3 QuaternionToEuler(Quaternion q)
-{
-    Vector3 result = { 0 };
-
-    // roll (x-axis rotation)
-    float x0 = 2.0f*(q.w*q.x + q.y*q.z);
-    float x1 = 1.0f - 2.0f*(q.x*q.x + q.y*q.y);
-    result.x = atan2f(x0, x1)*RAD2DEG;
-
-    // pitch (y-axis rotation)
-    float y0 = 2.0f*(q.w*q.y - q.z*q.x);
-    y0 = y0 > 1.0f ? 1.0f : y0;
-    y0 = y0 < -1.0f ? -1.0f : y0;
-    result.y = asinf(y0)*RAD2DEG;
-
-    // yaw (z-axis rotation)
-    float z0 = 2.0f*(q.w*q.z + q.x*q.y);
-    float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z);
-    result.z = atan2f(z0, z1)*RAD2DEG;
-
-    return result;
-}
-
-// Transform a quaternion given a transformation matrix
-RMDEF Quaternion QuaternionTransform(Quaternion q, Matrix mat)
-{
-    Quaternion result = { 0 };
-
-    result.x = mat.m0*q.x + mat.m4*q.y + mat.m8*q.z + mat.m12*q.w;
-    result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w;
-    result.z = mat.m2*q.x + mat.m6*q.y + mat.m10*q.z + mat.m14*q.w;
-    result.w = mat.m3*q.x + mat.m7*q.y + mat.m11*q.z + mat.m15*q.w;
-
-    return result;
-}
-
-#endif  // RAYMATH_H

+ 0 - 1466
examples/shaders/raymath.h

@@ -1,1466 +0,0 @@
-/**********************************************************************************************
-*
-*   raymath v1.2 - Math functions to work with Vector3, Matrix and Quaternions
-*
-*   CONFIGURATION:
-*
-*   #define RAYMATH_IMPLEMENTATION
-*       Generates the implementation of the library into the included file.
-*       If not defined, the library is in header only mode and can be included in other headers
-*       or source files without problems. But only ONE file should hold the implementation.
-*
-*   #define RAYMATH_HEADER_ONLY
-*       Define static inline functions code, so #include header suffices for use.
-*       This may use up lots of memory.
-*
-*   #define RAYMATH_STANDALONE
-*       Avoid raylib.h header inclusion in this file.
-*       Vector3 and Matrix data types are defined internally in raymath module.
-*
-*
-*   LICENSE: zlib/libpng
-*
-*   Copyright (c) 2015-2020 Ramon Santamaria (@raysan5)
-*
-*   This software is provided "as-is", without any express or implied warranty. In no event
-*   will the authors be held liable for any damages arising from the use of this software.
-*
-*   Permission is granted to anyone to use this software for any purpose, including commercial
-*   applications, and to alter it and redistribute it freely, subject to the following restrictions:
-*
-*     1. The origin of this software must not be misrepresented; you must not claim that you
-*     wrote the original software. If you use this software in a product, an acknowledgment
-*     in the product documentation would be appreciated but is not required.
-*
-*     2. Altered source versions must be plainly marked as such, and must not be misrepresented
-*     as being the original software.
-*
-*     3. This notice may not be removed or altered from any source distribution.
-*
-**********************************************************************************************/
-
-#ifndef RAYMATH_H
-#define RAYMATH_H
-
-//#define RAYMATH_STANDALONE      // NOTE: To use raymath as standalone lib, just uncomment this line
-//#define RAYMATH_HEADER_ONLY     // NOTE: To compile functions as static inline, uncomment this line
-
-#ifndef RAYMATH_STANDALONE
-    #include "raylib.h"           // Required for structs: Vector3, Matrix
-#endif
-
-#if defined(RAYMATH_IMPLEMENTATION) && defined(RAYMATH_HEADER_ONLY)
-    #error "Specifying both RAYMATH_IMPLEMENTATION and RAYMATH_HEADER_ONLY is contradictory"
-#endif
-
-#if defined(RAYMATH_IMPLEMENTATION)
-    #if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED)
-        #define RMDEF __declspec(dllexport) extern inline // We are building raylib as a Win32 shared library (.dll).
-    #elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED)
-        #define RMDEF __declspec(dllimport)         // We are using raylib as a Win32 shared library (.dll)
-    #else
-        #define RMDEF extern inline // Provide external definition
-    #endif
-#elif defined(RAYMATH_HEADER_ONLY)
-    #define RMDEF static inline // Functions may be inlined, no external out-of-line definition
-#else
-    #if defined(__TINYC__)
-        #define RMDEF static inline // plain inline not supported by tinycc (See issue #435)
-    #else
-        #define RMDEF inline        // Functions may be inlined or external definition used
-    #endif
-#endif
-
-//----------------------------------------------------------------------------------
-// Defines and Macros
-//----------------------------------------------------------------------------------
-#ifndef PI
-    #define PI 3.14159265358979323846
-#endif
-
-#ifndef DEG2RAD
-    #define DEG2RAD (PI/180.0f)
-#endif
-
-#ifndef RAD2DEG
-    #define RAD2DEG (180.0f/PI)
-#endif
-
-// Return float vector for Matrix
-#ifndef MatrixToFloat
-    #define MatrixToFloat(mat) (MatrixToFloatV(mat).v)
-#endif
-
-// Return float vector for Vector3
-#ifndef Vector3ToFloat
-    #define Vector3ToFloat(vec) (Vector3ToFloatV(vec).v)
-#endif
-
-//----------------------------------------------------------------------------------
-// Types and Structures Definition
-//----------------------------------------------------------------------------------
-
-#if defined(RAYMATH_STANDALONE)
-    // Vector2 type
-    typedef struct Vector2 {
-        float x;
-        float y;
-    } Vector2;
-
-    // Vector3 type
-    typedef struct Vector3 {
-        float x;
-        float y;
-        float z;
-    } Vector3;
-
-    // Quaternion type
-    typedef struct Quaternion {
-        float x;
-        float y;
-        float z;
-        float w;
-    } Quaternion;
-
-    // Matrix type (OpenGL style 4x4 - right handed, column major)
-    typedef struct Matrix {
-        float m0, m4, m8, m12;
-        float m1, m5, m9, m13;
-        float m2, m6, m10, m14;
-        float m3, m7, m11, m15;
-    } Matrix;
-#endif
-
-// NOTE: Helper types to be used instead of array return types for *ToFloat functions
-typedef struct float3 { float v[3]; } float3;
-typedef struct float16 { float v[16]; } float16;
-
-#include <math.h>       // Required for: sinf(), cosf(), sqrtf(), tan(), fabs()
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Utils math
-//----------------------------------------------------------------------------------
-
-// Clamp float value
-RMDEF float Clamp(float value, float min, float max)
-{
-    const float res = value < min ? min : value;
-    return res > max ? max : res;
-}
-
-// Calculate linear interpolation between two floats
-RMDEF float Lerp(float start, float end, float amount)
-{
-    return start + amount*(end - start);
-}
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Vector2 math
-//----------------------------------------------------------------------------------
-
-// Vector with components value 0.0f
-RMDEF Vector2 Vector2Zero(void)
-{
-    Vector2 result = { 0.0f, 0.0f };
-    return result;
-}
-
-// Vector with components value 1.0f
-RMDEF Vector2 Vector2One(void)
-{
-    Vector2 result = { 1.0f, 1.0f };
-    return result;
-}
-
-// Add two vectors (v1 + v2)
-RMDEF Vector2 Vector2Add(Vector2 v1, Vector2 v2)
-{
-    Vector2 result = { v1.x + v2.x, v1.y + v2.y };
-    return result;
-}
-
-// Add vector and float value
-RMDEF Vector2 Vector2AddValue(Vector2 v, float add)
-{
-    Vector2 result = { v.x + add, v.y + add };
-    return result;
-}
-
-// Subtract two vectors (v1 - v2)
-RMDEF Vector2 Vector2Subtract(Vector2 v1, Vector2 v2)
-{
-    Vector2 result = { v1.x - v2.x, v1.y - v2.y };
-    return result;
-}
-
-// Subtract vector by float value
-RMDEF Vector2 Vector2SubtractValue(Vector2 v, float sub)
-{
-    Vector2 result = { v.x - sub, v.y - sub };
-    return result;
-}
-
-// Calculate vector length
-RMDEF float Vector2Length(Vector2 v)
-{
-    float result = sqrtf((v.x*v.x) + (v.y*v.y));
-    return result;
-}
-
-// Calculate two vectors dot product
-RMDEF float Vector2DotProduct(Vector2 v1, Vector2 v2)
-{
-    float result = (v1.x*v2.x + v1.y*v2.y);
-    return result;
-}
-
-// Calculate distance between two vectors
-RMDEF float Vector2Distance(Vector2 v1, Vector2 v2)
-{
-    float result = sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));
-    return result;
-}
-
-// Calculate angle from two vectors in X-axis
-RMDEF float Vector2Angle(Vector2 v1, Vector2 v2)
-{
-    float result = atan2f(v2.y - v1.y, v2.x - v1.x)*(180.0f/PI);
-    if (result < 0) result += 360.0f;
-    return result;
-}
-
-// Scale vector (multiply by value)
-RMDEF Vector2 Vector2Scale(Vector2 v, float scale)
-{
-    Vector2 result = { v.x*scale, v.y*scale };
-    return result;
-}
-
-// Multiply vector by vector
-RMDEF Vector2 Vector2Multiply(Vector2 v1, Vector2 v2)
-{
-    Vector2 result = { v1.x*v2.x, v1.y*v2.y };
-    return result;
-}
-
-// Negate vector
-RMDEF Vector2 Vector2Negate(Vector2 v)
-{
-    Vector2 result = { -v.x, -v.y };
-    return result;
-}
-
-// Divide vector by vector
-RMDEF Vector2 Vector2Divide(Vector2 v1, Vector2 v2)
-{
-    Vector2 result = { v1.x/v2.x, v1.y/v2.y };
-    return result;
-}
-
-// Normalize provided vector
-RMDEF Vector2 Vector2Normalize(Vector2 v)
-{
-    Vector2 result = Vector2Scale(v, 1/Vector2Length(v));
-    return result;
-}
-
-// Calculate linear interpolation between two vectors
-RMDEF Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount)
-{
-    Vector2 result = { 0 };
-
-    result.x = v1.x + amount*(v2.x - v1.x);
-    result.y = v1.y + amount*(v2.y - v1.y);
-
-    return result;
-}
-
-// Rotate Vector by float in Degrees.
-RMDEF Vector2 Vector2Rotate(Vector2 v, float degs)
-{
-    float rads = degs*DEG2RAD;
-    Vector2 result = {v.x * cosf(rads) - v.y * sinf(rads) , v.x * sinf(rads) + v.y * cosf(rads) };
-    return result;
-}
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Vector3 math
-//----------------------------------------------------------------------------------
-
-// Vector with components value 0.0f
-RMDEF Vector3 Vector3Zero(void)
-{
-    Vector3 result = { 0.0f, 0.0f, 0.0f };
-    return result;
-}
-
-// Vector with components value 1.0f
-RMDEF Vector3 Vector3One(void)
-{
-    Vector3 result = { 1.0f, 1.0f, 1.0f };
-    return result;
-}
-
-// Add two vectors
-RMDEF Vector3 Vector3Add(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z };
-    return result;
-}
-
-// Add vector and float value
-RMDEF Vector3 Vector3AddValue(Vector3 v, float add)
-{
-    Vector3 result = { v.x + add, v.y + add, v.z + add };
-    return result;
-}
-
-// Subtract two vectors
-RMDEF Vector3 Vector3Subtract(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
-    return result;
-}
-
-// Subtract vector by float value
-RMDEF Vector3 Vector3SubtractValue(Vector3 v, float sub)
-{
-    Vector3 result = { v.x - sub, v.y - sub, v.z - sub };
-    return result;
-}
-
-// Multiply vector by scalar
-RMDEF Vector3 Vector3Scale(Vector3 v, float scalar)
-{
-    Vector3 result = { v.x*scalar, v.y*scalar, v.z*scalar };
-    return result;
-}
-
-// Multiply vector by vector
-RMDEF Vector3 Vector3Multiply(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z };
-    return result;
-}
-
-// Calculate two vectors cross product
-RMDEF Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x };
-    return result;
-}
-
-// Calculate one vector perpendicular vector
-RMDEF Vector3 Vector3Perpendicular(Vector3 v)
-{
-    Vector3 result = { 0 };
-
-    float min = (float) fabs(v.x);
-    Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f};
-
-    if (fabs(v.y) < min)
-    {
-        min = (float) fabs(v.y);
-        Vector3 tmp = {0.0f, 1.0f, 0.0f};
-        cardinalAxis = tmp;
-    }
-
-    if (fabs(v.z) < min)
-    {
-        Vector3 tmp = {0.0f, 0.0f, 1.0f};
-        cardinalAxis = tmp;
-    }
-
-    result = Vector3CrossProduct(v, cardinalAxis);
-
-    return result;
-}
-
-// Calculate vector length
-RMDEF float Vector3Length(const Vector3 v)
-{
-    float result = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
-    return result;
-}
-
-// Calculate two vectors dot product
-RMDEF float Vector3DotProduct(Vector3 v1, Vector3 v2)
-{
-    float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
-    return result;
-}
-
-// Calculate distance between two vectors
-RMDEF float Vector3Distance(Vector3 v1, Vector3 v2)
-{
-    float dx = v2.x - v1.x;
-    float dy = v2.y - v1.y;
-    float dz = v2.z - v1.z;
-    float result = sqrtf(dx*dx + dy*dy + dz*dz);
-    return result;
-}
-
-// Negate provided vector (invert direction)
-RMDEF Vector3 Vector3Negate(Vector3 v)
-{
-    Vector3 result = { -v.x, -v.y, -v.z };
-    return result;
-}
-
-// Divide vector by vector
-RMDEF Vector3 Vector3Divide(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z };
-    return result;
-}
-
-// Normalize provided vector
-RMDEF Vector3 Vector3Normalize(Vector3 v)
-{
-    Vector3 result = v;
-
-    float length, ilength;
-    length = Vector3Length(v);
-    if (length == 0.0f) length = 1.0f;
-    ilength = 1.0f/length;
-
-    result.x *= ilength;
-    result.y *= ilength;
-    result.z *= ilength;
-
-    return result;
-}
-
-// Orthonormalize provided vectors
-// Makes vectors normalized and orthogonal to each other
-// Gram-Schmidt function implementation
-RMDEF void Vector3OrthoNormalize(Vector3 *v1, Vector3 *v2)
-{
-    *v1 = Vector3Normalize(*v1);
-    Vector3 vn = Vector3CrossProduct(*v1, *v2);
-    vn = Vector3Normalize(vn);
-    *v2 = Vector3CrossProduct(vn, *v1);
-}
-
-// Transforms a Vector3 by a given Matrix
-RMDEF Vector3 Vector3Transform(Vector3 v, Matrix mat)
-{
-    Vector3 result = { 0 };
-    float x = v.x;
-    float y = v.y;
-    float z = v.z;
-
-    result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
-    result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
-    result.z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
-
-    return result;
-}
-
-// Transform a vector by quaternion rotation
-RMDEF Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q)
-{
-    Vector3 result = { 0 };
-
-    result.x = v.x*(q.x*q.x + q.w*q.w - q.y*q.y - q.z*q.z) + v.y*(2*q.x*q.y - 2*q.w*q.z) + v.z*(2*q.x*q.z + 2*q.w*q.y);
-    result.y = v.x*(2*q.w*q.z + 2*q.x*q.y) + v.y*(q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z) + v.z*(-2*q.w*q.x + 2*q.y*q.z);
-    result.z = v.x*(-2*q.w*q.y + 2*q.x*q.z) + v.y*(2*q.w*q.x + 2*q.y*q.z)+ v.z*(q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z);
-
-    return result;
-}
-
-// Calculate linear interpolation between two vectors
-RMDEF Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount)
-{
-    Vector3 result = { 0 };
-
-    result.x = v1.x + amount*(v2.x - v1.x);
-    result.y = v1.y + amount*(v2.y - v1.y);
-    result.z = v1.z + amount*(v2.z - v1.z);
-
-    return result;
-}
-
-// Calculate reflected vector to normal
-RMDEF Vector3 Vector3Reflect(Vector3 v, Vector3 normal)
-{
-    // I is the original vector
-    // N is the normal of the incident plane
-    // R = I - (2*N*( DotProduct[ I,N] ))
-
-    Vector3 result = { 0 };
-
-    float dotProduct = Vector3DotProduct(v, normal);
-
-    result.x = v.x - (2.0f*normal.x)*dotProduct;
-    result.y = v.y - (2.0f*normal.y)*dotProduct;
-    result.z = v.z - (2.0f*normal.z)*dotProduct;
-
-    return result;
-}
-
-// Return min value for each pair of components
-RMDEF Vector3 Vector3Min(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { 0 };
-
-    result.x = fminf(v1.x, v2.x);
-    result.y = fminf(v1.y, v2.y);
-    result.z = fminf(v1.z, v2.z);
-
-    return result;
-}
-
-// Return max value for each pair of components
-RMDEF Vector3 Vector3Max(Vector3 v1, Vector3 v2)
-{
-    Vector3 result = { 0 };
-
-    result.x = fmaxf(v1.x, v2.x);
-    result.y = fmaxf(v1.y, v2.y);
-    result.z = fmaxf(v1.z, v2.z);
-
-    return result;
-}
-
-// Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c)
-// NOTE: Assumes P is on the plane of the triangle
-RMDEF Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
-{
-    //Vector v0 = b - a, v1 = c - a, v2 = p - a;
-
-    Vector3 v0 = Vector3Subtract(b, a);
-    Vector3 v1 = Vector3Subtract(c, a);
-    Vector3 v2 = Vector3Subtract(p, a);
-    float d00 = Vector3DotProduct(v0, v0);
-    float d01 = Vector3DotProduct(v0, v1);
-    float d11 = Vector3DotProduct(v1, v1);
-    float d20 = Vector3DotProduct(v2, v0);
-    float d21 = Vector3DotProduct(v2, v1);
-
-    float denom = d00*d11 - d01*d01;
-
-    Vector3 result = { 0 };
-
-    result.y = (d11*d20 - d01*d21)/denom;
-    result.z = (d00*d21 - d01*d20)/denom;
-    result.x = 1.0f - (result.z + result.y);
-
-    return result;
-}
-
-// Returns Vector3 as float array
-RMDEF float3 Vector3ToFloatV(Vector3 v)
-{
-    float3 buffer = { 0 };
-
-    buffer.v[0] = v.x;
-    buffer.v[1] = v.y;
-    buffer.v[2] = v.z;
-
-    return buffer;
-}
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Matrix math
-//----------------------------------------------------------------------------------
-
-// Compute matrix determinant
-RMDEF float MatrixDeterminant(Matrix mat)
-{
-    // Cache the matrix values (speed optimization)
-    float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
-    float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
-    float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
-    float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
-
-    float result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 +
-                   a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 +
-                   a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 +
-                   a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 +
-                   a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 +
-                   a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33;
-
-    return result;
-}
-
-// Returns the trace of the matrix (sum of the values along the diagonal)
-RMDEF float MatrixTrace(Matrix mat)
-{
-    float result = (mat.m0 + mat.m5 + mat.m10 + mat.m15);
-    return result;
-}
-
-// Transposes provided matrix
-RMDEF Matrix MatrixTranspose(Matrix mat)
-{
-    Matrix result = { 0 };
-
-    result.m0 = mat.m0;
-    result.m1 = mat.m4;
-    result.m2 = mat.m8;
-    result.m3 = mat.m12;
-    result.m4 = mat.m1;
-    result.m5 = mat.m5;
-    result.m6 = mat.m9;
-    result.m7 = mat.m13;
-    result.m8 = mat.m2;
-    result.m9 = mat.m6;
-    result.m10 = mat.m10;
-    result.m11 = mat.m14;
-    result.m12 = mat.m3;
-    result.m13 = mat.m7;
-    result.m14 = mat.m11;
-    result.m15 = mat.m15;
-
-    return result;
-}
-
-// Invert provided matrix
-RMDEF Matrix MatrixInvert(Matrix mat)
-{
-    Matrix result = { 0 };
-
-    // Cache the matrix values (speed optimization)
-    float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
-    float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
-    float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
-    float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
-
-    float b00 = a00*a11 - a01*a10;
-    float b01 = a00*a12 - a02*a10;
-    float b02 = a00*a13 - a03*a10;
-    float b03 = a01*a12 - a02*a11;
-    float b04 = a01*a13 - a03*a11;
-    float b05 = a02*a13 - a03*a12;
-    float b06 = a20*a31 - a21*a30;
-    float b07 = a20*a32 - a22*a30;
-    float b08 = a20*a33 - a23*a30;
-    float b09 = a21*a32 - a22*a31;
-    float b10 = a21*a33 - a23*a31;
-    float b11 = a22*a33 - a23*a32;
-
-    // Calculate the invert determinant (inlined to avoid double-caching)
-    float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
-
-    result.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet;
-    result.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet;
-    result.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet;
-    result.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet;
-    result.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet;
-    result.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet;
-    result.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet;
-    result.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet;
-    result.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet;
-    result.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet;
-    result.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet;
-    result.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet;
-    result.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet;
-    result.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet;
-    result.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet;
-    result.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet;
-
-    return result;
-}
-
-// Normalize provided matrix
-RMDEF Matrix MatrixNormalize(Matrix mat)
-{
-    Matrix result = { 0 };
-
-    float det = MatrixDeterminant(mat);
-
-    result.m0 = mat.m0/det;
-    result.m1 = mat.m1/det;
-    result.m2 = mat.m2/det;
-    result.m3 = mat.m3/det;
-    result.m4 = mat.m4/det;
-    result.m5 = mat.m5/det;
-    result.m6 = mat.m6/det;
-    result.m7 = mat.m7/det;
-    result.m8 = mat.m8/det;
-    result.m9 = mat.m9/det;
-    result.m10 = mat.m10/det;
-    result.m11 = mat.m11/det;
-    result.m12 = mat.m12/det;
-    result.m13 = mat.m13/det;
-    result.m14 = mat.m14/det;
-    result.m15 = mat.m15/det;
-
-    return result;
-}
-
-// Returns identity matrix
-RMDEF Matrix MatrixIdentity(void)
-{
-    Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
-                      0.0f, 1.0f, 0.0f, 0.0f,
-                      0.0f, 0.0f, 1.0f, 0.0f,
-                      0.0f, 0.0f, 0.0f, 1.0f };
-
-    return result;
-}
-
-// Add two matrices
-RMDEF Matrix MatrixAdd(Matrix left, Matrix right)
-{
-    Matrix result = MatrixIdentity();
-
-    result.m0 = left.m0 + right.m0;
-    result.m1 = left.m1 + right.m1;
-    result.m2 = left.m2 + right.m2;
-    result.m3 = left.m3 + right.m3;
-    result.m4 = left.m4 + right.m4;
-    result.m5 = left.m5 + right.m5;
-    result.m6 = left.m6 + right.m6;
-    result.m7 = left.m7 + right.m7;
-    result.m8 = left.m8 + right.m8;
-    result.m9 = left.m9 + right.m9;
-    result.m10 = left.m10 + right.m10;
-    result.m11 = left.m11 + right.m11;
-    result.m12 = left.m12 + right.m12;
-    result.m13 = left.m13 + right.m13;
-    result.m14 = left.m14 + right.m14;
-    result.m15 = left.m15 + right.m15;
-
-    return result;
-}
-
-// Subtract two matrices (left - right)
-RMDEF Matrix MatrixSubtract(Matrix left, Matrix right)
-{
-    Matrix result = MatrixIdentity();
-
-    result.m0 = left.m0 - right.m0;
-    result.m1 = left.m1 - right.m1;
-    result.m2 = left.m2 - right.m2;
-    result.m3 = left.m3 - right.m3;
-    result.m4 = left.m4 - right.m4;
-    result.m5 = left.m5 - right.m5;
-    result.m6 = left.m6 - right.m6;
-    result.m7 = left.m7 - right.m7;
-    result.m8 = left.m8 - right.m8;
-    result.m9 = left.m9 - right.m9;
-    result.m10 = left.m10 - right.m10;
-    result.m11 = left.m11 - right.m11;
-    result.m12 = left.m12 - right.m12;
-    result.m13 = left.m13 - right.m13;
-    result.m14 = left.m14 - right.m14;
-    result.m15 = left.m15 - right.m15;
-
-    return result;
-}
-
-// Returns translation matrix
-RMDEF Matrix MatrixTranslate(float x, float y, float z)
-{
-    Matrix result = { 1.0f, 0.0f, 0.0f, x,
-                      0.0f, 1.0f, 0.0f, y,
-                      0.0f, 0.0f, 1.0f, z,
-                      0.0f, 0.0f, 0.0f, 1.0f };
-
-    return result;
-}
-
-// Create rotation matrix from axis and angle
-// NOTE: Angle should be provided in radians
-RMDEF Matrix MatrixRotate(Vector3 axis, float angle)
-{
-    Matrix result = { 0 };
-
-    float x = axis.x, y = axis.y, z = axis.z;
-
-    float length = sqrtf(x*x + y*y + z*z);
-
-    if ((length != 1.0f) && (length != 0.0f))
-    {
-        length = 1.0f/length;
-        x *= length;
-        y *= length;
-        z *= length;
-    }
-
-    float sinres = sinf(angle);
-    float cosres = cosf(angle);
-    float t = 1.0f - cosres;
-
-    result.m0  = x*x*t + cosres;
-    result.m1  = y*x*t + z*sinres;
-    result.m2  = z*x*t - y*sinres;
-    result.m3  = 0.0f;
-
-    result.m4  = x*y*t - z*sinres;
-    result.m5  = y*y*t + cosres;
-    result.m6  = z*y*t + x*sinres;
-    result.m7  = 0.0f;
-
-    result.m8  = x*z*t + y*sinres;
-    result.m9  = y*z*t - x*sinres;
-    result.m10 = z*z*t + cosres;
-    result.m11 = 0.0f;
-
-    result.m12 = 0.0f;
-    result.m13 = 0.0f;
-    result.m14 = 0.0f;
-    result.m15 = 1.0f;
-
-    return result;
-}
-
-// Returns xyz-rotation matrix (angles in radians)
-RMDEF Matrix MatrixRotateXYZ(Vector3 ang)
-{
-    Matrix result = MatrixIdentity();
-
-    float cosz = cosf(-ang.z);
-    float sinz = sinf(-ang.z);
-    float cosy = cosf(-ang.y);
-    float siny = sinf(-ang.y);
-    float cosx = cosf(-ang.x);
-    float sinx = sinf(-ang.x);
-
-    result.m0 = cosz * cosy;
-    result.m4 = (cosz * siny * sinx) - (sinz * cosx);
-    result.m8 = (cosz * siny * cosx) + (sinz * sinx);
-
-    result.m1 = sinz * cosy;
-    result.m5 = (sinz * siny * sinx) + (cosz * cosx);
-    result.m9 = (sinz * siny * cosx) - (cosz * sinx);
-
-    result.m2 = -siny;
-    result.m6 = cosy * sinx;
-    result.m10= cosy * cosx;
-
-    return result;
-}
-
-// Returns x-rotation matrix (angle in radians)
-RMDEF Matrix MatrixRotateX(float angle)
-{
-    Matrix result = MatrixIdentity();
-
-    float cosres = cosf(angle);
-    float sinres = sinf(angle);
-
-    result.m5 = cosres;
-    result.m6 = -sinres;
-    result.m9 = sinres;
-    result.m10 = cosres;
-
-    return result;
-}
-
-// Returns y-rotation matrix (angle in radians)
-RMDEF Matrix MatrixRotateY(float angle)
-{
-    Matrix result = MatrixIdentity();
-
-    float cosres = cosf(angle);
-    float sinres = sinf(angle);
-
-    result.m0 = cosres;
-    result.m2 = sinres;
-    result.m8 = -sinres;
-    result.m10 = cosres;
-
-    return result;
-}
-
-// Returns z-rotation matrix (angle in radians)
-RMDEF Matrix MatrixRotateZ(float angle)
-{
-    Matrix result = MatrixIdentity();
-
-    float cosres = cosf(angle);
-    float sinres = sinf(angle);
-
-    result.m0 = cosres;
-    result.m1 = -sinres;
-    result.m4 = sinres;
-    result.m5 = cosres;
-
-    return result;
-}
-
-// Returns scaling matrix
-RMDEF Matrix MatrixScale(float x, float y, float z)
-{
-    Matrix result = { x, 0.0f, 0.0f, 0.0f,
-                      0.0f, y, 0.0f, 0.0f,
-                      0.0f, 0.0f, z, 0.0f,
-                      0.0f, 0.0f, 0.0f, 1.0f };
-
-    return result;
-}
-
-// Returns two matrix multiplication
-// NOTE: When multiplying matrices... the order matters!
-RMDEF Matrix MatrixMultiply(Matrix left, Matrix right)
-{
-    Matrix result = { 0 };
-
-    result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12;
-    result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13;
-    result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14;
-    result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15;
-    result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12;
-    result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13;
-    result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14;
-    result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15;
-    result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12;
-    result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13;
-    result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14;
-    result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15;
-    result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12;
-    result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13;
-    result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14;
-    result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15;
-
-    return result;
-}
-
-// Returns perspective projection matrix
-RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far)
-{
-    Matrix result = { 0 };
-
-    float rl = (float)(right - left);
-    float tb = (float)(top - bottom);
-    float fn = (float)(far - near);
-
-    result.m0 = ((float) near*2.0f)/rl;
-    result.m1 = 0.0f;
-    result.m2 = 0.0f;
-    result.m3 = 0.0f;
-
-    result.m4 = 0.0f;
-    result.m5 = ((float) near*2.0f)/tb;
-    result.m6 = 0.0f;
-    result.m7 = 0.0f;
-
-    result.m8 = ((float)right + (float)left)/rl;
-    result.m9 = ((float)top + (float)bottom)/tb;
-    result.m10 = -((float)far + (float)near)/fn;
-    result.m11 = -1.0f;
-
-    result.m12 = 0.0f;
-    result.m13 = 0.0f;
-    result.m14 = -((float)far*(float)near*2.0f)/fn;
-    result.m15 = 0.0f;
-
-    return result;
-}
-
-// Returns perspective projection matrix
-// NOTE: Angle should be provided in radians
-RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double far)
-{
-    double top = near*tan(fovy*0.5);
-    double right = top*aspect;
-    Matrix result = MatrixFrustum(-right, right, -top, top, near, far);
-
-    return result;
-}
-
-// Returns orthographic projection matrix
-RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far)
-{
-    Matrix result = { 0 };
-
-    float rl = (float)(right - left);
-    float tb = (float)(top - bottom);
-    float fn = (float)(far - near);
-
-    result.m0 = 2.0f/rl;
-    result.m1 = 0.0f;
-    result.m2 = 0.0f;
-    result.m3 = 0.0f;
-    result.m4 = 0.0f;
-    result.m5 = 2.0f/tb;
-    result.m6 = 0.0f;
-    result.m7 = 0.0f;
-    result.m8 = 0.0f;
-    result.m9 = 0.0f;
-    result.m10 = -2.0f/fn;
-    result.m11 = 0.0f;
-    result.m12 = -((float)left + (float)right)/rl;
-    result.m13 = -((float)top + (float)bottom)/tb;
-    result.m14 = -((float)far + (float)near)/fn;
-    result.m15 = 1.0f;
-
-    return result;
-}
-
-// Returns camera look-at matrix (view matrix)
-RMDEF Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
-{
-    Matrix result = { 0 };
-
-    Vector3 z = Vector3Subtract(eye, target);
-    z = Vector3Normalize(z);
-    Vector3 x = Vector3CrossProduct(up, z);
-    x = Vector3Normalize(x);
-    Vector3 y = Vector3CrossProduct(z, x);
-    y = Vector3Normalize(y);
-
-    result.m0 = x.x;
-    result.m1 = x.y;
-    result.m2 = x.z;
-    result.m3 = 0.0f;
-    result.m4 = y.x;
-    result.m5 = y.y;
-    result.m6 = y.z;
-    result.m7 = 0.0f;
-    result.m8 = z.x;
-    result.m9 = z.y;
-    result.m10 = z.z;
-    result.m11 = 0.0f;
-    result.m12 = eye.x;
-    result.m13 = eye.y;
-    result.m14 = eye.z;
-    result.m15 = 1.0f;
-
-    result = MatrixInvert(result);
-
-    return result;
-}
-
-// Returns float array of matrix data
-RMDEF float16 MatrixToFloatV(Matrix mat)
-{
-    float16 buffer = { 0 };
-
-    buffer.v[0] = mat.m0;
-    buffer.v[1] = mat.m1;
-    buffer.v[2] = mat.m2;
-    buffer.v[3] = mat.m3;
-    buffer.v[4] = mat.m4;
-    buffer.v[5] = mat.m5;
-    buffer.v[6] = mat.m6;
-    buffer.v[7] = mat.m7;
-    buffer.v[8] = mat.m8;
-    buffer.v[9] = mat.m9;
-    buffer.v[10] = mat.m10;
-    buffer.v[11] = mat.m11;
-    buffer.v[12] = mat.m12;
-    buffer.v[13] = mat.m13;
-    buffer.v[14] = mat.m14;
-    buffer.v[15] = mat.m15;
-
-    return buffer;
-}
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Quaternion math
-//----------------------------------------------------------------------------------
-
-// Add two quaternions
-RMDEF Quaternion QuaternionAdd(Quaternion q1, Quaternion q2)
-{
-    Quaternion result = {q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w};
-    return result;
-}
-
-// Add quaternion and float value
-RMDEF Quaternion QuaternionAddValue(Quaternion q, float add)
-{
-    Quaternion result = {q.x + add, q.y + add, q.z + add, q.w + add};
-    return result;
-}
-
-// Subtract two quaternions
-RMDEF Quaternion QuaternionSubtract(Quaternion q1, Quaternion q2)
-{
-    Quaternion result = {q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w};
-    return result;
-}
-
-// Subtract quaternion and float value
-RMDEF Quaternion QuaternionSubtractValue(Quaternion q, float sub)
-{
-    Quaternion result = {q.x - sub, q.y - sub, q.z - sub, q.w - sub};
-    return result;
-}
-
-// Returns identity quaternion
-RMDEF Quaternion QuaternionIdentity(void)
-{
-    Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
-    return result;
-}
-
-// Computes the length of a quaternion
-RMDEF float QuaternionLength(Quaternion q)
-{
-    float result = (float)sqrt(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
-    return result;
-}
-
-// Normalize provided quaternion
-RMDEF Quaternion QuaternionNormalize(Quaternion q)
-{
-    Quaternion result = { 0 };
-
-    float length, ilength;
-    length = QuaternionLength(q);
-    if (length == 0.0f) length = 1.0f;
-    ilength = 1.0f/length;
-
-    result.x = q.x*ilength;
-    result.y = q.y*ilength;
-    result.z = q.z*ilength;
-    result.w = q.w*ilength;
-
-    return result;
-}
-
-// Invert provided quaternion
-RMDEF Quaternion QuaternionInvert(Quaternion q)
-{
-    Quaternion result = q;
-    float length = QuaternionLength(q);
-    float lengthSq = length*length;
-
-    if (lengthSq != 0.0)
-    {
-        float i = 1.0f/lengthSq;
-
-        result.x *= -i;
-        result.y *= -i;
-        result.z *= -i;
-        result.w *= i;
-    }
-
-    return result;
-}
-
-// Calculate two quaternion multiplication
-RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2)
-{
-    Quaternion result = { 0 };
-
-    float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w;
-    float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w;
-
-    result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby;
-    result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz;
-    result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx;
-    result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz;
-
-    return result;
-}
-
-// Scale quaternion by float value
-RMDEF Quaternion QuaternionScale(Quaternion q, float mul)
-{
-    Quaternion result = { 0 };
-
-    float qax = q.x, qay = q.y, qaz = q.z, qaw = q.w;
-
-    result.x = qax * mul + qaw * mul + qay * mul - qaz * mul;
-    result.y = qay * mul + qaw * mul + qaz * mul - qax * mul;
-    result.z = qaz * mul + qaw * mul + qax * mul - qay * mul;
-    result.w = qaw * mul - qax * mul - qay * mul - qaz * mul;
-
-    return result;
-}
-
-// Divide two quaternions
-RMDEF Quaternion QuaternionDivide(Quaternion q1, Quaternion q2)
-{
-    Quaternion result = {q1.x / q2.x, q1.y / q2.y, q1.z / q2.z, q1.w / q2.w};
-    return result;
-}
-
-// Calculate linear interpolation between two quaternions
-RMDEF Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount)
-{
-    Quaternion result = { 0 };
-
-    result.x = q1.x + amount*(q2.x - q1.x);
-    result.y = q1.y + amount*(q2.y - q1.y);
-    result.z = q1.z + amount*(q2.z - q1.z);
-    result.w = q1.w + amount*(q2.w - q1.w);
-
-    return result;
-}
-
-// Calculate slerp-optimized interpolation between two quaternions
-RMDEF Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount)
-{
-    Quaternion result = QuaternionLerp(q1, q2, amount);
-    result = QuaternionNormalize(result);
-
-    return result;
-}
-
-// Calculates spherical linear interpolation between two quaternions
-RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
-{
-    Quaternion result = { 0 };
-
-    float cosHalfTheta =  q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w;
-
-    if (fabs(cosHalfTheta) >= 1.0f) result = q1;
-    else if (cosHalfTheta > 0.95f) result = QuaternionNlerp(q1, q2, amount);
-    else
-    {
-        float halfTheta = acosf(cosHalfTheta);
-        float sinHalfTheta = sqrtf(1.0f - cosHalfTheta*cosHalfTheta);
-
-        if (fabs(sinHalfTheta) < 0.001f)
-        {
-            result.x = (q1.x*0.5f + q2.x*0.5f);
-            result.y = (q1.y*0.5f + q2.y*0.5f);
-            result.z = (q1.z*0.5f + q2.z*0.5f);
-            result.w = (q1.w*0.5f + q2.w*0.5f);
-        }
-        else
-        {
-            float ratioA = sinf((1 - amount)*halfTheta)/sinHalfTheta;
-            float ratioB = sinf(amount*halfTheta)/sinHalfTheta;
-
-            result.x = (q1.x*ratioA + q2.x*ratioB);
-            result.y = (q1.y*ratioA + q2.y*ratioB);
-            result.z = (q1.z*ratioA + q2.z*ratioB);
-            result.w = (q1.w*ratioA + q2.w*ratioB);
-        }
-    }
-
-    return result;
-}
-
-// Calculate quaternion based on the rotation from one vector to another
-RMDEF Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
-{
-    Quaternion result = { 0 };
-
-    float cos2Theta = Vector3DotProduct(from, to);
-    Vector3 cross = Vector3CrossProduct(from, to);
-
-    result.x = cross.x;
-    result.y = cross.y;
-    result.z = cross.y;
-    result.w = 1.0f + cos2Theta;     // NOTE: Added QuaternioIdentity()
-
-    // Normalize to essentially nlerp the original and identity to 0.5
-    result = QuaternionNormalize(result);
-
-    // Above lines are equivalent to:
-    //Quaternion result = QuaternionNlerp(q, QuaternionIdentity(), 0.5f);
-
-    return result;
-}
-
-// Returns a quaternion for a given rotation matrix
-RMDEF Quaternion QuaternionFromMatrix(Matrix mat)
-{
-    Quaternion result = { 0 };
-
-    float trace = MatrixTrace(mat);
-
-    if (trace > 0.0f)
-    {
-        float s = sqrtf(trace + 1)*2.0f;
-        float invS = 1.0f/s;
-
-        result.w = s*0.25f;
-        result.x = (mat.m6 - mat.m9)*invS;
-        result.y = (mat.m8 - mat.m2)*invS;
-        result.z = (mat.m1 - mat.m4)*invS;
-    }
-    else
-    {
-        float m00 = mat.m0, m11 = mat.m5, m22 = mat.m10;
-
-        if (m00 > m11 && m00 > m22)
-        {
-            float s = (float)sqrt(1.0f + m00 - m11 - m22)*2.0f;
-            float invS = 1.0f/s;
-
-            result.w = (mat.m6 - mat.m9)*invS;
-            result.x = s*0.25f;
-            result.y = (mat.m4 + mat.m1)*invS;
-            result.z = (mat.m8 + mat.m2)*invS;
-        }
-        else if (m11 > m22)
-        {
-            float s = sqrtf(1.0f + m11 - m00 - m22)*2.0f;
-            float invS = 1.0f/s;
-
-            result.w = (mat.m8 - mat.m2)*invS;
-            result.x = (mat.m4 + mat.m1)*invS;
-            result.y = s*0.25f;
-            result.z = (mat.m9 + mat.m6)*invS;
-        }
-        else
-        {
-            float s = sqrtf(1.0f + m22 - m00 - m11)*2.0f;
-            float invS = 1.0f/s;
-
-            result.w = (mat.m1 - mat.m4)*invS;
-            result.x = (mat.m8 + mat.m2)*invS;
-            result.y = (mat.m9 + mat.m6)*invS;
-            result.z = s*0.25f;
-        }
-    }
-
-    return result;
-}
-
-// Returns a matrix for a given quaternion
-RMDEF Matrix QuaternionToMatrix(Quaternion q)
-{
-    Matrix result = { 0 };
-
-    float x = q.x, y = q.y, z = q.z, w = q.w;
-
-    float x2 = x + x;
-    float y2 = y + y;
-    float z2 = z + z;
-
-    float length = QuaternionLength(q);
-    float lengthSquared = length*length;
-
-    float xx = x*x2/lengthSquared;
-    float xy = x*y2/lengthSquared;
-    float xz = x*z2/lengthSquared;
-
-    float yy = y*y2/lengthSquared;
-    float yz = y*z2/lengthSquared;
-    float zz = z*z2/lengthSquared;
-
-    float wx = w*x2/lengthSquared;
-    float wy = w*y2/lengthSquared;
-    float wz = w*z2/lengthSquared;
-
-    result.m0 = 1.0f - (yy + zz);
-    result.m1 = xy - wz;
-    result.m2 = xz + wy;
-    result.m3 = 0.0f;
-    result.m4 = xy + wz;
-    result.m5 = 1.0f - (xx + zz);
-    result.m6 = yz - wx;
-    result.m7 = 0.0f;
-    result.m8 = xz - wy;
-    result.m9 = yz + wx;
-    result.m10 = 1.0f - (xx + yy);
-    result.m11 = 0.0f;
-    result.m12 = 0.0f;
-    result.m13 = 0.0f;
-    result.m14 = 0.0f;
-    result.m15 = 1.0f;
-
-    return result;
-}
-
-// Returns rotation quaternion for an angle and axis
-// NOTE: angle must be provided in radians
-RMDEF Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle)
-{
-    Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
-
-    if (Vector3Length(axis) != 0.0f)
-
-    angle *= 0.5f;
-
-    axis = Vector3Normalize(axis);
-
-    float sinres = sinf(angle);
-    float cosres = cosf(angle);
-
-    result.x = axis.x*sinres;
-    result.y = axis.y*sinres;
-    result.z = axis.z*sinres;
-    result.w = cosres;
-
-    result = QuaternionNormalize(result);
-
-    return result;
-}
-
-// Returns the rotation angle and axis for a given quaternion
-RMDEF void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle)
-{
-    if (fabs(q.w) > 1.0f) q = QuaternionNormalize(q);
-
-    Vector3 resAxis = { 0.0f, 0.0f, 0.0f };
-    float resAngle = 2.0f*acosf(q.w);
-    float den = sqrtf(1.0f - q.w*q.w);
-
-    if (den > 0.0001f)
-    {
-        resAxis.x = q.x/den;
-        resAxis.y = q.y/den;
-        resAxis.z = q.z/den;
-    }
-    else
-    {
-        // This occurs when the angle is zero.
-        // Not a problem: just set an arbitrary normalized axis.
-        resAxis.x = 1.0f;
-    }
-
-    *outAxis = resAxis;
-    *outAngle = resAngle;
-}
-
-// Returns he quaternion equivalent to Euler angles
-RMDEF Quaternion QuaternionFromEuler(float roll, float pitch, float yaw)
-{
-    Quaternion q = { 0 };
-
-    float x0 = cosf(roll*0.5f);
-    float x1 = sinf(roll*0.5f);
-    float y0 = cosf(pitch*0.5f);
-    float y1 = sinf(pitch*0.5f);
-    float z0 = cosf(yaw*0.5f);
-    float z1 = sinf(yaw*0.5f);
-
-    q.x = x1*y0*z0 - x0*y1*z1;
-    q.y = x0*y1*z0 + x1*y0*z1;
-    q.z = x0*y0*z1 - x1*y1*z0;
-    q.w = x0*y0*z0 + x1*y1*z1;
-
-    return q;
-}
-
-// Return the Euler angles equivalent to quaternion (roll, pitch, yaw)
-// NOTE: Angles are returned in a Vector3 struct in degrees
-RMDEF Vector3 QuaternionToEuler(Quaternion q)
-{
-    Vector3 result = { 0 };
-
-    // roll (x-axis rotation)
-    float x0 = 2.0f*(q.w*q.x + q.y*q.z);
-    float x1 = 1.0f - 2.0f*(q.x*q.x + q.y*q.y);
-    result.x = atan2f(x0, x1)*RAD2DEG;
-
-    // pitch (y-axis rotation)
-    float y0 = 2.0f*(q.w*q.y - q.z*q.x);
-    y0 = y0 > 1.0f ? 1.0f : y0;
-    y0 = y0 < -1.0f ? -1.0f : y0;
-    result.y = asinf(y0)*RAD2DEG;
-
-    // yaw (z-axis rotation)
-    float z0 = 2.0f*(q.w*q.z + q.x*q.y);
-    float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z);
-    result.z = atan2f(z0, z1)*RAD2DEG;
-
-    return result;
-}
-
-// Transform a quaternion given a transformation matrix
-RMDEF Quaternion QuaternionTransform(Quaternion q, Matrix mat)
-{
-    Quaternion result = { 0 };
-
-    result.x = mat.m0*q.x + mat.m4*q.y + mat.m8*q.z + mat.m12*q.w;
-    result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w;
-    result.z = mat.m2*q.x + mat.m6*q.y + mat.m10*q.z + mat.m14*q.w;
-    result.w = mat.m3*q.x + mat.m7*q.y + mat.m11*q.z + mat.m15*q.w;
-
-    return result;
-}
-
-#endif  // RAYMATH_H

+ 55 - 92
src/raymath.h

@@ -78,6 +78,8 @@
     #define PI 3.14159265358979323846
 #endif
 
+
+
 #ifndef DEG2RAD
     #define DEG2RAD (PI/180.0f)
 #endif
@@ -926,6 +928,8 @@ RMDEF Matrix MatrixRotateZ(float angle)
     return result;
 }
 
+
+
 // Returns scaling matrix
 RMDEF Matrix MatrixScale(float x, float y, float z)
 {
@@ -963,6 +967,17 @@ RMDEF Matrix MatrixMultiply(Matrix left, Matrix right)
     return result;
 }
 
+// TODO suboptimal should be able to create this matrix in one go
+// this is an aditional 3 matrix multiplies!
+RMDEF Matrix MatrixRotateZYX(Vector3 v)
+{
+    Matrix result = MatrixRotateZ(v.z);
+    result = MatrixMultiply(result, MatrixRotateY(v.y));
+    result = MatrixMultiply(result, MatrixRotateX(v.x));
+    
+    return result;
+}
+
 // Returns perspective projection matrix
 RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far)
 {
@@ -1297,105 +1312,53 @@ RMDEF Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
 }
 
 // Returns a quaternion for a given rotation matrix
-RMDEF Quaternion QuaternionFromMatrix(Matrix mat)
-{
-    Quaternion result = { 0 };
-
-    float trace = MatrixTrace(mat);
-
-    if (trace > 0.0f)
-    {
-        float s = sqrtf(trace + 1)*2.0f;
-        float invS = 1.0f/s;
-
-        result.w = s*0.25f;
-        result.x = (mat.m6 - mat.m9)*invS;
-        result.y = (mat.m8 - mat.m2)*invS;
-        result.z = (mat.m1 - mat.m4)*invS;
-    }
-    else
-    {
-        float m00 = mat.m0, m11 = mat.m5, m22 = mat.m10;
-
-        if (m00 > m11 && m00 > m22)
-        {
-            float s = (float)sqrt(1.0f + m00 - m11 - m22)*2.0f;
-            float invS = 1.0f/s;
-
-            result.w = (mat.m6 - mat.m9)*invS;
-            result.x = s*0.25f;
-            result.y = (mat.m4 + mat.m1)*invS;
-            result.z = (mat.m8 + mat.m2)*invS;
-        }
-        else if (m11 > m22)
-        {
-            float s = sqrtf(1.0f + m11 - m00 - m22)*2.0f;
-            float invS = 1.0f/s;
-
-            result.w = (mat.m8 - mat.m2)*invS;
-            result.x = (mat.m4 + mat.m1)*invS;
-            result.y = s*0.25f;
-            result.z = (mat.m9 + mat.m6)*invS;
-        }
-        else
-        {
-            float s = sqrtf(1.0f + m22 - m00 - m11)*2.0f;
-            float invS = 1.0f/s;
-
-            result.w = (mat.m1 - mat.m4)*invS;
-            result.x = (mat.m8 + mat.m2)*invS;
-            result.y = (mat.m9 + mat.m6)*invS;
-            result.z = s*0.25f;
-        }
-    }
-
-    return result;
+RMDEF Quaternion QuaternionFromMatrix(Matrix m)
+{
+    Quaternion q;
+    if ( m.m0 > m.m5 && m.m0 > m.m10 )  {
+        float s  = sqrt( 1.0 + m.m0 - m.m5 - m.m10 ) * 2;
+        q.x = 0.25 * s;
+        q.y = (m.m4 + m.m1 ) / s;
+        q.z = (m.m2 + m.m8 ) / s;
+        q.w = (m.m9 - m.m6 ) / s;
+    } else if ( m.m5 > m.m10 ) {
+        float s  = sqrt( 1.0 + m.m5 - m.m0 - m.m10 ) * 2;
+        q.x = (m.m4 + m.m1 ) / s;
+        q.y = 0.25 * s;
+        q.z = (m.m9 + m.m6 ) / s;
+        q.w = (m.m2 - m.m8 ) / s;
+    } else {
+        float s  = sqrt( 1.0 + m.m10 - m.m0 - m.m5 ) * 2;
+        q.x = (m.m2 + m.m8 ) / s;
+        q.y = (m.m9 + m.m6 ) / s;
+        q.z = 0.25 * s;
+        q.w = (m.m4 - m.m1 ) / s;
+    } 
+    return q;
 }
 
 // Returns a matrix for a given quaternion
 RMDEF Matrix QuaternionToMatrix(Quaternion q)
 {
-    Matrix result = { 0 };
-
-    float x = q.x, y = q.y, z = q.z, w = q.w;
-
-    float x2 = x + x;
-    float y2 = y + y;
-    float z2 = z + z;
-
-    float length = QuaternionLength(q);
-    float lengthSquared = length*length;
-
-    float xx = x*x2/lengthSquared;
-    float xy = x*y2/lengthSquared;
-    float xz = x*z2/lengthSquared;
-
-    float yy = y*y2/lengthSquared;
-    float yz = y*z2/lengthSquared;
-    float zz = z*z2/lengthSquared;
-
-    float wx = w*x2/lengthSquared;
-    float wy = w*y2/lengthSquared;
-    float wz = w*z2/lengthSquared;
+    Matrix m = MatrixIdentity();
+    float a2=2*(q.x*q.x), b2=2*(q.y*q.y), c2=2*(q.z*q.z); //, d2=2*(q.w*q.w);
+    
+    float ab=2*(q.x*q.y), ac=2*(q.x*q.z), bc=2*(q.y*q.z);
+    float ad=2*(q.x*q.w), bd=2*(q.y*q.w), cd=2*(q.z*q.w);
 
-    result.m0 = 1.0f - (yy + zz);
-    result.m1 = xy - wz;
-    result.m2 = xz + wy;
-    result.m3 = 0.0f;
-    result.m4 = xy + wz;
-    result.m5 = 1.0f - (xx + zz);
-    result.m6 = yz - wx;
-    result.m7 = 0.0f;
-    result.m8 = xz - wy;
-    result.m9 = yz + wx;
-    result.m10 = 1.0f - (xx + yy);
-    result.m11 = 0.0f;
-    result.m12 = 0.0f;
-    result.m13 = 0.0f;
-    result.m14 = 0.0f;
-    result.m15 = 1.0f;
+    m.m0  = 1 - b2 - c2;
+    m.m1  = ab - cd;
+    m.m2  = ac + bd;
+    
+    m.m4  = ab + cd;
+    m.m5  = 1 - a2 - c2;
+    m.m6  = bc - ad;
+    
+    m.m8  = ac - bd;
+    m.m9  = bc + ad;
+    m.m10 = 1 - a2 - b2;
 
-    return result;
+    return m;
 }
 
 // Returns rotation quaternion for an angle and axis