jim.h 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364
  1. #ifndef JIM_H_
  2. #define JIM_H_
  3. #ifndef JIM_STACK_CAPACITY
  4. #define JIM_STACK_CAPACITY 128
  5. #endif // JIM_STACK_CAPACITY
  6. typedef void* Jim_Sink;
  7. typedef size_t (*Jim_Write)(const void *ptr, size_t size, size_t nmemb, Jim_Sink sink);
  8. typedef enum {
  9. JIM_OK = 0,
  10. JIM_WRITE_ERROR,
  11. JIM_STACK_OVERFLOW,
  12. JIM_STACK_UNDERFLOW,
  13. JIM_OUT_OF_SCOPE_KEY,
  14. JIM_DOUBLE_KEY
  15. } Jim_Error;
  16. const char *jim_error_string(Jim_Error error);
  17. typedef struct {
  18. int tail;
  19. int key;
  20. } Jim_Scope;
  21. typedef struct {
  22. Jim_Sink sink;
  23. Jim_Write write;
  24. Jim_Error error;
  25. Jim_Scope stack[JIM_STACK_CAPACITY];
  26. size_t stack_size;
  27. } Jim;
  28. void jim_null(Jim *jim);
  29. void jim_bool(Jim *jim, int boolean);
  30. void jim_integer(Jim *jim, long long int x);
  31. void jim_float(Jim *jim, double x, int precision);
  32. void jim_string(Jim *jim, const char *str, const unsigned int *size);
  33. void jim_element_begin(Jim *jim);
  34. void jim_element_end(Jim *jim);
  35. void jim_array_begin(Jim *jim);
  36. void jim_array_end(Jim *jim);
  37. void jim_object_begin(Jim *jim);
  38. void jim_member_key(Jim *jim, const char *str, const unsigned int *size);
  39. void jim_object_end(Jim *jim);
  40. #endif // JIM_H_
  41. #ifdef JIM_IMPLEMENTATION
  42. static size_t jim_strlen(const char *s)
  43. {
  44. size_t count = 0;
  45. while (*(s + count)) {
  46. count += 1;
  47. }
  48. return count;
  49. }
  50. static void jim_stack_push(Jim *jim)
  51. {
  52. if (jim->error == JIM_OK) {
  53. if (jim->stack_size < JIM_STACK_CAPACITY) {
  54. jim->stack[jim->stack_size].tail = 0;
  55. jim->stack[jim->stack_size].key = 0;
  56. jim->stack_size += 1;
  57. } else {
  58. jim->error = JIM_STACK_OVERFLOW;
  59. }
  60. }
  61. }
  62. static void jim_stack_pop(Jim *jim)
  63. {
  64. if (jim->error == JIM_OK) {
  65. if (jim->stack_size > 0) {
  66. jim->stack_size--;
  67. } else {
  68. jim->error = JIM_STACK_UNDERFLOW;
  69. }
  70. }
  71. }
  72. static Jim_Scope *jim_stack_top(Jim *jim)
  73. {
  74. if (jim->error == JIM_OK) {
  75. if (jim->stack_size > 0) {
  76. return &jim->stack[jim->stack_size - 1];
  77. }
  78. }
  79. return NULL;
  80. }
  81. static void jim_write(Jim *jim, const char *buffer, size_t size)
  82. {
  83. if (jim->error == JIM_OK) {
  84. if (jim->write(buffer, 1, size, jim->sink) < size) {
  85. jim->error = 1;
  86. }
  87. }
  88. }
  89. static void jim_write_cstr(Jim *jim, const char *cstr)
  90. {
  91. if (jim->error == JIM_OK) {
  92. jim_write(jim, cstr, jim_strlen(cstr));
  93. }
  94. }
  95. static int jim_get_utf8_char_len(unsigned char ch)
  96. {
  97. if ((ch & 0x80) == 0) return 1;
  98. switch (ch & 0xf0) {
  99. case 0xf0:
  100. return 4;
  101. case 0xe0:
  102. return 3;
  103. default:
  104. return 2;
  105. }
  106. }
  107. void jim_element_begin(Jim *jim)
  108. {
  109. if (jim->error == JIM_OK) {
  110. Jim_Scope *scope = jim_stack_top(jim);
  111. if (scope && scope->tail && !scope->key) {
  112. jim_write_cstr(jim, ",");
  113. }
  114. }
  115. }
  116. void jim_element_end(Jim *jim)
  117. {
  118. if (jim->error == JIM_OK) {
  119. Jim_Scope *scope = jim_stack_top(jim);
  120. if (scope) {
  121. scope->tail = 1;
  122. scope->key = 0;
  123. }
  124. }
  125. }
  126. const char *jim_error_string(Jim_Error error)
  127. {
  128. // TODO(#1): error strings are not particularly useful
  129. switch (error) {
  130. case JIM_OK:
  131. return "There is no error. The developer of this software just had a case of \"Task failed successfully\" https://i.imgur.com/Bdb3rkq.jpg - Please contact the developer and tell them that they are very lazy for not checking errors properly.";
  132. case JIM_WRITE_ERROR:
  133. return "Write error";
  134. case JIM_STACK_OVERFLOW:
  135. return "Stack Overflow";
  136. case JIM_STACK_UNDERFLOW:
  137. return "Stack Underflow";
  138. case JIM_OUT_OF_SCOPE_KEY:
  139. return "Out of Scope key";
  140. case JIM_DOUBLE_KEY:
  141. return "Tried to set the member key twice";
  142. default:
  143. return NULL;
  144. }
  145. }
  146. void jim_null(Jim *jim)
  147. {
  148. if (jim->error == JIM_OK) {
  149. jim_element_begin(jim);
  150. jim_write_cstr(jim, "null");
  151. jim_element_end(jim);
  152. }
  153. }
  154. void jim_bool(Jim *jim, int boolean)
  155. {
  156. if (jim->error == JIM_OK) {
  157. jim_element_begin(jim);
  158. if (boolean) {
  159. jim_write_cstr(jim, "true");
  160. } else {
  161. jim_write_cstr(jim, "false");
  162. }
  163. jim_element_end(jim);
  164. }
  165. }
  166. static void jim_integer_no_element(Jim *jim, long long int x)
  167. {
  168. if (jim->error == JIM_OK) {
  169. if (x < 0) {
  170. jim_write_cstr(jim, "-");
  171. x = -x;
  172. }
  173. if (x == 0) {
  174. jim_write_cstr(jim, "0");
  175. } else {
  176. char buffer[64];
  177. size_t count = 0;
  178. while (x > 0) {
  179. buffer[count++] = (x % 10) + '0';
  180. x /= 10;
  181. }
  182. for (size_t i = 0; i < count / 2; ++i) {
  183. char t = buffer[i];
  184. buffer[i] = buffer[count - i - 1];
  185. buffer[count - i - 1] = t;
  186. }
  187. jim_write(jim, buffer, count);
  188. }
  189. }
  190. }
  191. void jim_integer(Jim *jim, long long int x)
  192. {
  193. if (jim->error == JIM_OK) {
  194. jim_element_begin(jim);
  195. jim_integer_no_element(jim, x);
  196. jim_element_end(jim);
  197. }
  198. }
  199. static int is_nan_or_inf(double x)
  200. {
  201. unsigned long long int mask = (1ULL << 11ULL) - 1ULL;
  202. return (((*(unsigned long long int*) &x) >> 52ULL) & mask) == mask;
  203. }
  204. void jim_float(Jim *jim, double x, int precision)
  205. {
  206. if (jim->error == JIM_OK) {
  207. if (is_nan_or_inf(x)) {
  208. jim_null(jim);
  209. } else {
  210. jim_element_begin(jim);
  211. jim_integer_no_element(jim, (long long int) x);
  212. x -= (double) (long long int) x;
  213. while (precision-- > 0) {
  214. x *= 10.0;
  215. }
  216. jim_write_cstr(jim, ".");
  217. long long int y = (long long int) x;
  218. if (y < 0) {
  219. y = -y;
  220. }
  221. jim_integer_no_element(jim, y);
  222. jim_element_end(jim);
  223. }
  224. }
  225. }
  226. static void jim_string_no_element(Jim *jim, const char *str, const unsigned int *size)
  227. {
  228. if (jim->error == JIM_OK) {
  229. const char *hex_digits = "0123456789abcdef";
  230. const char *specials = "btnvfr";
  231. const char *p = str;
  232. size_t len = size ? *size : jim_strlen(str);
  233. jim_write_cstr(jim, "\"");
  234. size_t cl;
  235. for (size_t i = 0; i < len; i++) {
  236. unsigned char ch = ((unsigned char *) p)[i];
  237. if (ch == '"' || ch == '\\') {
  238. jim_write(jim, "\\", 1);
  239. jim_write(jim, p + i, 1);
  240. } else if (ch >= '\b' && ch <= '\r') {
  241. jim_write(jim, "\\", 1);
  242. jim_write(jim, &specials[ch - '\b'], 1);
  243. } else if (0x20 <= ch && ch <= 0x7F) { // is printable
  244. jim_write(jim, p + i, 1);
  245. } else if ((cl = jim_get_utf8_char_len(ch)) == 1) {
  246. jim_write(jim, "\\u00", 4);
  247. jim_write(jim, &hex_digits[(ch >> 4) % 0xf], 1);
  248. jim_write(jim, &hex_digits[ch % 0xf], 1);
  249. } else {
  250. jim_write(jim, p + i, cl);
  251. i += cl - 1;
  252. }
  253. }
  254. jim_write_cstr(jim, "\"");
  255. }
  256. }
  257. void jim_string(Jim *jim, const char *str, const unsigned int *size)
  258. {
  259. if (jim->error == JIM_OK) {
  260. jim_element_begin(jim);
  261. jim_string_no_element(jim, str, size);
  262. jim_element_end(jim);
  263. }
  264. }
  265. void jim_array_begin(Jim *jim)
  266. {
  267. if (jim->error == JIM_OK) {
  268. jim_element_begin(jim);
  269. jim_write_cstr(jim, "[");
  270. jim_stack_push(jim);
  271. }
  272. }
  273. void jim_array_end(Jim *jim)
  274. {
  275. if (jim->error == JIM_OK) {
  276. jim_write_cstr(jim, "]");
  277. jim_stack_pop(jim);
  278. jim_element_end(jim);
  279. }
  280. }
  281. void jim_object_begin(Jim *jim)
  282. {
  283. if (jim->error == JIM_OK) {
  284. jim_element_begin(jim);
  285. jim_write_cstr(jim, "{");
  286. jim_stack_push(jim);
  287. }
  288. }
  289. void jim_member_key(Jim *jim, const char *str, const unsigned int *size)
  290. {
  291. // TODO(#3): jim_member_key does not throw an error when used inside of array scope instead of object scope
  292. if (jim->error == JIM_OK) {
  293. jim_element_begin(jim);
  294. Jim_Scope *scope = jim_stack_top(jim);
  295. if (scope) {
  296. if (!scope->key) {
  297. jim_string_no_element(jim, str, size);
  298. jim_write_cstr(jim, ":");
  299. scope->key = 1;
  300. } else {
  301. jim->error = JIM_DOUBLE_KEY;
  302. }
  303. } else {
  304. jim->error = JIM_OUT_OF_SCOPE_KEY;
  305. }
  306. }
  307. }
  308. void jim_object_end(Jim *jim)
  309. {
  310. if (jim->error == JIM_OK) {
  311. jim_write_cstr(jim, "}");
  312. jim_stack_pop(jim);
  313. jim_element_end(jim);
  314. }
  315. }
  316. #endif // JIM_IMPLEMENTATION