소스 검색

Mempool and other Allocators Optimization (#1211)

Optimizations of allocators.
Renamed 'Stack' to 'Arena'.
Replaced certain define constants with an anonymous enum.
Refactored MemPool to no longer require active or deferred defragging.
Kevin Yonan 5 년 전
부모
커밋
dd7dd1ac8b
1개의 변경된 파일338개의 추가작업 그리고 374개의 파일을 삭제
  1. 338 374
      src/rmem.h

+ 338 - 374
src/rmem.h

@@ -2,7 +2,7 @@
 *
 *   rmem - raylib memory pool and objects pool
 *
-*   A quick, efficient, and minimal free list and stack-based allocator
+*   A quick, efficient, and minimal free list and arena-based allocator
 *
 *   PURPOSE:
 *     - A quicker, efficient memory allocator alternative to 'malloc' and friends.
@@ -55,6 +55,8 @@
     #define RMEMAPI   // We are building or using library as a static library (or Linux shared library)
 #endif
 
+#define RMEM_VERSION    "v1.3"    // changelog at bottom of header.
+
 //----------------------------------------------------------------------------------
 // Types and Structures Definition
 //----------------------------------------------------------------------------------
@@ -66,39 +68,45 @@ struct MemNode {
     MemNode *next, *prev;
 };
 
+// Freelist implementation
 typedef struct AllocList {
     MemNode *head, *tail;
-    size_t len, maxNodes;
-    bool autoDefrag : 1;
+    size_t len;
 } AllocList;
 
-typedef struct Stack {
-    uint8_t *mem, *base;
+// Arena allocator.
+typedef struct Arena {
+    uintptr_t mem, offs;
     size_t size;
-} Stack;
+} Arena;
+
 
-#define MEMPOOL_BUCKET_SIZE    8
-#define MEMPOOL_BUCKET_BITS    3
+enum {
+    MEMPOOL_BUCKET_SIZE = 8,
+    MEMPOOL_BUCKET_BITS = (sizeof(uintptr_t) >> 1) + 1,
+    MEM_SPLIT_THRESHOLD = sizeof(uintptr_t) * 4
+};
 
 typedef struct MemPool {
-    AllocList freeList;
-    Stack stack;
-    MemNode *buckets[MEMPOOL_BUCKET_SIZE];
+    AllocList large, buckets[MEMPOOL_BUCKET_SIZE];
+    Arena arena;
 } MemPool;
 
+
 // Object Pool
 typedef struct ObjPool {
-    Stack stack;
-    size_t objSize, freeBlocks;
+    uintptr_t mem, offs;
+    size_t objSize, freeBlocks, memSize;
 } ObjPool;
 
 
 // Double-Ended Stack aka Deque
 typedef struct BiStack {
-    uint8_t *mem, *front, *back;
+    uintptr_t mem, front, back;
     size_t size;
 } BiStack;
 
+
 #if defined(__cplusplus)
 extern "C" {            // Prevents name mangling of functions
 #endif
@@ -115,10 +123,7 @@ RMEMAPI void *MemPoolRealloc(MemPool *mempool, void *ptr, size_t bytes);
 RMEMAPI void MemPoolFree(MemPool *mempool, void *ptr);
 RMEMAPI void MemPoolCleanUp(MemPool *mempool, void **ptrref);
 RMEMAPI void MemPoolReset(MemPool *mempool);
-RMEMAPI bool MemPoolDefrag(MemPool *mempool);
-
 RMEMAPI size_t GetMemPoolFreeMemory(const MemPool mempool);
-RMEMAPI void ToggleMemPoolAutoDefrag(MemPool *mempool);
 
 //------------------------------------------------------------------------------------
 // Functions Declaration - Object Pool
@@ -161,7 +166,9 @@ RMEMAPI intptr_t BiStackMargins(BiStack destack);
 
 #if defined(RMEM_IMPLEMENTATION)
 
-#include <stdio.h>          // Required for: malloc(), calloc(), free()
+#include <stdio.h>          // Required for:
+#include <stdlib.h>         // Required for:
+#include <string.h>         // Required for:
 
 //----------------------------------------------------------------------------------
 // Defines and Macros
@@ -188,6 +195,145 @@ static inline size_t __AlignSize(const size_t size, const size_t align)
     return (size + (align - 1)) & -align;
 }
 
+static MemNode *__SplitMemNode(MemNode *const node, const size_t bytes)
+{
+    uintptr_t n = ( uintptr_t )node;
+    MemNode *const r = ( MemNode* )(n + (node->size - bytes));
+    node->size -= bytes;
+    r->size = bytes;
+    return r;
+}
+
+static void __InsertMemNodeBefore(AllocList *const list, MemNode *const insert, MemNode *const curr)
+{
+    insert->next = curr;
+    if (curr->prev==NULL) list->head = insert;
+    else
+    {
+        insert->prev = curr->prev;
+        curr->prev->next = insert;
+    }
+    curr->prev = insert;
+}
+
+static void __ReplaceMemNode(MemNode *const old, MemNode *const replace)
+{
+    replace->prev = old->prev;
+    replace->next = old->next;
+    if( old->prev != NULL )
+        old->prev->next = replace;
+    if( old->next != NULL )
+        old->next->prev = replace;
+}
+
+
+static MemNode *__RemoveMemNode(AllocList *const list, MemNode *const node)
+{
+    if (node->prev != NULL) node->prev->next = node->next;
+    else
+    {
+        list->head = node->next;
+        if (list->head != NULL) list->head->prev = NULL;
+        else list->tail = NULL;
+    }
+    
+    if (node->next != NULL) node->next->prev = node->prev;
+    else
+    {
+        list->tail = node->prev;
+        if (list->tail != NULL) list->tail->next = NULL;
+        else list->head = NULL;
+    }
+    list->len--;
+    return node;
+}
+
+static MemNode *__FindMemNode(AllocList *const list, const size_t bytes)
+{
+    for (MemNode *node = list->head; node != NULL; node = node->next)
+    {
+        if (node->size < bytes) continue;
+        // close in size - reduce fragmentation by not splitting.
+        else if (node->size <= bytes + MEM_SPLIT_THRESHOLD) return __RemoveMemNode(list, node);
+        else return __SplitMemNode(node, bytes);
+    }
+    return NULL;
+}
+
+static void __InsertMemNode(MemPool *const mempool, AllocList *const list, MemNode *const node, const bool is_bucket)
+{
+    if (list->head == NULL)
+    {
+        list->head = node;
+        list->len++;
+    }
+    else
+    {
+        for (MemNode *iter = list->head; iter != NULL; iter = iter->next)
+        {
+            if (( uintptr_t )iter == mempool->arena.offs)
+            {
+                mempool->arena.offs += iter->size;
+                __RemoveMemNode(list, iter);
+                iter = list->head;
+            }
+            const uintptr_t inode = ( uintptr_t )node;
+            const uintptr_t iiter = ( uintptr_t )iter;
+            const uintptr_t iter_end = iiter + iter->size;
+            const uintptr_t node_end = inode + node->size;
+            if (iter==node) return;
+            else if (iter < node)
+            {
+                // node was coalesced prior.
+                if (iter_end > inode) return;
+                else if (iter_end==inode && !is_bucket)
+                {
+                    // if we can coalesce, do so.
+                    iter->size += node->size;
+                    return;
+                }
+            }
+            else if (iter > node)
+            {
+                // Address sort, lowest to highest aka ascending order.
+                if (iiter < node_end) return;
+                else if (iter==list->head && !is_bucket)
+                {
+                    if (iter_end==inode) iter->size += node->size;
+                    else if (node_end==iiter)
+                    {
+                        node->size += list->head->size;
+                        node->next = list->head->next;
+                        node->prev = NULL;
+                        list->head = node;
+                    }
+                    else
+                    {
+                        node->next = iter;
+                        node->prev = NULL;
+                        iter->prev = node;
+                        list->head = node;
+                        list->len++;
+                    }
+                    return;
+                }
+                else if (iter_end==inode && !is_bucket)
+                {
+                    // if we can coalesce, do so.
+                    iter->size += node->size;
+                    return;
+                }
+                else
+                {
+                    __InsertMemNodeBefore(list, iter, node);
+                    list->len++;
+                    return;
+                }
+            }
+        }
+    }
+}
+
 //----------------------------------------------------------------------------------
 // Module Functions Definition - Memory Pool
 //----------------------------------------------------------------------------------
@@ -196,114 +342,77 @@ MemPool CreateMemPool(const size_t size)
 {
     MemPool mempool = { 0 };
 
-    if (size == 0UL) return mempool;
+    if (size == 0) return mempool;
     else
     {
         // Align the mempool size to at least the size of an alloc node.
-        mempool.stack.size = size;
-        mempool.stack.mem = malloc(mempool.stack.size*sizeof *mempool.stack.mem);
-
-        if (mempool.stack.mem == NULL)
-        {
-            mempool.stack.size = 0UL;
-            return mempool;
-        }
+        uint8_t *const restrict buf = malloc(size*sizeof *buf);
+        if (buf==NULL) return mempool;
         else
         {
-            mempool.stack.base = mempool.stack.mem + mempool.stack.size;
+            mempool.arena.size = size;
+            mempool.arena.mem = ( uintptr_t )buf;
+            mempool.arena.offs = mempool.arena.mem + mempool.arena.size;
             return mempool;
         }
     }
 }
 
-MemPool CreateMemPoolFromBuffer(void *buf, const size_t size)
+MemPool CreateMemPoolFromBuffer(void *const restrict buf, const size_t size)
 {
     MemPool mempool = { 0 };
-
-    if ((size == 0UL) || (buf == NULL) || (size <= sizeof(MemNode))) return mempool;
+    if ((size == 0) || (buf == NULL) || (size <= sizeof(MemNode))) return mempool;
     else
     {
-        mempool.stack.size = size;
-        mempool.stack.mem = buf;
-        mempool.stack.base = mempool.stack.mem + mempool.stack.size;
+        mempool.arena.size = size;
+        mempool.arena.mem = ( uintptr_t )buf;
+        mempool.arena.offs = mempool.arena.mem + mempool.arena.size;
         return mempool;
     }
 }
 
-void DestroyMemPool(MemPool *const mempool)
+void DestroyMemPool(MemPool *const restrict mempool)
 {
-    if ((mempool == NULL) || (mempool->stack.mem == NULL)) return;
+    if (mempool->arena.mem == 0) return;
     else
     {
-        free(mempool->stack.mem);
+        void *const restrict ptr = ( void* )mempool->arena.mem;
+        free(ptr);
         *mempool = (MemPool){ 0 };
     }
 }
 
 void *MemPoolAlloc(MemPool *const mempool, const size_t size)
 {
-    if ((mempool == NULL) || (size == 0UL) || (size > mempool->stack.size)) return NULL;
+    if ((size == 0) || (size > mempool->arena.size)) return NULL;
     else
     {
         MemNode *new_mem = NULL;
         const size_t ALLOC_SIZE = __AlignSize(size + sizeof *new_mem, sizeof(intptr_t));
-        const size_t BUCKET_INDEX = (ALLOC_SIZE >> MEMPOOL_BUCKET_BITS) - 1;
+        const size_t BUCKET_SLOT = (ALLOC_SIZE >> MEMPOOL_BUCKET_BITS) - 1;
 
         // If the size is small enough, let's check if our buckets has a fitting memory block.
-        if ((BUCKET_INDEX < MEMPOOL_BUCKET_SIZE) && 
-            (mempool->buckets[BUCKET_INDEX] != NULL) && 
-            (mempool->buckets[BUCKET_INDEX]->size >= ALLOC_SIZE))
+        if (BUCKET_SLOT < MEMPOOL_BUCKET_SIZE)
         {
-            new_mem = mempool->buckets[BUCKET_INDEX];
-            mempool->buckets[BUCKET_INDEX] = mempool->buckets[BUCKET_INDEX]->next;
-            if( mempool->buckets[BUCKET_INDEX] != NULL )
-                mempool->buckets[BUCKET_INDEX]->prev = NULL;
+            new_mem = __FindMemNode(&mempool->buckets[BUCKET_SLOT], ALLOC_SIZE);
         }
-        else if (mempool->freeList.head != NULL)
+        else if (mempool->large.head != NULL)
         {
-            const size_t MEM_SPLIT_THRESHOLD = 16;
-
-            // If the freelist is valid, let's allocate FROM the freelist then!
-            for (MemNode *inode = mempool->freeList.head; inode != NULL; inode = inode->next)
-            {
-                if (inode->size < ALLOC_SIZE) continue;
-                else if (inode->size <= (ALLOC_SIZE + MEM_SPLIT_THRESHOLD))
-                {
-                    // Close in size - reduce fragmentation by not splitting.
-                    new_mem = inode;
-                    (inode->prev != NULL)? (inode->prev->next = inode->next) : (mempool->freeList.head = inode->next);
-                    (inode->next != NULL)? (inode->next->prev = inode->prev) : (mempool->freeList.tail = inode->prev);
-
-                    if (mempool->freeList.head != NULL) mempool->freeList.head->prev = NULL;
-                    else mempool->freeList.tail = NULL;
-
-                    if (mempool->freeList.tail != NULL) mempool->freeList.tail->next = NULL;
-                    mempool->freeList.len--;
-                    break;
-                }
-                else
-                {
-                    // Split the memory chunk.
-                    new_mem = (MemNode *)((uint8_t *)inode + (inode->size - ALLOC_SIZE));
-                    inode->size -= ALLOC_SIZE;
-                    new_mem->size = ALLOC_SIZE;
-                    break;
-                }
-            }
+            new_mem = __FindMemNode(&mempool->large, ALLOC_SIZE);
         }
 
         if (new_mem == NULL)
         {
             // not enough memory to support the size!
-            if ((mempool->stack.base - ALLOC_SIZE) < mempool->stack.mem) return NULL;
+            if ((mempool->arena.offs - ALLOC_SIZE) < mempool->arena.mem) return NULL;
             else
             {
                 // Couldn't allocate from a freelist, allocate from available mempool.
                 // Subtract allocation size from the mempool.
-                mempool->stack.base -= ALLOC_SIZE;
+                mempool->arena.offs -= ALLOC_SIZE;
 
                 // Use the available mempool space as the new node.
-                new_mem = (MemNode *)mempool->stack.base;
+                new_mem = ( MemNode* )mempool->arena.offs;
                 new_mem->size = ALLOC_SIZE;
             }
         }
@@ -313,33 +422,32 @@ void *MemPoolAlloc(MemPool *const mempool, const size_t size)
         // | mem size   | lowest addr of block
         // | next node  | 12 byte (32-bit) header
         // | prev node  | 24 byte (64-bit) header
-        // --------------
+        // |------------|
         // |   alloc'd  |
         // |   memory   |
         // |   space    | highest addr of block
         // --------------
         new_mem->next = new_mem->prev = NULL;
-        uint8_t *const final_mem = (uint8_t *)new_mem + sizeof *new_mem;
+        uint8_t *const restrict final_mem = ( uint8_t* )new_mem + sizeof *new_mem;
         return memset(final_mem, 0, new_mem->size - sizeof *new_mem);
     }
 }
 
-void *MemPoolRealloc(MemPool *const restrict mempool, void *ptr, const size_t size)
+void *MemPoolRealloc(MemPool *const restrict mempool, void *const ptr, const size_t size)
 {
-    if ((mempool == NULL) || (size > mempool->stack.size)) return NULL;
+    if (size > mempool->arena.size) return NULL;
     // NULL ptr should make this work like regular Allocation.
     else if (ptr == NULL) return MemPoolAlloc(mempool, size);
-    else if ((uintptr_t)ptr - sizeof(MemNode) < (uintptr_t)mempool->stack.mem) return NULL;
+    else if ((uintptr_t)ptr - sizeof(MemNode) < mempool->arena.mem) return NULL;
     else
     {
-        MemNode *const node = (MemNode *)((uint8_t *)ptr - sizeof *node);
+        MemNode *const node = ( MemNode* )(( uint8_t* )ptr - sizeof *node);
         const size_t NODE_SIZE = sizeof *node;
         uint8_t *const resized_block = MemPoolAlloc(mempool, size);
-
         if (resized_block == NULL) return NULL;
         else
         {
-            MemNode *const resized = (MemNode *)(resized_block - sizeof *resized);
+            MemNode *const resized = ( MemNode* )(resized_block - sizeof *resized);
             memmove(resized_block, ptr, (node->size > resized->size)? (resized->size - NODE_SIZE) : (node->size - NODE_SIZE));
             MemPoolFree(mempool, ptr);
             return resized_block;
@@ -347,72 +455,39 @@ void *MemPoolRealloc(MemPool *const restrict mempool, void *ptr, const size_t si
     }
 }
 
-void MemPoolFree(MemPool *const restrict mempool, void *ptr)
+void MemPoolFree(MemPool *const restrict mempool, void *const ptr)
 {
-    if ((mempool == NULL) || (ptr == NULL) || ((uintptr_t)ptr - sizeof(MemNode) < (uintptr_t)mempool->stack.mem)) return;
+    const uintptr_t p = ( uintptr_t )ptr;
+    if ((ptr == NULL) || (p - sizeof(MemNode) < mempool->arena.mem)) return;
     else
     {
         // Behind the actual pointer data is the allocation info.
-        MemNode *const mem_node = (MemNode *)((uint8_t *)ptr - sizeof *mem_node);
-        const size_t BUCKET_INDEX = (mem_node->size >> MEMPOOL_BUCKET_BITS) - 1;
+        const uintptr_t block = p - sizeof(MemNode);
+        MemNode *const mem_node = ( MemNode* )block;
+        const size_t BUCKET_SLOT = (mem_node->size >> MEMPOOL_BUCKET_BITS) - 1;
 
         // Make sure the pointer data is valid.
-        if (((uintptr_t)mem_node < (uintptr_t)mempool->stack.base) ||
-            (((uintptr_t)mem_node - (uintptr_t)mempool->stack.mem) > mempool->stack.size) ||
-            (mem_node->size == 0UL) ||
-            (mem_node->size > mempool->stack.size)) return;
-        // If the mem_node is right at the stack base ptr, then add it to the stack.
-        else if ((uintptr_t)mem_node == (uintptr_t)mempool->stack.base)
+        if ((block < mempool->arena.offs) ||
+            ((block - mempool->arena.mem) > mempool->arena.size) ||
+            (mem_node->size == 0) ||
+            (mem_node->size > mempool->arena.size)) return;
+        // If the mem_node is right at the arena offs, then merge it back to the arena.
+        else if (block == mempool->arena.offs)
         {
-            mempool->stack.base += mem_node->size;
+            mempool->arena.offs += mem_node->size;
         }
-        // attempted stack merge failed, try to place it into the memnode buckets
-        else if (BUCKET_INDEX < MEMPOOL_BUCKET_SIZE)
-        {
-            if (mempool->buckets[BUCKET_INDEX] == NULL) mempool->buckets[BUCKET_INDEX] = mem_node;
-            else
-            {
-                for (MemNode *n = mempool->buckets[BUCKET_INDEX]; n != NULL; n = n->next) if( n==mem_node ) return;
-                mempool->buckets[BUCKET_INDEX]->prev = mem_node;
-                mem_node->next = mempool->buckets[BUCKET_INDEX];
-                mempool->buckets[BUCKET_INDEX] = mem_node;
-            }
-        }
-        // Otherwise, we add it to the free list.
-        // We also check if the freelist already has the pointer so we can prevent double frees.
-        else /*if ((mempool->freeList.len == 0UL) || ((uintptr_t)mempool->freeList.head >= (uintptr_t)mempool->stack.mem && (uintptr_t)mempool->freeList.head - (uintptr_t)mempool->stack.mem < mempool->stack.size))*/
+        else
         {
-            for (MemNode *n = mempool->freeList.head; n != NULL; n = n->next) if (n == mem_node) return;
-
-            // This code insertion sorts where largest size is last.
-            if (mempool->freeList.head == NULL)
-            {
-                mempool->freeList.head = mempool->freeList.tail = mem_node;
-                mempool->freeList.len++;
-            }
-            else if (mempool->freeList.head->size >= mem_node->size)
-            {
-                mem_node->next = mempool->freeList.head;
-                mem_node->next->prev = mem_node;
-                mempool->freeList.head = mem_node;
-                mempool->freeList.len++;
-            }
-            else //if (mempool->freeList.tail->size <= mem_node->size)
-            {
-                mem_node->prev = mempool->freeList.tail;
-                mempool->freeList.tail->next = mem_node;
-                mempool->freeList.tail = mem_node;
-                mempool->freeList.len++;
-            }
-
-            if (mempool->freeList.autoDefrag && (mempool->freeList.maxNodes != 0UL) && (mempool->freeList.len > mempool->freeList.maxNodes)) MemPoolDefrag(mempool);
+            // try to place it into bucket or large freelist.
+            struct AllocList *const l = (BUCKET_SLOT < MEMPOOL_BUCKET_SIZE) ? &mempool->buckets[BUCKET_SLOT] : &mempool->large;
+            __InsertMemNode(mempool, l, mem_node, (BUCKET_SLOT < MEMPOOL_BUCKET_SIZE));
         }
     }
 }
 
-void MemPoolCleanUp(MemPool *const restrict mempool, void **ptrref)
+void MemPoolCleanUp(MemPool *const restrict mempool, void **const ptrref)
 {
-    if ((mempool == NULL) || (ptrref == NULL) || (*ptrref == NULL)) return;
+    if ((ptrref == NULL) || (*ptrref == NULL)) return;
     else
     {
         MemPoolFree(mempool, *ptrref);
@@ -422,264 +497,127 @@ void MemPoolCleanUp(MemPool *const restrict mempool, void **ptrref)
 
 size_t GetMemPoolFreeMemory(const MemPool mempool)
 {
-    size_t total_remaining = (uintptr_t)mempool.stack.base - (uintptr_t)mempool.stack.mem;
+    size_t total_remaining = mempool.arena.offs - mempool.arena.mem;
 
-    for (MemNode *n = mempool.freeList.head; n != NULL; n = n->next) total_remaining += n->size;
+    for (MemNode *n=mempool.large.head; n != NULL; n = n->next) total_remaining += n->size;
 
-    for (int i = 0; i < MEMPOOL_BUCKET_SIZE; i++) for (MemNode *n = mempool.buckets[i]; n != NULL; n = n->next) total_remaining += n->size;
+    for (size_t i=0; i<MEMPOOL_BUCKET_SIZE; i++) for (MemNode *n = mempool.buckets[i].head; n != NULL; n = n->next) total_remaining += n->size;
 
     return total_remaining;
 }
 
 void MemPoolReset(MemPool *const mempool)
 {
-    if (mempool == NULL) return;
-    mempool->freeList.head = mempool->freeList.tail = NULL;
-    mempool->freeList.len = 0;
-    for (int i = 0; i < MEMPOOL_BUCKET_SIZE; i++) mempool->buckets[i] = NULL;
-    mempool->stack.base = mempool->stack.mem + mempool->stack.size;
-}
-
-bool MemPoolDefrag(MemPool *const mempool)
-{
-    if (mempool == NULL) return false;
-    else
+    mempool->large.head = mempool->large.tail = NULL;
+    mempool->large.len = 0;
+    for (size_t i = 0; i < MEMPOOL_BUCKET_SIZE; i++)
     {
-        // If the memory pool has been entirely released, fully defrag it.
-        if (mempool->stack.size == GetMemPoolFreeMemory(*mempool))
-        {
-            MemPoolReset(mempool);
-            return true;
-        }
-        else
-        {
-            for (int i = 0; i < MEMPOOL_BUCKET_SIZE; i++)
-            {
-                while (mempool->buckets[i] != NULL)
-                {
-                    if ((uintptr_t)mempool->buckets[i] == (uintptr_t)mempool->stack.base)
-                    {
-                        mempool->stack.base += mempool->buckets[i]->size;
-                        mempool->buckets[i]->size = 0;
-                        mempool->buckets[i] = mempool->buckets[i]->next;
-                        if (mempool->buckets[i] != NULL) mempool->buckets[i]->prev = NULL;
-                    }
-                    else break;
-                }
-            }
-
-            const size_t PRE_DEFRAG_LEN = mempool->freeList.len;
-            MemNode **node = &mempool->freeList.head;
-
-            while (*node != NULL)
-            {
-                if ((uintptr_t)*node == (uintptr_t)mempool->stack.base)
-                {
-                    // If node is right at the stack, merge it back into the stack.
-                    mempool->stack.base += (*node)->size;
-                    (*node)->size = 0UL;
-                    ((*node)->prev != NULL)? ((*node)->prev->next = (*node)->next) : (mempool->freeList.head = (*node)->next);
-                    ((*node)->next != NULL)? ((*node)->next->prev = (*node)->prev) : (mempool->freeList.tail = (*node)->prev);
-
-                    if (mempool->freeList.head != NULL) mempool->freeList.head->prev = NULL;
-                    else mempool->freeList.tail = NULL;
-
-                    if (mempool->freeList.tail != NULL) mempool->freeList.tail->next = NULL;
-                    mempool->freeList.len--;
-                    node = &mempool->freeList.head;
-                }
-                else if (((uintptr_t)*node + (*node)->size) == (uintptr_t)(*node)->next)
-                {
-                    // Next node is at a higher address.
-                    (*node)->size += (*node)->next->size;
-                    (*node)->next->size = 0UL;
-
-                    // <-[P Curr N]-> <-[P Next N]-> <-[P NextNext N]->
-                    //
-                    //           |--------------------|
-                    // <-[P Curr N]-> <-[P Next N]-> [P NextNext N]->
-                    if ((*node)->next->next != NULL) (*node)->next->next->prev = *node;
-
-                    // <-[P Curr N]-> <-[P NextNext N]->
-                    (*node)->next = (*node)->next->next;
-
-                    mempool->freeList.len--;
-                    node = &mempool->freeList.head;
-                }
-                else if ((((uintptr_t)*node + (*node)->size) == (uintptr_t)(*node)->prev) && ((*node)->prev->prev != NULL))
-                {
-                    // Prev node is at a higher address.
-                    (*node)->size += (*node)->prev->size;
-                    (*node)->prev->size = 0UL;
-
-                    // <-[P PrevPrev N]-> <-[P Prev N]-> <-[P Curr N]->
-                    //
-                    //               |--------------------|
-                    // <-[P PrevPrev N] <-[P Prev N]-> <-[P Curr N]->
-                    (*node)->prev->prev->next = *node;
-
-                    // <-[P PrevPrev N]-> <-[P Curr N]->
-                    (*node)->prev = (*node)->prev->prev;
-
-                    mempool->freeList.len--;
-                    node = &mempool->freeList.head;
-                }
-                else if ((*node)->prev != NULL && (*node)->next != NULL && (uintptr_t)*node - (*node)->next->size == (uintptr_t)(*node)->next)
-                {
-                    // Next node is at a lower address.
-                    (*node)->next->size += (*node)->size;
-
-                    (*node)->size = 0UL;
-                    (*node)->next->prev = (*node)->prev;
-                    (*node)->prev->next = (*node)->next;
-                    *node = (*node)->next;
-
-                    mempool->freeList.len--;
-                    node = &mempool->freeList.head;
-                }
-                else if ((*node)->prev != NULL && (*node)->next != NULL && (uintptr_t)*node - (*node)->prev->size == (uintptr_t)(*node)->prev)
-                {
-                    // Prev node is at a lower address.
-                    (*node)->prev->size += (*node)->size;
-
-                    (*node)->size = 0UL;
-                    (*node)->next->prev = (*node)->prev;
-                    (*node)->prev->next = (*node)->next;
-                    *node = (*node)->prev;
-
-                    mempool->freeList.len--;
-                    node = &mempool->freeList.head;
-                }
-                else
-                {
-                    node = &(*node)->next;
-                }
-            }
-
-            return PRE_DEFRAG_LEN > mempool->freeList.len;
-        }
+        mempool->buckets[i].head = mempool->buckets[i].tail = NULL;
+        mempool->buckets[i].len = 0;
     }
-}
-
-void ToggleMemPoolAutoDefrag(MemPool *const mempool)
-{
-    if (mempool == NULL) return;
-    else mempool->freeList.autoDefrag ^= true;
+    mempool->arena.offs = mempool->arena.mem + mempool->arena.size;
 }
 
 //----------------------------------------------------------------------------------
 // Module Functions Definition - Object Pool
 //----------------------------------------------------------------------------------
-union ObjInfo {
-    uint8_t *const byte;
-    size_t *const index;
-};
 
 ObjPool CreateObjPool(const size_t objsize, const size_t len)
 {
     ObjPool objpool = { 0 };
-
-    if ((len == 0UL) || (objsize == 0UL)) return objpool;
+    if ((len == 0) || (objsize == 0)) return objpool;
     else
     {
-        objpool.objSize = __AlignSize(objsize, sizeof(size_t));
-        objpool.stack.size = objpool.freeBlocks = len;
-        objpool.stack.mem = calloc(objpool.stack.size, objpool.objSize);
-
-        if (objpool.stack.mem == NULL)
+        const size_t aligned_size = __AlignSize(objsize, sizeof(size_t));
+        uint8_t *const restrict buf = calloc(len, aligned_size);
+        if (buf == NULL) return objpool;
+        objpool.objSize = aligned_size;
+        objpool.memSize = objpool.freeBlocks = len;
+        objpool.mem = ( uintptr_t )buf;
+        
+        for (size_t i=0; i<objpool.freeBlocks; i++)
         {
-            objpool.stack.size = 0UL;
-            return objpool;
+            size_t *const restrict index = ( size_t* )(objpool.mem + (i*aligned_size));
+            *index = i + 1;
         }
-        else
-        {
-            for (int i = 0; i < objpool.freeBlocks; i++)
-            {
-                union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] };
-                *block.index = i + 1;
-            }
 
-            objpool.stack.base = objpool.stack.mem;
-            return objpool;
-        }
+        objpool.offs = objpool.mem;
+        return objpool;
     }
 }
 
-ObjPool CreateObjPoolFromBuffer(void *const buf, const size_t objsize, const size_t len)
+ObjPool CreateObjPoolFromBuffer(void *const restrict buf, const size_t objsize, const size_t len)
 {
     ObjPool objpool = { 0 };
 
     // If the object size isn't large enough to align to a size_t, then we can't use it.
-    if ((buf == NULL) || (len == 0UL) || (objsize < sizeof(size_t)) || (objsize*len != __AlignSize(objsize, sizeof(size_t))*len)) return objpool;
+    const size_t aligned_size = __AlignSize(objsize, sizeof(size_t));
+    if ((buf == NULL) || (len == 0) || (objsize < sizeof(size_t)) || (objsize*len != aligned_size*len)) return objpool;
     else
     {
-        objpool.objSize = __AlignSize(objsize, sizeof(size_t));
-        objpool.stack.size = objpool.freeBlocks = len;
-        objpool.stack.mem = buf;
+        objpool.objSize = aligned_size;
+        objpool.memSize = objpool.freeBlocks = len;
+        objpool.mem = (uintptr_t)buf;
 
-        for (int i = 0; i < objpool.freeBlocks; i++)
+        for (size_t i=0; i<objpool.freeBlocks; i++)
         {
-            union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] };
-            *block.index = i + 1;
+            size_t *const restrict index = ( size_t* )(objpool.mem + (i*aligned_size));
+            *index = i + 1;
         }
 
-        objpool.stack.base = objpool.stack.mem;
+        objpool.offs = objpool.mem;
         return objpool;
     }
 }
 
-void DestroyObjPool(ObjPool *const objpool)
+void DestroyObjPool(ObjPool *const restrict objpool)
 {
-    if ((objpool == NULL) || (objpool->stack.mem == NULL)) return;
+    if (objpool->mem == 0) return;
     else
     {
-        free(objpool->stack.mem);
+        void *const restrict ptr = ( void* )objpool->mem;
+        free(ptr);
         *objpool = (ObjPool){0};
     }
 }
 
 void *ObjPoolAlloc(ObjPool *const objpool)
 {
-    if (objpool == NULL) return NULL;
-    else
+    if (objpool->freeBlocks > 0)
     {
-        if (objpool->freeBlocks > 0UL)
-        {
-            // For first allocation, head points to the very first index.
-            // Head = &pool[0];
-            // ret = Head == ret = &pool[0];
-            union ObjInfo ret = { .byte = objpool->stack.base };
-            objpool->freeBlocks--;
-
-            // after allocating, we set head to the address of the index that *Head holds.
-            // Head = &pool[*Head * pool.objsize];
-            objpool->stack.base = (objpool->freeBlocks != 0UL)? objpool->stack.mem + (*ret.index*objpool->objSize) : NULL;
-            memset(ret.byte, 0, objpool->objSize);
-
-            return ret.byte;
-        }
-        else return NULL;
+        // For first allocation, head points to the very first index.
+        // Head = &pool[0];
+        // ret = Head == ret = &pool[0];
+        size_t *const restrict block = ( size_t* )objpool->offs;
+        objpool->freeBlocks--;
+
+        // after allocating, we set head to the address of the index that *Head holds.
+        // Head = &pool[*Head * pool.objsize];
+        objpool->offs = (objpool->freeBlocks != 0)? objpool->mem + (*block*objpool->objSize) : 0;
+        return memset(block, 0, objpool->objSize);
     }
+    else return NULL;
 }
 
-void ObjPoolFree(ObjPool *const restrict objpool, void *ptr)
+void ObjPoolFree(ObjPool *const restrict objpool, void *const ptr)
 {
-    union ObjInfo p = { .byte = ptr };
-    if ((objpool == NULL) || (ptr == NULL) || (p.byte < objpool->stack.mem) || (p.byte > objpool->stack.mem + objpool->stack.size*objpool->objSize)) return;
+    uintptr_t block = (uintptr_t)ptr;
+    if ((ptr == NULL) || (block < objpool->mem) || (block > objpool->mem + objpool->memSize*objpool->objSize)) return;
     else
     {
         // When we free our pointer, we recycle the pointer space to store the previous index and then we push it as our new head.
         // *p = index of Head in relation to the buffer;
         // Head = p;
-        *p.index = (objpool->stack.base != NULL)? (objpool->stack.base - objpool->stack.mem)/objpool->objSize : objpool->stack.size;
-        objpool->stack.base = p.byte;
+        size_t *const restrict index = ( size_t* )block;
+        *index = (objpool->offs != 0)? (objpool->offs - objpool->mem)/objpool->objSize : objpool->memSize;
+        objpool->offs = block;
         objpool->freeBlocks++;
     }
 }
 
-void ObjPoolCleanUp(ObjPool *const restrict objpool, void **ptrref)
+void ObjPoolCleanUp(ObjPool *const restrict objpool, void **const restrict ptrref)
 {
-    if ((objpool == NULL) || (ptrref == NULL) || (*ptrref == NULL)) return;
+    if (ptrref == NULL) return;
     else
     {
         ObjPoolFree(objpool, *ptrref);
@@ -694,71 +632,85 @@ void ObjPoolCleanUp(ObjPool *const restrict objpool, void **ptrref)
 BiStack CreateBiStack(const size_t len)
 {
     BiStack destack = { 0 };
-    if (len == 0UL) return destack;
-
+    if (len == 0) return destack;
+    
+    uint8_t *const buf = malloc(len*sizeof *buf);
+    if (buf==NULL) return destack;
     destack.size = len;
-    destack.mem = malloc(len*sizeof *destack.mem);
-    if (destack.mem==NULL) destack.size = 0UL;
-    else
-    {
-        destack.front = destack.mem;
-        destack.back = destack.mem + len;
-    }
+    destack.mem = ( uintptr_t )buf;
+    destack.front = destack.mem;
+    destack.back = destack.mem + len;
     return destack;
 }
 
 BiStack CreateBiStackFromBuffer(void *const buf, const size_t len)
 {
     BiStack destack = { 0 };
-    if (len == 0UL || buf == NULL) return destack;
-    destack.size = len;
-    destack.mem = destack.front = buf;
-    destack.back = destack.mem + len;
-    return destack;
+    if (len == 0 || buf == NULL) return destack;
+    else
+    {
+        destack.size = len;
+        destack.mem = destack.front = ( uintptr_t )buf;
+        destack.back = destack.mem + len;
+        return destack;
+    }
 }
 
-void DestroyBiStack(BiStack *const destack)
+void DestroyBiStack(BiStack *const restrict destack)
 {
-    if ((destack == NULL) || (destack->mem == NULL)) return;
-    free(destack->mem);
-    *destack = (BiStack){0};
+    if (destack->mem == 0) return;
+    else
+    {
+        uint8_t *const restrict buf = ( uint8_t* )destack->mem;
+        free(buf);
+        *destack = (BiStack){0};
+    }
 }
 
-void *BiStackAllocFront(BiStack *const destack, const size_t len)
+void *BiStackAllocFront(BiStack *const restrict destack, const size_t len)
 {
-    if ((destack == NULL) || (destack->mem == NULL)) return NULL;
-
-    const size_t ALIGNED_LEN = __AlignSize(len, sizeof(uintptr_t));
-    // front end stack is too high!
-    if (destack->front + ALIGNED_LEN >= destack->back) return NULL;
-
-    uint8_t *ptr = destack->front;
-    destack->front += ALIGNED_LEN;
-    return ptr;
+    if (destack->mem == 0) return NULL;
+    else
+    {
+        const size_t ALIGNED_LEN = __AlignSize(len, sizeof(uintptr_t));
+        // front end arena is too high!
+        if (destack->front + ALIGNED_LEN >= destack->back) return NULL;
+        else
+        {
+            uint8_t *const restrict ptr = ( uint8_t* )destack->front;
+            destack->front += ALIGNED_LEN;
+            return ptr;
+        }
+    }
 }
 
-void *BiStackAllocBack(BiStack *const destack, const size_t len)
+void *BiStackAllocBack(BiStack *const restrict destack, const size_t len)
 {
-    if ((destack == NULL) || (destack->mem == NULL)) return NULL;
-
-    const size_t ALIGNED_LEN = __AlignSize(len, sizeof(uintptr_t));
-    // back end stack is too low
-    if (destack->back - ALIGNED_LEN <= destack->front) return NULL;
-
-    destack->back -= ALIGNED_LEN;
-    return destack->back;
+    if (destack->mem == 0) return NULL;
+    else
+    {
+        const size_t ALIGNED_LEN = __AlignSize(len, sizeof(uintptr_t));
+        // back end arena is too low
+        if (destack->back - ALIGNED_LEN <= destack->front) return NULL;
+        else
+        {
+            destack->back -= ALIGNED_LEN;
+            uint8_t *const restrict ptr = ( uint8_t* )destack->back;
+            return ptr;
+        }
+    }
 }
 
 void BiStackResetFront(BiStack *const destack)
 {
-    if ((destack == NULL) || (destack->mem == NULL)) return;
-    destack->front = destack->mem;
+    if (destack->mem == 0) return;
+    else destack->front = destack->mem;
 }
 
 void BiStackResetBack(BiStack *const destack)
 {
-    if ((destack == NULL) || (destack->mem == NULL)) return;
-    destack->back = destack->mem + destack->size;
+    if (destack->mem == 0) return;
+    else destack->back = destack->mem + destack->size;
 }
 
 void BiStackResetAll(BiStack *const destack)
@@ -767,9 +719,21 @@ void BiStackResetAll(BiStack *const destack)
     BiStackResetFront(destack);
 }
 
-intptr_t BiStackMargins(const BiStack destack)
+inline intptr_t BiStackMargins(const BiStack destack)
 {
     return destack.back - destack.front;
 }
 
 #endif  // RMEM_IMPLEMENTATION
+
+/*******
+ * Changelog
+ * v1.0: First Creation.
+ * v1.1: bug patches for the mempool and addition of object pool.
+ * v1.2: addition of bidirectional arena.
+ * v1.3:
+    * optimizations of allocators.
+    * renamed 'Stack' to 'Arena'.
+    * replaced certain define constants with an anonymous enum.
+    * refactored MemPool to no longer require active or deferred defragging.
+ ********/